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Criticality in the fracture of silica glass: Insights from molecular mechanics
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The universality of avalanches characterizing the inelastic response of disordered materials has the potential
to bridge the gap from micro to macroscale. In this study, we explore the statistics and the scaling behavior
of avalanches occurring during the fracture process in silica glass using molecular mechanics. We introduce
a robust method for capturing and quantifying these avalanches, allowing us to perform rigorous statistical
analyses, revealing universal power laws associated with critical phenomena. The influence of an initial crack
is explored, observing deviations from mean-field predictions while maintaining the property of criticality.
However, the avalanche exponents in the unnotched samples are predicted correctly by the mean-field depinning
model. Furthermore, we investigate the strain-dependent probability density function, its cutoff function, and
the interrelation between the critical exponents. Finally, we unveil distinct scaling behavior for small and large
avalanches of the crack growth, shedding light on the underlying fracture mechanisms in silica glass.
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I. INTRODUCTION

Predicting the fracture of disordered solids remains a long-
standing research problem. In this context, statistical models
have been extensively used to study the breakdown phe-
nomena since they can address size effects and capture the
fluctuations between different samples in real life [1].

Since fracture is a highly complex phenomenon that seems
to originate from the finest details, the necessity for statistical
treatment was recognized early on in the theory of Griffith
that takes into consideration the random nature of the defects
in the material [2]. Later, it was acknowledged that thermally
activated fracture could be connected to first-order transition
close to the spinodal point [3] so that efforts dealt with transi-
tion induced by disorder, where the quenched disorder plays
the role of temperature [4].

When disordered solids are slowly driven by an external
deformation field, their response is characterized by inter-
mittent dynamics in the form of avalanches that increase
in intensity before the breakdown of the material [5–7].
These avalanches originate from localized events [8] and
follow power-law statistics that are also present in numer-
ous natural processes beyond fracture and material science
[9–12], suggesting a general mechanism of a more broad
phenomenon. Predicting every microscopic event occurring
during fracture turns out to be excruciatingly difficult and
has been the focus of many studies using different ap-
proaches, including structural indicators [13], local shear
modulus [14], harmonic and anharmonic approximation of
the glass’ energy [15,16], and machine learning [17]. How-
ever, statistical physics can explain the average behavior using
simplified models that may capture the macroscopic response
of a wide range of systems. These models are generally
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treated in the mean-field framework [18] where many of
the interaction details are washed away while a few relevant
properties such as the underlying symmetries play the main
role in deciding the leading terms of the expansion of the
Landau-Ginzburg free energy [19] leading to different scaling
relations.

Similar behavior has been observed for glasses as a major
class of disordered solids with widespread applications in
various fields due to their high strength and durability. On
the nanoscale, (slowly driven) glasses under shear stress ex-
perience a steady-state phase which has been studied in the
framework of self-organized criticality [20–23], while the
yielding transition has mostly been studied with depinning
models [24]. However, there is ongoing debate regarding the
nature of this transition, with some researchers suggesting that
it may belong to a different universality class [25,26]. More-
over, most molecular dynamics (MD) studies were performed
on model glasses [27–31], or metallic glasses [32,33], while
only a few focused on silica glass under shear [34] and even
less on silica under tensile stress [35], where the yielding
phase represented by the plastic steady state before failure is
quite short-lived. Furthermore, the validity of the mean-field
calculations remains under debate [36], with a wide range
of computed critical exponents both numerically and exper-
imentally [23,37,38]. Therefore, a realistic numerical model
simulated with MD can be used as a powerful tool to get a
better understanding of this complex behavior.

Silica glass which stands out as one of the most widely
used materials, is brittle on the nanoscale making it suscepti-
ble to catastrophic failure under stress. Thus, its widespread
use is severely limited by its cracking properties. Therefore,
a better understanding of the failure mechanism can lead
to the development of stronger and more fracture-resistant
glasses and enables better and more efficient designs. The
deformation behavior of silica is governed by its network
topology [39], where the breakage of covalent bonds plays an
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important role in its inelastic response [40,41]. Furthermore,
experimental studies have shown that cracks in silica glass
grow in a sequential bond rapture without plastic deforma-
tion near the crack tip [42], while some other experimental
[43] and molecular dynamic studies [44] claim that it breaks
through the coalescence of nanoscale cavities and that plastic
flow governs the cracking process [45]. Furthermore, it was
shown that, the crack geometry exhibits the universal values
of the crack roughness [44], providing further indication of
the universality of the fracture process.

In this paper, we use molecular dynamics to study the
fracture process of silica glass on the nanoscale under tensile
stress, using the athermal quasistatic (AQS) deformation pro-
tocol for a wide range of system sizes including prenotched
and unnotched systems. A new method is proposed in this
paper for detecting and measuring the avalanches in the stress
and energy of the system. Their statistics are analyzed and
compared, showing that they follow power laws suggesting
critical behavior. The critical exponents are determined by
employing direct fitting and finite-size scaling (FSS) tech-
niques. Additionally, we investigate the dependence of the
probability density function (PDF) on the strain range, explore
its cutoff function, and examine the relationship between the
critical exponents. Finally, the crack growth process is cap-
tured, and the statistics of the corresponding avalanches are
analyzed.

II. METHODS

A. Sample generation

We investigate the fracture of molecular systems using
classical molecular mechanics. Four different system sizes of
bulk silica were simulated, containing 6100, 12 150, 24 624,
and 48 000 atoms. The largest system has the dimensions
88 × 56 × 140 Å and a density of 2.2 g/cm3. The other
systems have approximately the same proportions and den-
sity. Each system was simulated by heating an ensemble to
8000 K. Subsequently, the temperature is kept constant using
the NVT ensemble for 250 ps to ensure that, first, the samples
reached a state of thermal equilibrium and, second, they have
no memory of their initial configuration. The system is then
rapidly quenched to a temperature of 0.01 K at the rate of
10 K/ps using the NVT ensemble. Finally, the samples are
allowed to relax to a pressure-free state by iteratively altering
the simulation box and minimizing the potential energy. We
used a potential based on the Born-Mayer-Huggins potential,
first proposed by Matsui [46], and reparameterized by Jakse
et al. [47]. The potential between two atoms of type i and j is
written as

Ui j (ri j ) = qiq j

4πε0ri j
+ Ai j exp

(
σi j − ri j

ρi j

)
− Ci j

r6
i j

, (1)

where ri j is the interatomic distance, qi refers to the effec-
tive charge, and Ai j and Ci j are parameters taken from Jakse
et al. [47]. Equation (1) includes three terms: the Coulombic
interaction term, short-range repulsive term (also known as
the Born term), and the Van der Waals interaction term. The
cutoff distance was set to 10.17 Å.

B. Mechanical simulation

To investigate crack growth, an initial notch was introduced
to the center of the samples by removing atoms from a cylin-
drical volume with an elliptical cross-section of 2.5 × 5 Å in
the xz plane which spans across the entire sample in the y di-
rection. The size of the initial notch was chosen to be as small
as possible while making sure that it constitutes a critical size
for initiating failure. The samples are loaded uniaxially in the
x direction at 0 K using the athermal quasistatic deformation
protocol [48] with a strain step size of 10−4. Notably, the
step size was chosen small enough to make sure that all the
avalanches occurring during deformation are recorded. The
average time between the avalanches (weighting time) was
measured for the biggest sample to be ∼2 × 10−3.

Following the described methodology, 50 samples of each
system size were generated and loaded until failure. A total
number of 23 025 avalanche events were analyzed for the
investigation of the energy drops, stress drops, and 11 253
events for the crack growth.

C. Void detection

To study the crack growth during mechanical testing, we
used an external library [49,50] with which both the volume
and the surface of the voids can be computed. In this paper,
the voids were defined as the available space through which a
hard sphere can move by assigning a spherical volume around
every atom in the system. A diameter of 2 Å was chosen for
both the exclusion spheres around each atom and the moving
hard-sphere taking into account the covalent bond distance
between silicon and oxygen atoms.

D. Scaling

Three different quantities were chosen for the quantifica-
tion of avalanche events: the intermittent drops in the virial
stress during deformation �σ , the drop in the potential energy
��, and the discrete jumps in the volume starting from the
initial notch volume �V which identifies the crack growth.

Since the behavior in the response of the system changes
with increasing strain, the conventional way of measuring
avalanches, which is simply to evaluate the difference in the
observed response magnitudes, such as stress or potential
energy at two subsequent strain steps, leads to crucial inac-
curacies for the present examples. On the one hand, it would
lead to an overestimation in the avalanche size at the initial
elastic regime, and, on the other hand, it would lead to an un-
derestimation closer to the critical strain. In the case of steady
flow as in a sheared glass, one could overcome this problem
by correcting the drop according to the expected value in
the case of a continued elastic behavior by using the elastic
constant as follows �σ = σi − σi+1 + E�ε [51]. However,
this is not straightforward in our case since the elastic constant
changes significantly with increasing strain. Therefore, we
propose an alternative method for measuring the avalanches
wherein events are detected in terms of fluctuations in the
studied quantity rather than by simply identifying the drops.
To this end, the avalanches are identified as discontinuities in
the change of the energy (�i − �i+1) or stress (σi − σi+1).
Then a running average is constructed at the time steps
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FIG. 1. Illustrative plot of the avalanche measurements. The
black line represents the stress difference between two consecutive
steps �σi = σi+1 − σi as a function of the strain εi. The green color
shows the detected avalanches if one considers a wider range of
fluctuations, and the red color shows the detected avalanches if one
defines avalanches as �σi > 0. The arrows represent the avalanche
magnitude of each method. The inclination in the black line shows
how the elastic response of the material changes with increasing
strain.

without events, and interpolated at the time of the events,
which would correspond to a running average curve of the
elastic constant E . Finally, the size of the avalanches is com-
puted as the difference between the peaks and the running
average curve. An illustration of the approach is shown in
Fig. 1.

Taking into account the relevant literature published in
fracture mechanics, we expect the avalanche statistics to
follow a power law with a system size-dependent cutoff,
cf. Refs. [4,25]. Based on this assumption, we initially com-
puted the critical exponent from the simulations by direct
fitting. However, it is known that fitting with the moments
of the PDFs by assuming finite-size scaling yields better
estimates, particularly when the statistical sample size is in-
adequate for determining the cutoff tail with precision [52].
Therefore, we carried out finite-size scaling analysis by in-
vestigating the moments of the distribution function from
which we estimated the critical exponents. The validity of this
assumption can be assessed by evaluating the quality of the
resulting data collapse.

We assume that the PDF integrated over a certain strain
domain scales as follows:

P(m) ∼ N−β f
( m

Nβ/τ

)
, (2)

where N is the system size. Then, one expects the first moment
of the PDF to scale as follows:

〈ma〉 ∼ N
β

τ
(a+1−τ ) ∼ Nα(a). (3)

This equation is only valid for values of a + 1 − τ > 0,
and it reads

α(a) = β

τ
(a − τ + 1),

∂α(a)

∂a
= β

τ
. (4)

Therefore, the exponents τ and β can be computed from
the log-log plot of N − 〈mα〉, for different values of α, by
following the method proposed by Chessa et al. [52].

To study the cutoff tail for the PDF, we rely on the scaling
relations derived from the fiber bundle model (FBM) with
the global load-sharing rule, which corresponds to the mean-
field calculation for the fracture transition due to the infinite
interaction length between the single fibers. Accordingly, we
expect the PDF of the avalanche size to scale as follows:

P(m, ε) ∼ m−τ e−Am(εc−ε)κ . (5)

Here, m is the avalanche size, the strain ε plays the role of the
external force field f , and εc is the critical strain. This relation
is expected to be valid for small bin sizes; however, in our
case, a much larger statistical sample size is needed, which
poses a challenge. Therefore, we adopt a strategy of integrat-
ing the PDF over different strain regimes. By integrating from
ε = 0 to ε = εc, it would take the following form:

P(m) ∼ 1

κ
m−τ ′

γ
(
1/κ, Amεk

c

)
, (6)

where τ ′ = τ + 1/κ and γ is the lower incomplete gamma
function. In the case of arbitrary bin sizes ε1 − ε2 it is
written as

P(m) ∼ 1

κ
m−τ ′ { γ [1/κ, Am(εc − ε2)κ ]

− γ [1/κ, Am(εc − ε1)κ ]}. (7)

Finally, for any strain regime from 0 to ε, it is written as

P(m, ε) ∼ m−τ ′ { γ [1/κ, Am(εc − ε)κ ]

− γ [1/κ, Am(εc)κ ]}. (8)

Additionally, one may analyze the moments of the PDFs for
different strain regimes, starting from Eq. (5). The average
avalanche size would diverge as the system approaches the
critical strain, according to the following scaling relation:

〈ma〉 ∼ (εc − ε)κ (τ−a−1)γ [a + 1, Amc(εc − ε)κ ], (9)

where mc is the critical avalanche size. We assume that it
is related to the linear dimension mc ∼ Ld f or mc ∼ Nd f /3

where d f is the fractal dimension, or that mc ∼ mmax. For the
FBM, one expects the critical exponents to be τ = 1.5 and
κ = 1.0 [53].

We assume that preexisting defects in the material inter-
act through long-range elastic fields [54]. This could lead to
mean-field behavior even in dimensions lower than the lower
critical dimension [55]. One may study the extent of the elastic
fields by analyzing the load transfer in the system which
is expected to decay exponentially as 1/rγ , where r is the
interaction radius. In the fiber bundle model, the interaction
range is infinite, and, therefore, the calculations correspond
to the mean-field limit [56], while in the ones incorporating
the local load sharing rule, γ defines the system response to
the fiber breaking events, where γ = 2 forms the cross-over
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between local and global behavior. The complete derivations
of Eqs. (6) to (9) are presented in the Appendix.

III. RESULTS AND DISCUSSION

At low strains, the material exhibits nearly linear behavior,
and only a relatively small number of plastic events was
detected. These events increase in size and frequency with
increasing strain until failure. All the simulations reveal brittle
behavior. However, the ductility increases with decreasing
system size due to size effects. Furthermore, a short steady
state before failure was observed as expected from rather
brittle materials. Since the presence of a long-lived absorbing
phase represented by the steady state is an important criterion
for self-organized criticality [57,58] one may argue that classi-
fying the fracture of silica in the framework of self-organized
criticality may not be feasible.

The nonaffine displacement fields for two avalanche events
are plotted in Fig. 2. A small event is plotted in Figs. 2(a)
and 2(b) where it can be seen that the event consists of two
subevents interacting with each other through elastic fields.
However, neither of them is at the edge of the initial notch.
This observation highlights the role of the disorder of the
system whereby not all events result in the propagation of
the crack. Furthermore, the events shown take dipolar shapes
with two distinct inclinations relative to the loading axis. The
dipolar shape was predominant in our simulations, in contrast
to events in shear loading regimes, which are characterized by
quadrupolar shapes [59]. This difference in shape is known to
impact the waiting time between avalanches [60]. In Figs. 2(c)
and 2(d) a catastrophic event is plotted whose magnitude ex-
tends over the entire system and leads to failure of the system.
It is worth noting that the power laws derived from the mean
field of depinning models are expected to fail to capture the
statistics of the large system-spanning events [61]. Moreover,
the catastrophic events in the FBM are known to follow a
Gaussian distribution [56].

The average strain interval between the avalanches de-
creases exponentially with the increasing system size as �ε ∼
N−χ with χ ≈ 0.4234. Similarly, the critical strain is defined
as the strain at which the average avalanche size diverges
scales as εc ∼ N−B with B ≈ 0.1025. These results are plotted
in Fig. 3.

By assuming that the average maximum avalanche from
each system corresponds to the critical avalanche size, one
can compute the fractal dimension from its dependence on
the system size. The results are plotted in Fig. 3(a). One can
see from the slope of the fitted line that d f /3 ≈ 1.24 and there-
fore d f ≈ 3.72. This is much larger than the typical values
reported from statistical fracture models, which usually fall in
the range between 1.0 and 1.25 [56].

It is worth pointing out that our systems are not ideally
brittle since the fracture process involves substantial plas-
tic deformations. Rountree et al. [62] made an intriguing
observation on sheared glasses, showing that the glass under-
goes permanent anisotropic changes in the Si-O-Si triplets.
Following this line of thought, we measured the anisotropic
change during the deformation, which is reflected in changes
of the fabric tensor F = 〈n ⊗ n〉, where n is the normal vector
between Si atoms in neighboring tetrahedra. In this sense,

the largest eigenvalue corresponds to the principal stretching
direction of the triplets. Therefore, we plot the x component
of the eigenvector v1,x of the largest eigenvalue versus strain
in Fig. 4. We find that v1,x increases rapidly after the initial
phases of deformation. Then, the relation enters a slowly
increasing linear phase until reaching its maximum value
shortly before the crack initiates. During the linear phase,
the principle stretching direction is almost completely parallel
to the deformation direction. Furthermore, we measure the
anisotropy induced by the remote field by computing the
parameter defined as α = 3

2

√∑3
i=1(λi − 1

3 )2 , where λi are
the eigenvalues of the fabric tensor. As shown in Fig. 4, the
anisotropy increases significantly for all the sample sizes but
decreases to lower values after the full propagation of the
crack. Interestingly, some degree of anisotropy remains even
though the samples return to a stress-free state after fracture
rather than to a strain-free state as in the original study by
Rountree et al. [62]. This shows that irreversible processes
other than the crack propagation take place even though the
plastic flow phase is barely detectable in the stress-strain
curves. For comparison, we also computed the anisotropy pa-
rameter based on the fabric tensor of Si-O couples. We found
no significant irreversible changes after failure, indicating that
the tetrahedra in the glass remain predominantly unchanged.

Furthermore, we study the fracture energy of the system
defined as the energy dissipated per unit crack area following
Griffith’s classical assumptions [2]. First, we investigate the
stress concentration around the crack tip shortly before the
first propagation events start by computing the virial stress per
atom. The stress decays away from the crack tip as σxx ∼ r−γ ,
with γ = 0.52 at ε = 0.12. We compute values for γ ranging
from 0.48 to 0.55 for about 400 steps before the crack prop-
agates. This hints at a universal stress field around the crack
tip, possibly aligning with the prediction of Irwin’s formula
[63], where the stress decays as the inverse square root of
the distance from the crack tip. The results are plotted in
Fig. 5. It is important to note that the values of γ in the elas-
tic deformation regime exceed 0.60, meaning that the stress
decays slower around the crack tip. We attribute that to the
inherent structural disorder, which competes with the initial
notch for the stress concentration. However, at higher stresses,
the localizing effect of the initial notch becomes dominant. To
compute the fracture energy we rely on an energetic approach
[64], where the critical energy release rate is evaluated as

Gc = LxLyLz

(A∞ − A0)

∫ ε(max)
x

0
σxdεx. (10)

Starting with the largest and progressing to the smallest
system, we obtained fracture energies of J = 3.04, 2.76,
2.84, and 2.84 Joule/m2. Notably, these values are smaller
than the macroscopically experimentally measured values
of silica glass. However, our simulations were performed
in the athermal limit, so these values cannot be directly
compared. Furthermore, we quantify the amount of the
dissipated energy during deformation. It captures about
77.09%, 74.89%, 76.44%, and 79.86% of the total mechan-
ical work of the system, for the systems with 48 000, 24 624,
12 150, and 6100 atoms, respectively. The remaining portion
remains stored in the system.
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FIG. 2. Nonaffine displacement field for two events in the system with 48 000 atoms. (a) A small event in the elastic strain regime projected
on the xz plane. (b)The same event in three dimensions. (c) The largest event during loading projected on the xz plane, leading to the propagation
of the initial crack. (d) The same event in three dimensions. The arrows and colors are normalized and scaled logarithmically. Hence, the events
are more localized than they appear in the plots. Additionally, the plots are replicated in both the x and z directions in (a) and (c) to demonstrate
the periodic boundary conditions.

We expect these percentages to rise in the presence of the
temperature since an essential part of the energy is dissipated
through temperature, resulting in a higher cost for the creation
of new surfaces with the crack propagation.

Avalanches

Our analyses confirm the occurrence of scale-invariant
avalanches. In Fig. 6, the probability distribution function
P(��), taking into account the strain domain from zero until
the critical strain, is plotted. The avalanches follow a power
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FIG. 3. Dependence of (a) the critical strain, (b) the average waiting time between the energy avalanches, and the critical avalanche size
on the system size.

FIG. 4. Change in the anisotropy during the tensile simulations. (a) The horizontal component of the first eigenvector of the fabric tensor.
(b) The anisotropy parameter. The solid lines represent the average over the different samples, while the shaded areas represent the standard
deviation.

FIG. 5. Stress field around the crack tip for the largest system. (a) Decay of the of the average normalized stress 〈σn〉 away from the crack
tip at strain ε = 0.12 shortly before crack propagation starts. (b) Interpolated normalized virial stress field averaged over all the samples.
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FIG. 6. Scaled probability distribution function for the (a) energy and (b) stress avalanches. Inset: The unscaled PDF. The data collapse
indicates a good fit for the computed exponents from FSS. The avalanches are integrated over the strain regime until the critical strain. The
black line represents a power law m−τ ′

where the critical exponent τ ′ is computed from the first moment analysis of the distribution function.

law with cutoffs at both ends of the PDF. The upper cutoff is
exponential and scales with the system size. We find through
the direct fitting of the sample containing 48 000 atoms that
the critical exponent takes a value τ ′

�� ≈ 1.75. However, to
confirm this value, we carry finite-size analyses by assuming
a scaling function in the form P(��) ∼ N−β f (��/N−β/τ ′

).
By analyzing the first moment of the PDF, we evaluated
β��/τ ′

�� = 1.47 from the derivative ∂α(a)/∂a, which was
computed from the slope of the logarithmic plot of N −
〈mα〉. Subsequently, τ ′

�� = 1.75 was evaluated from the re-
lation α(a) = β/τ ′(a − τ ′ + 1), so that β�� = 2.57. Finally,
to validate our calculations, we collapse the data with the
hypothesized function and the computed exponents in Fig. 6.
As shown in this figure, the collapse is satisfactory since the
data points of the PDFs of the different system sizes fall into
one curve.

Similarly, the probability distribution function of the stress
drops P(�σ ) is plotted in Fig. 6(b). A power law is observed
with cutoffs at both ends, with the upper cutoff being depen-
dent on the system size. We compute τ ′

�σ ≈ 1.50 through di-
rect fitting of the biggest system. Subsequently, we computed
through FSS τ ′

�σ = 1.52 and β�σ = 2.52, following the same
procedure as for the energy avalanches. For comparison, if the
avalanche measurement is considered as a simple difference
in stress before and after the event, the statistics show a strong
bias in the power, contradicting the criticality assumption of
the avalanches, as shown in Fig. 7. The fractal dimension can
be estimated also from FSS since we know that the value
β/κ should correspond asymptotically to d f /d , where d = 3
is the spatial dimension of the system. Accordingly, we find
that the fractal dimension computed from energy avalanches
d f ≈ 4.4 confirms that the critical dimension in our systems is
much larger than the expected range. Equally, we demonstrate
that crack growth occurs in avalanches following a power
law. However, the avalanches appear to deviate from a simple
power law and exhibit a multifractal distribution, in particu-
lar, a double power law. This can be seen in Fig. 8, where
the probability density function P(�V ) is presented. Direct

fitting of critical exponents for the biggest system shows that
τ�V 1 = 0.9 for the first and τ�V 2 = 2.0 for the second regime.

So far, our results were obtained from the PDFs of the
events recorded over a strain period from 0 to εc. However, the
critical exponent τ from Eq. (5) can be obtained by plotting
the recorded avalanches at any strain value and over a very
small strain range. However, the effect of the exponential
cutoff would get stronger as one gets further away from the
critical strain [56]. Therefore, τ could be evaluated by record-
ing the avalanches as close as possible to the critical strain
with a range that is as small as possible while still having

FIG. 7. Probability distribution function for the stress avalanches
when the measurement is taken as the simple stress drop without
stiffness-based corrections. This leads to deviation from the univer-
sality of the PDFs of the different systems.
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FIG. 8. Probability distribution function for the volume
avalanches. The measurements are integrated over the whole loading
regime, i.e., until complete failure of the samples. The distribution is
not well approximated by a simple power law and instead appears to
follow a double power law.

enough number of events to represent the statistics. Accord-
ingly, we keep reducing the strain range until the inclination of
the PDF in the log-log plot saturates at �ε = 0.005. We chose
the biggest system for this computation since it has the biggest
range, over which the lower and upper cutoffs have a small
influence. We found that the critical exponent takes a value
of τ�� ≈ 1.4. From this value, one can compute the exponent
κ�� = 1/(τ ′

�� − τ��) ≈ 2.85. This deviates from the MFT
predictions for both the FBM and depinning models, which
predict τ = 1.5 and κ = 1.0 [53] and τ = 1.5 and κ = 2.0
[61], respectively. Similarly, by repeating the procedure for
the stress drops, one obtains the values τ�σ = 1.27 and κ�σ =
40. By analyzing the critical exponents pertaining to both
the energy and stress drops, it is apparent that a significant
deviation from the mean-field exponents τ = 1.5 is present.
This is not surprising since it is known that numerous models
and simulations do not conform to mean-field calculations.
Furthermore, it was shown that damping in sheared glasses
affects the critical behavior [65], where overdamped systems
have an exponent τ = 1.25 even though the critical behavior
is preserved. However, to prove these results, one has to rule
out the effect of the initial notch since it favors a localizing
effect leading to a concentration of events near the crack tip.
Short-range interactions could dominate the system due to an
initial crack, leading to failure of the mean-field predictions
comparable to the fiber-bundle model with local load-sharing
rules if one initially removes some of the fibers. To investigate
this effect, we conducted more simulations for the system with
48 000 particles without an initial crack and again computed
the critical exponents. The results show that the influence on
τ�� is negligible, which is almost identical to the exponent
computed from the notched samples at a value of 1.4. How-
ever, a considerable difference appears in the computation of

κ�� which has a value of 2.2. As for the stress avalanches, the
PDFs are obviously different for the notched specimen. The
value of the exponent is τ�σ = 1.43, while κ�σ = 2.1. This
indicates that the initial notch drives the avalanche exponents
of the stress drops away from the MF predictions. This in-
crease in the slope of the avalanche PDF corresponds to the
predictions made in the FBM with the local load-sharing rule
in the presence of an initial crack [66]. However, this effect
is less pronounced for the exponents of the energy drops,
affecting rather κ�� than τ��. Moreover, it seems that the
difference between the energy and stress avalanche statistics
almost vanishes without an initial crack. To explore this as-
pect further, we computed the Pearson correlation coefficient
[67], between the energy drops and stress drops and found
consistently high linear correlations r ≈ 0.99 across all the
systems when considering all the avalanche sizes. However,
considering only the largest avalanche from each sample, we
obtain lower values r ≈ 0.93–0.98 where the smallest system
has the lowest linear correlation. Indicating that the effect is
stronger for smaller sample sizes due to the larger relative
size of the initial crack, which leads to a distortion of the
stress avalanche statistics. We conclude that the strength of
the disorder in the system was not enough to suppress the
perturbing effect of the initial crack on the distribution of
the avalanches over the shape and the size of the simulation
cell, even though the size was deliberately kept to a minimum
while still constituting a critical crack for the failure of the
system.

Now we turn our attention to the dependence of the
avalanche PDF on the external field, i.e., the strain in our
case, by plotting the PDFs for different strain bins. We
expect the PDFs to take the following form P(m, ε) ∼
m−τ−1/k{ γ [1/k, Am(εc − ε)] − γ (1/k, Am(εc)]}, where τ ,
κ , and εc were computed previously and A remains
unknown.

To investigate this further, the scaling relation between
the average avalanche size and the strain is explored. As a
first step, we test the fiber bundle relation 〈m〉 ∼ (εc − ε)γ .
However, we find a disagreement of our data with this relation,
where one would expect a linear plot on a double logarith-
mic scale (at least in the asymptotic limit for large-enough
events) if the power law were to hold [4]. Instead, we find that
the average avalanche size follows an exponential relation,
diverging as the systems approach the critical strain range.
The average stress avalanche size and the energy avalanche
size versus strain are plotted in Fig. 9. It is shown that the
average avalanche size diverges between the different sample
sizes close to the critical strain. This is qualitatively consistent
with Eq. (9), which is derived by analyzing the first mo-
ment of the strain-dependent PDF by assuming an exponential
cutoff at a critical avalanche size mc. Therefore, we fitted
the constant A of this function for the values of the critical
exponents τ��, κ��, and εc computed before. For the con-
stant A, we obtained the values 251.5, 124.7, 88.7, and 38.94
for the systems of sizes 48 000, 24 624, 12 150, and 6100,
respectively.

To validate the obtained fits and the derived equations,
one can plot the PDFs of the energy avalanches conditioned
by the strain. This can be seen in Fig. 10, where markers
represent PDFs recorded from zero strain to different strain
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FIG. 9. The average avalanche size as a function of the strain for the stress avalanches in (a) and the energy avalanches in (b). The lines
represent the best fit for the exponents κ and A of the function (εc − ε)κ (τ−a−1)γ [a − τ + 1, Amc(εc − ε)κ ] and are obtained for κ�� = 2.85
for the energy avalanches and κ�σ = 4.0 for the stress avalanches.

threshold values until reaching the critical strain. The lines
in Fig. 10 represent the derived function with the computed
critical exponents and A. It is evident that this function gives
a reasonable fit for the provided data.

The results of this paper show that avalanche statistics
of the molecular system can be qualitatively explained by
statistical models presented in this paper. At first glance,
it might seem improbable that a model based on stick-slip
motion, traditionally used to describe earthquake statistics,
might help explain fracture statistics. Intriguingly, earthquake
dynamics and the deformation mechanism of glasses on the
nanoscale share essential statistical similarities [68]. It is
conjectured that both systems contain regions susceptible
to sudden mechanically induced local structural changes.
Under external loading, the system responds elastically until
a local stress threshold in these spots is exceeded leading to
local inelastic rearrangements. These rearrangements affect
other regions in the system through long-range elastic fields
[10,37,61]. Despite the complexity of both system types, the

long-range elastic fields could lead to mean-field behavior,
rendering many of the microscopic details of the system
irrelevant [10,56]. This makes predictions of the statistics of
both systems possible, incorporating simplified mean-field
calculations that assume an infinite interaction range.

However, extending the molecular systems of this paper
to be more transferable to practical demands is a subsequent
sensible objective. This way, ambient conditions and glasses
with more realistic chemical compositions, such as borosili-
cates, for example, are of interest.

Notably, we assumed two major simplifications for the
molecular models of this paper. The first major simplification
is the athermal, overdamped condition. The temperature is
known to play an essential role in both the crack propagation
and the scaling laws. Indeed, finite temperatures could lead the
system to jump over the free energy barrier near the spinodal
point, effectively distorting the power laws. However, some
fracture experiments at finite temperatures were performed
that show that the acoustic emissions, which are thought to

FIG. 10. Energy avalanche PDFs for systems with (a) 48 000, (b) 24 624, and (c) 12 150 particles, integrated up to different
strain thresholds, represented by the markers. The solid lines are the scaling functions derived from the assumed exponential cutoff
m−τ−1/k{γ [1/k, Am(εc − ε)] − γ [1/k, Am(εc )]} with the universal exponents τ�� = 1.4, κ�� = 2.85, which was computed from the moment
analysis in Eq. (9). The value εc is system-dependent and is shown in Fig. 3. The parameter A is a system-dependent nonuniversal constant
computed through fitting and shown in Fig. 9.
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correspond to the energy dissipated in the avalanche events
of fracture, obey power laws [69,70], indicating a critical
phenomenon.

The second simplification is the pure composition of silica,
containing only silicon and oxygen atoms. The introduc-
tion of impurities, such as calcium or barium atoms, which
induce network depolymerization, may have a significant
influence on the fracture statistics. Such chemical modifica-
tions alter the average atomic coordination number and affect
the ductility of the system. However, studying these factors
individually, is an essential step towards understanding the
broader and more complex system.

IV. CONCLUSION

We studied the fracture process of silica glass on the
nanoscale and revealed several important findings. We showed
that the avalanches follow power-law statistics, indicating that
our systems exhibit critical behavior. However, due to the
short period of the steady state before failure, we ruled out
a self-organized critical behavior, which is a phenomenon
that is usually observed during the plastic yielding of sheared
glasses. However, our systems show some plastic deforma-
tion accompanying the fracture process, which manifests in
permanent anisotropic changes in the glass Si-O-Si triplets.
These changes should be considered when choosing an or-
der parameter to study the yielding transition. Furthermore,
the results of the computed critical exponents indicate that
the approach to failure in the systems without a notch could
be described by depinning models and possibly belong to
the same universality class. However, a peculiar behavior is
observed for prenotched systems, where a higher value of the
avalanche exponential cutoff exponent κ is computed. This
increase means that power laws decay faster as the system
approaches the critical point since the system fails earlier and
large events are less likely to occur. Moreover, the initial notch
has a more pronounced effect on the stress avalanches than the
energy avalanches. Accordingly, τ�� demonstrates a minor
deviation from the mean-field exponent, while τ�σ diverges
significantly. This finding indicates that a nucleated crack
leads not only to the localization of stresses but also perturbs
the avalanche statistics. Thus, the avalanches are better studied
by analyzing the dissipated energy. Moreover, the derived re-
lations of the strain-conditioned probability density functions
and average avalanche sizes show that the scaling relations,
derived from the FBM, fit our results qualitatively. However,
mean-field depinning models provide similar predictions with
a different exponent κ = 2 [28], providing further evidence
that they can capture the avalanche statistics of the current
study. However, further analysis of the waiting time exponents
and the average temporal shape of the avalanches is necessary
to confirm the validity of these models.

We found that the maximum stress near the crack tip
decay in the form of a power law with the exponent γ tak-
ing values between 0.48 and 0.55 reminiscent of the Irwin
formula [63], even though our systems are not ideally brit-
tle and clearly show plasticity with the crack propagation.
Furthermore, we computed fracture energies for our systems
between 2.84 and 3.04 Joule/m2. While these values are much
smaller than the experimental values, we cannot exclude that

this effect is caused by the absence of temperature in the
simulation.

An important issue that should be addressed in future
studies is the discrepancy between the computed fractal di-
mension and the established values. We postulate that this
is caused by the initial notch, which leads to smaller critical
avalanches. This phenomenon is expected to have a stronger
effect in smaller systems, leading to overestimating the fractal
dimension. However, it is also crucial here to conduct
additional investigations to confirm the origin of this incon-
sistency.

Furthermore, we made intriguing observations regarding
the scaling laws associated with crack growth avalanches. In
these observations, different scaling behavior is observed for
the small and large avalanche regimes, as shown in Fig. 8.
Intriguingly, this finding connects with a previous study pub-
lished by Rountree et al. [44], in which two different values
for the crack roughness for two different scales of silica
glass were found. Therefore, further exploring the relationship
between crack volume avalanche statistics and crack fractal
geometry could provide valuable insights into the underlying
mechanisms of crack growth.

We finally conclude that the observed scaling law indi-
cates the occurrence of a phase transition during the fracture
process of silica glass. However, the exact nature of this tran-
sition remains unclear at this stage, given that the athermal
quasistatic framework, together with finite long-range inter-
actions, could bring our systems close to the spinodal point,
which is associated with power laws of the avalanches similar
to the second-order transition. Therefore, further research is
needed to determine the order of this transition and potential
crossover regions at even larger scales, considering that our
systems exhibit increased brittleness on larger scales.
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APPENDIX A: MOMENTS ANALYSIS

According to fiber bundle model, the PDF of avalanches
bigger than a certain threshold has the following form:

P(m, ε) ∼ m−τ f [Am(εc − ε)κ ], (A1)

where f [Am(εc − ε)κ ] is the upper cutoff function. This can
be written as

P(m, ε) ∼ A−1(εc − ε)τκ (Am(εc − ε)κ )−τ f (Am(εc − ε)κ ),

∼ (εc − ε)τκg(Am(εc − ε)κ ). (A2)

As a consequence, the first moment of the PDF can be
written as

〈ma〉 ∼
∫ mc

0
maP(m, ε)dm,

∼
∫ mc

0
(εc − ε)τκmag(Am(εc − ε)κ )dm. (A3)
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If we do a variable change, z = Am(εc − ε)κ so m =
A−1z(εc − ε)−κ and dm = A−1(εc − ε)−κdz. It follows

〈ma〉 ∼ A−1
∫ zc

0
(εc − ε)κ (τ−a−1)zag(z)dz,

∼ (εc − ε)κ (τ−a−1)
∫ zc

0
zag(z)dz. (A4)

From the FBM, f (z) is an exponential function e−z, so
g(z) would be z−τ e−z:

〈ma〉 ∼ (εc − ε)κ (τ−a−1)
∫ zc

0
za−τ e−zdz, (A5)

where zc = Amc(εc − ε)κ . Then, for all values (a − τ + 1 >

0) it follows that∫ zc

0
za−τ e−zdz = γ [a − τ + 1, Amc(εc − ε)κ ], (A6)

where γ [a − τ + 1, Amc(εc − ε)κ ] is the lower incomplete
gamma function. So the first moment of the PDF is
written as

〈ma〉 ∼ (εc − ε)κ (τ−a−1)γ [a − τ + 1, Amc(εc − ε)κ ]. (A7)

APPENDIX B: STRAIN DEPENDENCE

Starting from Eq. (A1) and integrating over the strain range
0 to εc:

P(m, ε) ∼
∫ εc

0
m−τ f (Am(εc − ε)κ )dε,

∼ m−τ

∫ εc

0
e−Am(εc−ε)κ dε,

∼ m−τ

∫ 0

Amεκ
c

(κ−1A−1m−1/κz1/κ−1e−zdz),

∼ κ−1A−1m−τ m−1/κ

∫ 0

Amεκ
c

z1/κ−1e−zdz,

∼ m−τ−1/κ

∫ 0

Amεκ
c

z1/κ−1e−zdz,

∼ m−τ−1/κγ
(
1/κ, Amεk

c

)
. (B1)

Similarly, for arbitrary bin sizes ε2 − ε1:

P(m, ε) ∼ m−τ−1/κ

∫ Am(εc−ε2 )κ

Am(εc−ε1 )κ
z1/κ−1e−zdz,

∼ m−τ−1/κ

(∫ Am(εc−ε2 )κ

0
z1/κ−1e−zdz

−
∫ Aml (εc−ε1 )κ

0
z1/κ−1e−zdz

)
,

∼ m−τ−l/κ{ γ [1/κ, Am(εc − ε2)κ ]

− γ [1/κ, Am(εc − ε1)κ ]}. (B2)

Finally, if ε1 = 0, the PDF is written as

P(m, ε) ∼ m−τ−1/κ{ γ (1/κ, Am(εc − ε)κ )

− γ [1/κ, Am(εc)κ ]}. (B3)
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