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The phenomenon of percolation is one of the core topics in statistical mechanics. It allows one to study the
phase transition known in real physical systems only in a purely geometrical way. In this paper, we determine
thresholds pc for random-site percolation in triangular and honeycomb lattices for all available neighborhoods
containing sites from the sixth coordination zone. The results obtained (together with the percolation thresholds
gathered from the literature also for other complex neighborhoods and also for a square lattice) show the power-
law dependence pc ∝ (ζ/K )−γ with γ = 0.526(11), 0.5439(63), and 0.5932(47), for a honeycomb, square, and
triangular lattice, respectively, and pc ∝ ζ−γ with γ = 0.5546(67) independently on the underlying lattice. The
index ζ = ∑

i ziri stands for an average coordination number weighted by distance, that is, depending on the
coordination zone number i, the neighborhood coordination number zi, and the distance ri to sites in the ith
coordination zone from the central site. The number K indicates lattice connectivity, that is, K = 3, 4, and 6 for
the honeycomb, square, and triangular lattice, respectively.
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I. INTRODUCTION

Percolation [1–4] is one of the core topics in statistical
physics as it allows for studying phase transitions and their
properties in only a geometrical fashion, i.e., without heat-
ing or cooling anything (except for paying unconscionable
invoices for electricity in computer centers). Although orig-
inating from rheology [5,6] (and still applied there [7]),
the applications of percolation theory range from forest
fires [8] to disease propagation [9], not omitting problems
originating in hard physics (including magnetic [10] and
electric [11] properties of solids) but also with implica-
tions for nanoengineering [12], materials chemistry [13],
agriculture [14], sociology [15], terrorism [16], urbaniza-
tion [17], dentistry [18], information transfer [19], computer
networks [20], the psychology of motivation [21], and fi-
nances [22] (see Refs. [23–25] for the most recent reviews
also on fractal networks [26] or explosive percolation [27]).

The phase transition mentioned above is first of all charac-
terized by a critical parameter called the percolation threshold
pc and much effort went into searching for a universal formula
that allows for the prediction pc based solely on the scalar
characteristics of a lattice or a network topology, where the
percolation phenomenon occurs. Searching for such depen-
dencies probably is not so different from searching for the
alchemic formula for the philosopher’s stone—allowing for
converting a substance into gold. Such attempts of proposing
a universal formula for the percolation threshold were more or
less successfully made earlier.

For instance, Galam and Mauger [28] proposed a universal
formula,

pc = p0

[(d − 1)(z − 1)]a , (1a)
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depending on the connectivity of the lattice z and its di-
mension d . For a site percolation problem they identified
two groups of lattices, i.e., two sets of parameters p0

and a. Their paper was immediately criticized by van der
Marck [29,30] who indicated two lattices with identical z and
d but different values of pc associated with these lattices.
For two-dimensional lattices the Galam-Mauger formula
reduces to

pc = p0

(z − 1)a
, (1b)

with p0 = 0.8889 and a = 0.3601 for triangular, square, and
honeycomb lattices [28]. Their studies were extended to
anisotropic lattices without equivalent nearest neighbors, non-
Bravais lattices with two atom unit cells, and quasicrystals
which required the substitution of z in Eq. (1) by an effective
(noninteger) value zeff [31,32].

Very recently, Xun et al. [33] in extensive numerical simu-
lations showed that all Archimedean lattices (uniform tilings,
i.e., lattices built of repeatable sequences of tails of regular
polygons able to cover a two-dimensional plane) exhibit a
simple relation

pc = c1/z, (2a)

which due to finite-size effects should be modified by a con-
stant term b,

pc = c2/z − b. (2b)

For example, for the square lattice and extended com-
pact neighborhoods, these constants are c2 = 4.527 and b =
3.341 [34]. In two dimensions, for Archimedean lattices up to
the tenth coordination zone [33], correlations are also seen by
plotting

z vs − 1/ ln(1 − pc). (3)
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FIG. 1. Basic neighborhoods corresponding to subsequent coordination zones i = 1, . . . , 6 in the triangular lattice. The symbol r stands
for the Euclidean distance of the black sites from the central one, and z indicates the number of sites in the neighborhood. (a) TR-1: i = 1,
r2 = 1, z = 6. (b) TR-2: i = 2, r2 = 3, z = 6. (c) TR-3: i = 3, r2 = 4, z = 6. (d) TR-4: i = 4, r2 = 7, z = 12. (e) TR-5: i = 5, r2 = 9, z = 6.
(f) TR-6: i = 6, r2 = 12, z = 6.

Other formulas investigated by Galam and Mauger [35,36]
included

pc = 1/
√

z − 1, (4)

or by Koza et al. [37,38],

pc = 1 − exp(d/z). (5)

Formula (2a) also works well for distorted lattices [39,40],
where lattice distortion means the random moving of lattice
nodes not too far from their regular position in nondistorted
lattices. In this case, the number of sites in the neighborhood
z should be replaced by an average site degree z̄ [41].

The studies mentioned above were concentrated in com-
pact neighborhoods. When holes in the neighborhoods are
taken into account, there is a strong degeneration of pc on
total z, and Eqs. (1) to (5)—which depend solely on the lattice
dimension d and connectivity z—must fail. To avoid this
pc(z) degeneracy in the case of a triangular lattice, a weighted
square distance

ξ =
∑

i

r2
i zi/i (6)

was proposed, where zi is the number of sites in the given
neighborhood in the ith coordination zone and these sites’
distance to the central site in the neighborhood is ri [42].
Unfortunately, the clear dependence

pc ∝ ξ−γ (7)

[with γ
ξ
TR ≈ 0.710(19)] is lost for the honeycomb lattice [43].

Thus, instead, the weighted coordination number

ζ =
∑

i

ziri (8)

was proposed [43], which gives a nice power law

pc ∝ ζ−γ , (9)

with γ
ζ

HC ≈ 0.4981(90). As γ
ζ

HC is very close to 1
2 also the

dependence

pc = c3/
√

ζ (10)

was checked, yielding c3 ≈ 1.2251(99) [43]. Very recently,
we tested formulas (7) and (9) also for the square lattice up to
the sixth coordination zone and found that Eq. (9) also holds
for a square lattice with γ

ζ

SQ ≈ 0.5454(60) [44].
Our results show that for all three (square, triangular, and

honeycomb) lattice shapes, the power law is recovered in
dependence of pc(ζ/K ), where K is the connectivity of the
network with the nearest-neighbor interaction, that is, with
K = 3, 4, and 6 for the honeycomb, square, and triangular
lattice, respectively. On the other hand, independent of the
lattice topology, we see a more or less clear power law pc(ζ )
for the data obtained on the values of pc for the three lattices
with complex neighborhoods containing sites up to the sixth
coordination zone.

FIG. 2. Basic neighborhoods corresponding to subsequent coordination zones i = 1, . . . , 6 on the honeycomb lattice. The symbol r stands
for the Euclidean distance of the black sites from the central one, and z indicates the number of sites in the neighborhood. (a) HC-1: i = 1,
r2 = 1, z = 3. The lattices (b) HC-2 (i = 2, r2 = 3, z = 6), (e) HC-5 (i = 5, r2 = 9, z = 6), and (f) HC-6 (i = 6, r2 = 12, z = 6) are equivalent
to a triangular lattice TR-1 [Fig. 1(a)] with enlarged lattice constants

√
3, 3, and 2

√
3 times, respectively. (d) HC-4: i = 4, r2 = 7, z = 6. The

lattice (c) HC-3 (i = 3, r2 = 4, z = 3) is equivalent to HC-1 [Fig. 2(a)] with a lattice constant twice larger than for HC-1.
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FIG. 3. Examples of (a), (c) Smax/L2 vs n/L2 and (b), (d) Pmax ·
Lβ/ν vs p for (a), (b) TR-1,2,3,4,5,6 and (c), (d) HC-1,2,3,4,5,6
neighborhoods.

II. METHODOLOGY

In this paper—using exactly the same methodology as that
used to study percolation in a square lattice with complex
neighborhoods that contain sites up to the sixth coordination

TABLE I. Detected inflated (together with the associated ζ in-
dex) and equivalent neighborhoods. The percolation thresholds pc

and total number of sites z are common for both neighborhoods.

Inflated Equivalent
neighborhood ζ pc z neighborhood

SQ-2 5.6568 0.5927 4 SQ-1
SQ-3 8 0.5927 4 SQ-1
SQ-5 11.3137 0.5927 4 SQ-1
SQ-6 12 0.5927 4 SQ-1
SQ-2,3 13.6568 0.4073 8 SQ-1,2
SQ-2,5 16.9705 0.337 8 SQ-1,3
SQ-3,5 19.3137 0.4073 8 SQ-1,2
SQ-2,3,5 24.9705 0.288 12 SQ-1,2,3

TR-2 10.3923 0.5 6 TR-1
TR-3 12 0.5 6 TR-1
TR-5 18 0.5 6 TR-1
TR-6 20.7846 0.5 6 TR-1
TR-2,5 28.3923 0.29028 12 TR-1,2
TR-2,6 31.1769 0.26455 12 TR-1,3
TR-3,6 32.7846 0.29030 12 TR-1,2
TR-5,6 38.7846 0.23200 12 TR-2,3
TR-2,5,6 49.1769 0.21550 18 TR-1,2,3

HC-2 10.3923 0.5 6 TR-1
HC-3 6 0.697 3 HC-1
HC-5 15.5884 0.5 6 TR-1
HC-6 20.7846 0.5 6 TR-1
HC-2,5 28.3923 0.29028 12 TR-1,2
HC-2,6 31.1769 0.26453 12 TR-1,3
HC-3,6 26.7846 0.36301 9 HC-1,2
HC-5,6 38.7846 0.23202 12 TR-2,3
HC-2,5,6 49.1769 0.21547 18 TR-1,2,3

zone [44]—we extend our previous studies for sites up to the
sixth coordination zone for triangular (Fig. 1) and honeycomb
(Fig. 2) lattices. Namely, using the fast Monte Carlo scheme
proposed by Newman and Ziff [45] and the finite-size scaling
theory [46,47] we found 64 values of percolation thresholds
for complex neighborhoods containing sites from the sixth
coordination zone.

In the Supplemental Material [48] the mapping of the sixth
coordination zone in the honeycomb lattice into the brick-
wall-like square lattice (as proposed in Ref. [49]) is presented
in Fig. 1 in Supplemental Material App. A together with
listing 1 (for the TR-6 neighborhood) and listing 2 (for HC-6
neighborhood) showing implementations of the boundaries()
functions to be replaced in the original Newman-Ziff algo-
rithm [45]. The mapping of the first to fifth coordination zones
in the honeycomb lattice into the brick-wall-like square lattice
is presented in Fig. 3 in Ref. [43].

III. RESULTS

In Fig. 3 we present examples of results used to predict the
percolation thresholds pc, that is, (i) the dependencies of the
size of the largest cluster Smax/L2 normalized to the lattice
size versus the number of occupied sites also normalized to
the lattice size [Figs. 3(a) and 3(c)] (ii) the dependencies of
the probability that a randomly selected site belongs to the
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FIG. 4. Percolation thresholds pc for neighborhoods containing sites up to the sixth coordination zone on square (�), honeycomb (©),
and triangular (�) lattices as dependent on (a) total coordination number z, (b) index ζ , and (c) index ζ/K . Points marked with crosses (×)
correspond to inflated neighborhoods (such as those collected in Table I), which are excluded from the fitting procedure. The lines show
power-law fits according to the least-squares method to Eq. (9) and Eq. (11) on Figs. 4(b) and 4(c), respectively.

largest cluster, scaled by Lβ/ν [50] versus occupation proba-
bility p [Figs. 3(b) and 3(d)] for triangular [Figs. 3(a) and 3(b)
honeycomb [Figs. 3(c) and 3(d)] lattices and neighborhoods
containing all considered basic neighborhoods presented in
Fig. 1 (for the triangular lattice) and Fig. 2 (for the honeycomb
lattice). The linear sizes L of the simulated systems range
from 127 to 4096 and the results of these simulations are
averaged over R = 105 samples. All dependencies Pmax · Lβ/ν

vs p studied here are presented in Fig. 2 (for the triangular
lattice) and Fig. 3 (for the honeycomb lattice) in Supplemental
Material App. C [48]. The common point of the curves Pmax ·
Lβ/ν vs p for various system sizes L predicts pc. The com-
puted values of pc, associated with various neighborhoods,
together with their uncertainties (also estimated earlier for
neighborhoods containing sites up to the sixth coordination
zone—for a square lattice [44,51,52] and the fifth coor-
dination zone—for triangular [42,53] and honeycomb [43]
lattices) are collected in Table I in Supplemental Material
App. B [48].

Figure 4 presents the pc for neighborhoods containing sites
up to the sixth coordination zone on square (�), honeycomb
(©), and triangular (�) lattices as dependent on (i) total
coordination number z [Fig. 4(a)], (ii) index ζ [Fig. 4(b)], and
(iii) index ζ/K [Fig. 4(c)].

The crosses (×) indicate inflated neighborhoods, that is,
noncompact neighborhoods reducible to other complex neigh-
borhoods by shrinking the lattice constants. Three examples of
inflated neighborhoods are presented in Fig. 5. The detected
inflated neighborhoods and their lower-index equivalents are
presented in Table I. These values pc are excluded from the
fitting procedure. As we mentioned in the Introduction, for

complex noncompact neighborhoods, strong pc(z) degenera-
tion is observed [see Fig. 4(a)]. On the contrary, introducing
the index ζ (8) allows a nearly perfect separation of the values
of pc. After excluding inflated neighborhoods (presented in
Table I) the linear fit of the data presented in Fig. 4(c) with the

FIG. 5. Inflated complex neighborhoods (top row) and their
lower-index partners (bottom row): (a) HC-3,6 vs (d) HC-1,2,
(b) HC-5,6 vs (e) TR-2,3, and (c) HC-2,5,6 vs (f) TR-1,2,3. The
neighborhood HC-3,6 is equivalent to HC-1,2 but with a lattice
constant twice as large. This splits the system into four independent
simultaneously percolating systems.
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least-squares method gives in the power law

pc ∝ (ζ/K )−γ (11)

exponents γTR = 0.5932(47), γSQ = 0.5439(63), γHC =
0.526(11), for triangular, square, and honeycomb lattices,
respectively. The analogous fit according to Eq. (9) of the data
presented in Fig. 4(b) gives the exponent γ2D = 0.5546(67).

IV. DISCUSSION

The introduction of the ζ index solves the problem of
multiple degeneration of the value of pc. Eliminating inflated
neighborhoods (including those that occur pairwise between
a triangular and a hexagonal lattice) allows fitting pc to the
power laws according to Eqs. (9) or (11). Without compar-
ing the hexagonal and triangular lattices, it was necessary
to introduce the index ξ to maintain the power-law rela-
tionship according to Eq. (7). The index ξ turned out to be
redundant versus ζ index for the site percolation problem,
because previously outlier points turned out to belong to
the inflated neighborhoods, but the low-index neighborhoods
associated with them were located on a different type of
lattice. However, the introduction of the index ξ turned out
to be quite useful for the bond percolation problem, where
the relationship (7) is perfectly satisfied with the exponent
γ ≈ 1 [54].

Finally, we propose some unification of the nomenclature
appearing in the literature, and applying terms: (1) basic

neighborhoods for those containing sites from a single co-
ordination zone (such as SQ-1, SQ-2, SQ-3, etc., and those
presented in Figs. 1 and 2); (2) complex neighborhoods for any
combination of the basic ones; (3) extended neighborhoods for
complex and compact neighborhoods (such as SQ-1,2, TR-
1,2,3, HC-1,2,3,4, etc.); and (4) inflated neighborhoods for
complex neighborhoods reducible to other complex neighbor-
hoods but with lower indices by shrinking the lattice constant
(such as those presented in Fig. 5 and collected in Table I).

In conclusion, in this paper we estimate percolation thresh-
olds for the random-site percolation problem on triangular
and honeycomb lattices for neighborhoods containing sites
from the sixth coordination zone. The obtained values of
pc satisfy the power law, independently of the underlying
lattice (according to pc ∝ ζ−γ ) or even better for separately
considered lattices [according to pc ∝ (ζ/K )−γ , where K is
the connectivity of the lattice]. Currently, the applications of
complex neighborhoods on various lattice topologies seem to
be most promising in agroecology [14].
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