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Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse
percolation of triangular tiles of side k (k-tiles) on triangular lattices. In the case of standard percolation, the
lattice is initially empty. Then, k-tiles are randomly and sequentially deposited on the lattice. In the case of inverse
percolation, the process starts with an initial configuration where all lattice sites are occupied by single monomers
(each monomer occupies one lattice site) and, consequently, the opposite sides of the lattice are connected
by nearest-neighbor occupied sites. Then, the system is diluted by randomly removing k-tiles [composed by
k(k + 1)/2 monomers] from the lattice. Two schemes are used for the depositing and removing process: the
isotropic scheme, where the deposition (removal) of the objects occurs with the same probability in any lattice
direction; and the anisotropic (perfectly oriented or nematic) scheme, where one lattice direction is privileged for
depositing (removing) the tiles. The study is conducted by following the behavior of four critical concentrations
with the size k: (i) [(ii)] standard isotropic (oriented) percolation threshold θc,k (ϑc,k), which represents the
minimum concentration of occupied sites at which an infinite cluster of occupied nearest-neighbor sites extends
from one side of the system to the other. θc,k (ϑc,k) is reached by isotropic (oriented) deposition of k-tiles on
an initially empty lattice; and (iii) [(iv)] inverse isotropic (oriented) percolation threshold θ i

c,k (ϑ i
c,k), which

corresponds to the maximum concentration of occupied sites for which connectivity disappears. θ i
c,k (ϑ i

c,k)
is reached after removing isotropic (completely aligned) k-tiles from an initially fully occupied lattice. The
obtained results indicate that (1) θc,k (θ i

c,k) is an increasing (decreasing) function of k in the range 1 � k � 6.
For k � 7, all jammed configurations are nonpercolating (percolating) states and, consequently, the percolation
phase transition disappears. (2) ϑc,k (ϑ i

c,k) show a behavior qualitatively similar to that observed for isotropic
deposition. In this case, the minimum value of k at which the phase transition disappears is k = 5. (3) For both
isotropic and perfectly oriented models, the curves of standard and inverse percolation thresholds are symmetric
to each other with respect to the line θ (ϑ ) = 0.5. Thus, a complementary property is found θc,k + θ i

c,k = 1
(and ϑc,k + ϑ i

c,k = 1), which has not been observed in other regular lattices. (4) Finally, in all cases, the
jamming exponent ν j was measured, being ν j = 1 regardless of the orientation (isotropic or nematic) or the
size k considered. In addition, the accurate determination of the critical exponents ν, β, and γ reveals that the
percolation phase transition involved in the system, which occurs for k varying between one and five (three) for
isotropic (nematic) deposition scheme, has the same universality class as the standard percolation problem.
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I. INTRODUCTION

Studying the percolation phase transition occurring in ran-
dom sequential adsorption (RSA) models of extended objects
has been attracting a great deal of interest for a long time [1–6]
because of its enormous number of applications in physics,
chemistry, biology, and materials science, where connectivity
and clustering play an important role [1,2,7–18]. Percolation
theory is also known to provide a useful model for the analysis
of more complicated models exhibiting phase transitions and
critical phenomena [1–4].

*antorami@unsl.edu.ar

In this type of studies, the objects are randomly and irre-
versibly deposited forming a single monolayer. The final state
generated is a disordered state (known as jamming state), in
which no more objects can be deposited due to the absence of
free space of appropriate size and shape [5]. At intermediate
densities, and under certain conditions, a transition occurs in
the connectivity of the system [1]. Namely, for a precise value
of the surface coverage, a cluster of nearest-neighbor sites
extends from one side to the opposite side of the system. This
particular value of concentration rate is named percolation
threshold and it will be designated by the symbol θc; at this
critical concentration a second-order phase transition occurs,
which is characterized by well-defined critical exponents [1].
Thus, a competition between percolation and jamming is
established.
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Despite the simplicity of its definition, it is well known
that it is a quite difficult matter to analytically determine the
value of the jamming coverage and percolation threshold in
the case of lattice models of extended objects deposited on
two-dimensional (2D) lattices. The inherent complexity of the
system still represents a major difficulty to the development of
accurate analytical solutions, so computer simulations appear
as a very important tool for studying this subject. In this
direction, several authors investigated the isotropic deposition
of straight rigid k-mers on 2D triangular lattices [19–26].

In Ref. [19], straight rigid k-mers were randomly and
isotropically deposited on L × L triangular lattices. By com-
puter simulations, the authors investigated the kinetics of the
RSA for values of k in the interval k = 1, . . . . , 11 and lattice
size L = 128. The obtained results showed that the jamming
coverage decreases monotonically as the k-mer size increases.
Later, Budinski-Petković et al. [20] extended the study of
linear k-mers on triangular lattices to larger lattices (lattices
with linear size up to L = 1000), and objects of different
sizes and shapes (linear segments; angled objects; triangles
and hexagons). In the case of linear segments with values of k
up to 20, and as reported in Ref. [19], the jamming coverage
decreases monotonically approaching the asymptotic value of
0.56(1) for large values of k.

The percolation properties were also studied in Ref. [20],
revealing that the percolation threshold decreases for shorter
k-mers, reaches a value θc ≈ 0.40 for k = 12, and, it seems
that θc does not significantly depend on k for larger k-mers;
and (3) consequently, the ratio θc/θ j increases with k. The
effects of anisotropy [21] and the presence of defects [22]
on the jamming behavior were also studied by the group of
Budinski-Petković et al.

In the line of Refs. [19–22], four previous articles from
our group [23–26] were devoted to the study jamming and
percolation of straight rigid k-mers on triangular lattices.
These papers will be referred to as Papers I, II, III, and IV,
respectively. In Paper I, the work of Budinski-Petković et al.
[19,20] was extended to larger lattices and longer objects:
L/k = 100, 150, 200, 300 and 2 � k � 128 for jamming cal-
culations, and L/k = 32, 40, 50, 75, 100 and 2 � k � 256
for percolation analysis. A more precise determination of
the jamming coverage for large values of k was obtained,
being this asymptotic limit 0.5976(5). On the other hand, a
nonmonotonic size dependence was found for the percolation
threshold, in accordance with previous data for square lattices
[27–30]. In addition, the complete analysis of critical expo-
nents performed in Paper I revealed that the percolation phase
transition involved in the system has the same universality
class of the ordinary random percolation, regardless of the
value of k considered.

In Paper II, the problem of inverse percolation by re-
moving straight rigid k-mers from 2D triangular lattices was
investigated by using numerical simulations and finite-size
scaling analysis. The study of the inverse percolation prob-
lem starts with all lattice sites occupied by single monomers
(each monomer occupies one lattice site). Consequently, there
always exists a spanning path through a sequence of nearest-
neighbor occupied sites in the initial configuration. Then
the system is diluted by randomly removing objects from
the surface. The main objective is to obtain the maximum

concentration of occupied sites (minimum concentration of
empty sites) at which the connectivity disappears. This value
of the concentration is named the inverse percolation thresh-
old θ i

c. The term inverse is used simply to indicate that the
size of the connected phase diminishes during the removing
process and the percolation transition occurs between a per-
colating and a nonpercolating state.

The results in Paper II showed that (i) the inverse percola-
tion threshold exhibits a nonmonotonic behavior as a function
of the k-mer size: it grows from k = 1 to k = 10, presents
a maximum at k = 11, and finally decreases and asymptot-
ically converges towards a finite value for large segments.
(ii) The percolating and nonpercolating phases extend to in-
finity in the space of the parameter k and, consequently, the
model presents percolation transition in all the ranges of k.
(iii) Finally, the phase transition occurring in the system be-
longs to the standard random percolation universality class
regardless of the value of k considered.

More recently, in Paper III, the percolation behavior of
aligned rigid rods of length k on 2D triangular lattices was
investigated using numerical simulations. The linear k-mers
were irreversibly deposited along one of the directions of
the lattice. Interestingly, it was found that the percolation
threshold displays an increasing trend when plotted against
the k-mer size, for k ranging from 2 to 80. This result is
strikingly different from the percolation behavior observed
in square lattices, where the critical threshold decreases with
k [31]. The exhaustive study of critical exponents confirmed
that the phase transition in the system belongs to the standard
random percolation universality class.

In Paper IV, the problem of standard and inverse percola-
tion of straight rigid rods on triangular lattices was revisited
using numerical simulations and finite-size scaling analysis.
Two schemes were employed for the deposition and removal
process: an isotropic and an anisotropic scheme. The former
denotes a scheme where the deposition and removal of the
linear objects occurs with the same probability in any lattice
direction, whereas the latter corresponds to a scheme where
one lattice direction is privileged for depositing (removing)
the particles. The study was conducted by following the be-
havior of four critical concentrations with the size k: (i) [(ii)]
standard isotropic (oriented) percolation threshold θc,k (ϑc,k),
which represents the minimum concentration of occupied
sites at which an infinite cluster of occupied nearest-neighbor
sites extends from one side of the system to the other. θc,k

(ϑc,k) is reached by isotropic (oriented) deposition of straight
rigid k-mers on an initially empty lattice; and (iii) [(iv)]
inverse isotropic (oriented) percolation threshold θ i

c,k (ϑ i
c,k),

which corresponds to the maximum concentration of occupied
sites for which connectivity disappears. θ i

c,k (ϑ i
c,k) is reached

after removing isotropic (completely aligned) straight rigid
k-mers from an initially fully occupied lattice. These four
critical concentrations were determined for a wide range of
k (2 � k � 512).

The results obtained in Paper IV revealed that (1) θc,k and
θ i

c,k exhibit a nonmonotonic dependence on k. Both decrease
or increase respectively for small particle sizes, go through
a minimum or maximum around k = 11 and finally asymp-
totically converge towards definite values for large segments:
θc,k→∞ = 0.500(2) and θ i

c,k→∞ = 0.500(1). This behavior
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FIG. 1. Rhombus-shaped triangular lattice with L = 9. Open cir-
cles correspond to empty sites and solid spheres represent units
belonging to a deposited 3-tile (k = 3).

occurs not only for straight rigid rods on triangular lattices
but also for straight rigid rods on square lattices [27–30],
as well as for the case of thermalized isotropic dispersions,
where a maximum in the percolation threshold as a func-
tion of aspect ratio has been found [32]. (2) ϑc,k and ϑ i

c,k
display a monotonic behavior in terms of k. Both rapidly
increase or decrease, respectively, for small particle sizes and
asymptotically converge towards definite values for infinitely
long k-mers: ϑc,k→∞ = 0.5334(6) and ϑ i

c,k→∞ = 0.4666(6).
(3) For both isotropic and perfectly oriented models, the
curves of standard and inverse percolation thresholds are sym-
metric with respect to the line θ (ϑ ) = 0.5. This symmetry
implies a property of complementarity: θc,k + θ i

c,k = 1 (and
ϑc,k + ϑ i

c,k = 1), which has not been observed in other regu-
lar lattices. This condition was verified analytically by using
the exact enumeration of configurations for small systems.
(4) Finally, in all cases, the critical concentration curves di-
vide the θ space in a percolating region and a nonpercolating
region. These phases extend to infinity in the space of the
parameter k so that the model presents percolation transition
for the whole range of k.

The aim of the present work is to extend previous studies to
more compact objects such as triangular tiles of side k [objects
occupying k(k + 1)/2 sites on a triangular lattice, see Fig. 1].
In the case of square geometry, several studies have been
carried out regarding jamming and percolation for square tiles
of side k (objects occupying k2 sites on a square lattice) which
will serve as guide and comparison for our work [33–40]. In
the cited articles, it was shown that (i) for systems consisting
of k × k tiles with k = 2 and k = 3, clusters of particles in
contact occur that span the whole lattice and percolate in
the limit of an infinite system. For particles of linear size
k = 4 and larger, it was found that only finite clusters exist,
and, consequently, the percolation phase transition disappears
[33–35]. (ii) The jamming concentration monotonically de-
creases and tends to 0.562 . . . as the length of the squares
increases [35–39]. (iii) The inverse percolation threshold is a
decreasing function of k in the range (1 � k � 4). For k � 5,
all jammed configurations are percolating states (the lattice
remains connected even when the highest allowed concentra-
tion of removed sites is reached) [40]. (iv) Finally, standard
and inverse percolation problems belong to the 2D random
percolation universality class [35,40].

In the case of triangular tiles of side k (or k-tiles) deposited
on triangular lattices (which is the subject of this paper), the

model allows us to incorporate the orientation of the deposited
object as a new degree of freedom providing new properties.
Despite this wide range of possibilities, the study of the jam-
ming and percolation properties of k-tiles on triangular lattices
has been restricted to isotropic deposition only. In this direc-
tion, in Ref. [20], the results for the percolation thresholds,
jamming concentrations and their ratios were also given for
the deposition of compact objects on a triangular lattice. It was
found that while the percolation threshold monotonically de-
creases for elongated shapes, it monotonically increases with
the object size for more compact shapes. For the particular
case of triangular tiles of side k, the study in Ref. [20] showed
that the percolation threshold is an increasing function of k
in the range 1 � k � 5. The problem of k-tiles on triangular
lattices was recently addressed in the framework of the parti-
cle shape-controlled seeded growth model [41]. In Ref. [41],
the authors considered needle-like objects and “wrapping”
objects whose size is gradually increased by wrapping the
walks in several different ways, making triangles, rhombuses,
and hexagons. The results obtained for triangles (k-tiles) were
consistent with those previously reported in Ref. [20].

In this work the problem of standard percolation of k-tiles
isotropically deposited on 2D triangular lattices is revisited.
The most important simulation results obtained in previous
papers are used as a starting point. Then, the calculations are
extended to three related models that have not been studied
yet: (1) standard percolation of aligned k-tiles on a triangular
lattice; (2) inverse percolation of isotropically removed tri-
angles from a triangular lattice; and (3) inverse percolation
of aligned k-tiles removed from triangular lattices. The new
calculations represent not only quantitative expansion but also
a qualitative advance in the description of the percolation
properties of compact objects deposited on (removed from)
triangular lattices.

The results and conclusions obtained here are backed by
several features. First, the results obtained in Refs. [20,41]
(standard percolation of k-tiles isotropically deposited on
triangular lattices) were corroborated and extended to the
critical exponents characterizing the universality of both the
percolation transition (when possible) and the jamming tran-
sition.1 Second, the functionality (in terms of k) of the inverse
percolation threshold for k-tiles isotropically removed from
triangular lattices is established here. The new data show
that, in both standard and inverse problems, the percolation
phase transition disappears for k � 7. Third, the present study
shows that, in the isotropic case, the sum of standard and
inverse percolation thresholds is equal to one for all value of
k where the percolation phase transition exists (1 � k � 6).
This complementarity property has not been observed so far in
other regular lattices. Fourth, in the case of aligned k-tiles, the
results of standard and inverse percolation thresholds versus k
are presented. As in the isotropic case, there exists a value
of k = kmax such that, for k > kmax, the percolation phase
transition disappears. kmax = 4 for aligned k-tiles deposited

1Even though it may be theoretically expected that the percolation
transition in a system of k-tiles on triangular lattices belongs to the
random percolation universality class, accurate numerical verifica-
tion of this has not been done so far.
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on (removed from) triangular lattices. These findings confirm
the arguments presented in Ref. [42] about the interplay be-
tween jamming and percolation when the dimension of the
depositing object is equal to the dimension of the substrate. In
addition, the sum of standard and inverse percolation thresh-
olds equals 1, confirming the generality of this behavior in
triangular lattices.

The rest of the paper is organized as follows: In Sec. II,
the standard problem of jamming and percolation of k-tiles
on 2D triangular lattices is revisited. Calculations are ex-
tended to longer objects. In addition, new results are given
for the inverse process of isotropically removing k-tiles from
an initially fully occupied triangular lattice. The problem of
standard and inverse percolation of aligned k-tiles is addressed
in Sec. III. The analysis of the critical exponents and univer-
sality class is presented in Sec. IV. Finally, the conclusions
are drawn in Sec. V.

II. STANDARD AND INVERSE PERCOLATION
OF k TILES ON TRIANGULAR LATTICES:

ISOTROPIC DEPOSITION (REMOVAL)

In this section we revisit the percolation problem of rigid
triangular tiles isotropically deposited on triangular lattices,
this time including the inverse percolation case and focusing
on the complementarity property of the standard and inverse
percolation thresholds: θc + θ i

c = 1. For this purpose, new
numerical simulations are presented in Sec. II C.

A. Model and basic definitions

The percolation problem is defined on a 2D triangular
lattice. In the computer simulations, a rhombus-shaped system
of M = L × L sites (L rows and L columns) is used (see
Fig. 1). Each site can be empty (hole) or occupied. Occupied
and empty sites are distributed with a concentration θ and θ∗
(= 1 − θ ), respectively. Nearest-neighbor occupied sites form
structures called clusters, and the distribution of these sites
determines the probability of the existence of a large cluster
(also called “infinite” cluster, inspired by the thermodynamic
limit) that connects from one side of the lattice to the other.

Two procedures have been considered. In the first one,
triangular tiles of side k (with k � 2) are deposited randomly,
sequentially, and irreversibly on an initially empty lattice. This
scheme, known as random sequential adsorption (RSA) [5], is
as follows: (i) a starting site and one of the two (s1, s2) possible
triangular structures (see Fig. 2) are randomly chosen. (ii) If,
beginning at the chosen site, the k(k + 1)/2 sites belonging
to the structure selected in (i) are empty, then a k-tile is
deposited on those sites [the k(k + 1)/2 sites are marked as
occupied]. Otherwise, the attempt is rejected. When N tiles
are deposited, the concentration of occupied and empty sites
is θ = k(k + 1)N/(2M ) and θ∗ = [M − k(k + 1)N/2]/M,
respectively.

In the second procedure, the process starts with a fully
occupied lattice (θ = 1 and θ∗ = 0). In the full occupation
state, all lattice sites are occupied by single monomers (each
monomer occupies one lattice site). Then, the system is
diluted by randomly removing triangular objects from the
lattice. The mechanism of dilution is as follows: (i) a set

FIG. 2. Snapshots showing the elementary steps necessary to
deposit a new k-tile on the lattice (k = 3 in the case of the figure).
Panel (a) shows the starting site (solid sphere) and the two possible
triangular structures s1 (colored in blue tone) and s2 (colored in red
tone), according to the discussion in the text. If s1 is selected, an up
k-tile is deposited on the lattice [see panel (b)]. If s2 is selected, a
down k-tile is deposited on the lattice [see panel (c)].

of k(k + 1)/2 sites forming a k-tile is chosen at random;
(ii) if the k(k + 1)/2 sites selected in step (i) are occupied
by k(k + 1)/2 monomers, then those monomers are removed
from the lattice. Otherwise, the attempt is rejected. When
N tiles are removed, the concentration of particles holes is
θ = [M − k(k + 1)N/2]/M θ∗ = kN (k + 1)/(2M ).

In both the first process (deposition) and the second process
(removal), periodic boundary conditions are considered. By
using the first procedure (standard RSA), the lattice coverage
is increased until finding a concentration at which a cluster of
nearest-neighbor sites extends from one side to the opposite
side of the system. This constitutes the so-called standard per-
colation problem, and the critical concentration rate is named
standard percolation threshold.

On the other hand, when the k-tiles are removed from an
initially fully occupied lattice (second procedure), the fraction
of occupied sites decreases until reaching a concentration
at which the connectivity disappears. The model of such a
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FIG. 3. (a) Schematic representation of a typical configuration
obtained by isotropically depositing 3-tiles (k = 3) on a portion of
a triangular lattice. Solid spheres represent the units (monomers) be-
longing to the deposited 3-tiles, and open circles correspond to empty
sites. Up (down) triangles are denoted by blue (red). (b) Schematic
representation of a typical configuration obtained by removing 3-tiles
from an initially fully occupied portion of lattice. Solid spheres
represent occupied sites (monomers), and open blue (red) circles
indicate empty sites resulting from the removal of up (down) 3-tiles.

process can be thought of as an inverse percolation problem.
The corresponding critical concentration is then named in-
verse percolation threshold. The term inverse is simply used
to indicate that the size of the conductive phase diminishes
during the removing process and the percolation transition
occurs between a percolating and a nonpercolating state.

Typical configurations obtained from deposition and re-
moval procedures are shown in Figs. 3(a) and 3(b). A system
with k = 3 is depicted in the figure. In Fig. 3(a), solid spheres
represent the units (monomers) belonging to the deposited
3-tiles and open circles correspond to empty sites. Up (down)
triangles are denoted by blue (red). In Fig. 3(b), solid spheres
represent occupied sites and open blue (red) circles indicate
empty sites resulting from the removal of up (down) 3-tiles.

B. Jamming properties

Due to the increasing probability of blocking on the lat-
tice by the already randomly deposited objects, the limiting
or jamming coverage, θ j ≡ θ (t = ∞) is less than that cor-
responding one for close packing (θ j < 1). Note that θ (t )
represents the dynamical fraction of lattice sites covered
at time t by the deposited objects. Consequently, θ ranges
from zero to θ j for objects occupying more than one site,
and the interplay between jamming and percolation must be
considered.

FIG. 4. Curves of the jamming probability W ′
L,k as a function

of the fraction of occupied sites θ for three values of tile size,
k = 2, 3, and 4. Symbols represent simulation results and solid lines
correspond to fitting curves using the error function. The lattice sizes
are L = 128 (solid circles), 192 (open circles), 256 (solid squares),
384 (open squares), and 640 (solid triangles).

For the purpose of obtaining the jamming thresholds in
terms of the size k, the probability WL,k (θ ) that a L × L lattice
reaches a coverage θ has been calculated taking into account
the numerical method introduced in Ref. [43]. It consists of
the following steps: (a) the construction of the L × L lattices
(initially empty) and (b) the deposition of k-tiles on each
lattice up to the jamming limit θ j,k .

n runs of such two steps were carried out for each lattice
size L. Then, the probability has been calculated as WL,k (θ ) =
nL(θ )/n, where nL(θ ) is the number of samples that reach a
coverage θ . A set of n = 2 × 104 independent samples were
numerically prepared for different values of k and L: k = 2–8,
L = 128–640; and k = 12–32, L = 256–1280. All of this re-
quires extensive computer calculations which is one of the
reasons that our results present better accuracy than previous
reports.

As it will be shown in Sec. IV, it is useful to define the
quantity W ′

L,k = 1 − WL,k , which can be fitted by the error
function. In Fig. 4, the probability curves W ′

L,k (θ ) for different
L values are shown for the cases k = 2, 3, and 4. Symbols
represent simulation results and solid lines correspond to fit-
ting curves using the error function. Independent of the size
k, the probability function W ′

L,k (θ ) renders a well-continued
curve varying between zero for an empty lattice to 1 at the
jamming condition. For finite systems the transition is never
a step function so we have to observe it by the crossing of
the W ′

L,k (θ ) functions assuming that the cases for L → ∞
will also cross at that point. Then, based on the jamming
probability functions for various L (see Fig. 4), we look for
the interval where the curves cross each other. The center
of this interval represents the jamming threshold (θ j,k) and
the width of the interval is the error in the determination
of θ j,k . In the figure, this interval is (0.796 94, 0.796 98) for
the case k = 2, (0.721 07, 0.721 11) for the case k = 3 and
(0.681 55, 0.681 59) for the case k = 4. Accordingly, θ j,k=2 =
0.796 96(2), θ j,k=3 = 0.721 09(2), and θ j,k=4 = 0.681 57(2).
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FIG. 5. Jamming coverage θ j,k as a function of k for k-tiles
on triangular lattices with k between 2 and 32 (solid squares).
The size of the points is larger than the corresponding error bars.
Down triangles, circles, and up triangles represent data obtained by
Budinski-Petković and Kozmidis-Luburić [19], Budinski-Petković
et al. [20] and Dujak et al. [41], respectively. The solid line corre-
sponds to the fitting function as discussed in the text.

Following the procedure in Fig. 4, the jamming cover-
age was obtained for k ranging between 2 and 32. The
results are shown in Fig. 5 (solid squares) together with the
values reported by Budinski-Petković and Kozmidis-Luburić
[19] (down triangles), Budinski-Petković et al. [20] (circles),
and Dujak et al. [41] (up triangles). Clearly, the agreement
between our results and those previously reported in the liter-
ature is excellent. For a more careful comparison, the values
plotted in Fig. 2 are compiled in Table I. Small deviations are
observed in the data from Ref. [19], which can be attributed to
the small size of the lattice used in the calculations (L = 128
in Ref. [19]).

From k � 2 the data have been fitted to the function, θ j,k =
A + B/k + C/k2, as proposed in Ref. [44]; it is found that A =

θ j,k=∞ = 0.5540(4), B = 0.530(3), and C = −0.084(2). The
adjusted coefficient of determination is R2 = 0.999 97. The
value θ j,k=∞ = 0.5540(4) represents the limit concentration
by infinitely large k-tiles.

As in the case of linear k-mers on triangular lattices [23],
the jamming coverage of k-tiles on triangular lattices shows a
decreasing function with k. However, the θ j,k=∞ = 0.5540(4)
for k-tiles is less than the value θ j,k=∞ = 0.5976(5) obtained
for linear k-mers on triangular lattices [23]. It means that
linear k-mers are more effective in filling the lattice than
k-tiles. The same behavior was observed for square lattices,
where θ j,k=∞ = 0.660(2) for linear k-mers [44] and θ j,k=∞ =
0.5623(3) for square k-tiles [35].

In the case of objects removed from an initially fully
occupied lattice, the removal process is equivalent to a stan-
dard RSA process in a complementary lattice. Accordingly,
standard and inverse problems share formal aspects, terminol-
ogy, and essential characteristics, such as the existence of a
nontrivial state, the jammed saturation state. In fact, let us con-
sider the complementary lattice to the original lattice, where
each empty (occupied) site of the original lattice transforms
into a occupied (empty) one of the complementary lattice. Un-
der these conditions, the filling process in the complementary
lattice (dilution process in the original lattice) is equivalent to
a RSA process. Then, it is straightforward that θ i

j,k = 1 − θ j,k ,
where θ i

j,k is the inverse jamming coverage corresponding to
the removal process. In the present case, θ i

j,k can be written as
θ i

j,k = 0.4460 − 0.530/k + 0.084/k2 (k � 2). Given that the
inverse jamming coverage is exactly equal to one minus the
standard jamming coverage, the values of θ i

j,k are not shown
in Fig. 5 (nor are they listed in Table I).

C. Percolation properties

Standard and inverse percolation thresholds can be cal-
culated by using an extrapolation method based on scaling

TABLE I. The table compiles the numerical values of θ j,k , θc,k , and θ i
c,k obtained in the present work and in previous studies. Statistical

errors are in the last digit and are indicated in parentheses. Values marked with asterisks were digitized from Refs. [19,20].

Isotropic case

Standard model Inverse model

θ j,k (jamming) θc,k (percolation) θ i
c,k (inverse percolation)

k Ref. [19] Ref. [20] Ref. [41] This work Ref. [41] This work This work

2 0.8139(1) 0.7970 (4) 0.7970(4) 0.79696(2) 0.5214(9) 0.52487(3) 0.47513(3)
3 0.723* 0.725* 0.7211(5) 0.72109(2) 0.5524(14) 0.55313(4) 0.44684(3)
4 0.678* 0.681* 0.6816(6) 0.68157(2) 0.5789(15) 0.57984(2) 0.42017(3)
5 0.652* 0.651* 0.6572(6) 0.65730(3) 0.6003(15) 0.60348(2) 0.39695(4)
6 0.634* 0.642* 0.6406(8) 0.64066(2) 0.62207(4) 0.37794(2)
7 0.619* 0.6286(7) 0.62865(3)
8 0.613* 0.61945(2)
9 0.607*
12 0.59768(2)
16 0.58677(2)
24 0.57547(3)
32 0.56965(3)
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laws [1]:

θc,k (L) = θc,k + AkL−1/ν, (1)

and

θ i
c,k (L) = θ i

c,k + Ai
kL−1/ν, (2)

where θc,k [θ i
c,k] is the standard (inverse) percolation threshold

in the thermodynamic limit (L → ∞) for a tile of side k; Ak

and Ai
k are nonuniversal constants and ν is the critical expo-

nent of the correlation length. As will be shown in Sec. IV B,
the values of the critical exponents characterizing the perco-
lation phase transition occurring in our model are consistent
with those of 2D random percolation: ν = 4/3, γ = 43/18,
and β = 5/36 [1]. The quantities θc,k (L) [θ i

c,k (L)] represent
the percolation thresholds for finite lattices.

A standard method to obtain θc,k (L) [θ i
c,k (L)] consists of

the following steps: (a) the construction of a triangular lattice
of linear size L and coverage θ , and (b) the cluster analysis
using the Hoshen and Kopelman algorithm [45]. A total of r
independent runs of such two steps procedure are carried out
for each lattice size L and size k. From these runs, a number
r∗ of them present a percolating cluster. Then, a percolation
probability can be defined as RL,k (θ ) = r∗/r. In the present
study, periodic boundary conditions are used to determine the
percolation quantities.

In the case of standard (inverse) percolation problem,
RL,k (θ ) represents the probability that a lattice of side L
percolates at the concentration θ by the deposition (after the
removal) of k-tiles [46]. RX

L,k (θ ) is an increasing (decreasing)
sigmoid function of the coverage, and θc,k (L) [θ i

c,k (L)] can
be obtained from the position of the inflection point of the
function RL,k (θ ).

Different connectivity criteria (denoted by the index X ) can
be used to calculate RL,k (θ ) [46]:

(1) RX=R
L,k (θ ): the probability of finding a rightward perco-

lating cluster [see Fig. 1];
(2) RX=D

L,k (θ ): the probability of finding a downward per-
colating cluster [see Fig. 1];

(3) RX=U
L,k (θ ): the probability of finding a cluster which

percolates in any direction;
(4) RX=I

L,k (θ ): the probability of finding a cluster which
percolates in both (mutually perpendicular) directions;

(5) RX=A
L,k (θ ) = 1

2 [RU
L,k (θ ) + RI

L,k (θ )].
In our percolation simulations, we used r = 105 indepen-

dent random samples. In addition, for each value of k, the
effect of finite size was investigated by examining differ-
ent lattice sizes. As in previous section, we study lattices
with k ranging between k = 2 and k = 32: k = 2–8, L =
128–640; and k = 12–32, L = 256–1280. From this analysis,
finite-scaling theory can be used to determine the percolation
threshold and the critical exponents with reasonable accuracy.

The percolation order parameter P and its corresponding
susceptibility χ have been obtained from the largest cluster
[47,48]:

P = 〈SL〉
M

, (3)

FIG. 6. Fraction of percolating lattices RX
L,k (θ ) (X = {I,U, A}, as

indicated) as a function of the concentration θ for k = 2 and three
different lattice sizes: L = 128, squares; L = 384, down triangles;
and L = 640, up triangles. Symbols represent simulation results and
solid lines correspond to fitting curves using the error function. The
statistical errors are smaller than the symbol sizes. The curves in
panel (a) [(b)] correspond to standard (inverse) percolation. The
vertical dashed line denotes the percolation threshold in the thermo-
dynamic limit.

and

χ =
[〈

S2
L

〉 − 〈SL〉2
]

M
, (4)

respectively. The reduced fourth-order cumulant UL intro-
duced by Binder [49] was also calculated:

UL = 1 −
〈
S4

L

〉
3
〈
S2

L

〉2 . (5)

In Eqs. (3)–(5), 〈· · · 〉 means an average over simulation runs,
In Fig. 6, the probabilities RA

L,k (θ ), RI
L,k (θ ), and RU

L,k (θ )
are presented for k = 2: (a) standard percolation and (b) in-
verse percolation. As mentioned above, the simulations were
performed for lattice sizes ranging between L = 128 and L =
640. For clarity, simulation results from only three lattice sizes
are shown in the figure: L = 128 (squares), L = 384 (down
triangles), and L = 640 (up triangles). The solid lines corre-
spond to fitting curves using the error function (see discussion
in the next paragraph). The behavior of the probability curves
RX

L,k (θ ) strongly depend on the system size. Even so, for a
given criterion X , they all cross in a unique point RX ∗

. In
this case, the obtained values RA∗ ≈ 0.50, RI∗ ≈ 0.32, and
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RU ∗ ≈ 0.68 agree (within the numerical errors) with the cor-
responding exact values for standard percolation: A criterion,
1/2 [50,51]; I criterion, 0.322 120 45 . . . [51,52], and U cri-
terion, 0.677 889 54 . . . [51,52]. In addition, the intersection
points do not modify their numerical value for the different
k-sizes studied (data not shown here for the sake of brevity).
This finding represents a first indication that the phase transi-
tion involved in the standard and inverse percolation problem
of triangular k-tiles on triangular lattices belongs to the or-
dinary percolation universality class no matter the value of k
considered in the experiment.

As mentioned above, the values of θc,k (L) [θ i
c,k (L)] can

be obtained from the positions of the inflection point of the
probability functions. To do this, first it is convenient to fit
the probability curves with some function through the least-
squares method so that they can be expressed as a continuous
function of θ . The fitting curve used is the error function
because dRX

L,k (θ )/dθ is expected to behave like the Gaussian
distribution near the peak. This assumption is good enough
to obtained the parameters that are needed to apply finite-size
scaling theory [1,53],

dRX
L,k (θ )

dθ
= 1√

2π	X
L,k

exp

⎧⎨
⎩−1

2

[
θ − θX

c,k (L)

	X
L,k

]2
⎫⎬
⎭, (6)

where θX
c,k (L) is the concentration at which the slope of

RX
L,k (θ ) is the largest and 	X

L,k is the standard deviation from
θX

c,k (L).
Figure 7 shows the plots towards the thermodynamic limit

of the standard [Fig. 7(a)] and inverse [Fig. 7(b)] percola-
tion thresholds according to Eqs. (1) and (2) for the data
in Fig. 6. The critical exponent ν was set as ν = 4/3 for
the present analysis, since, as will be shown in Sec. IV,
our model belongs to the same universality class as ran-
dom percolation [1]. From extrapolations it is possible to
obtain θX

c,k (∞) [θ i,X
c,k (L)] for the criteria I , A, and U . Com-

bining the three estimates for each case, the final values of
θc,k (∞) [θ i

c,k (∞)] can be obtained. The maximum of the dif-

ferences between |θU
c,k (∞) − θA

c,k (∞)| [|θ i,U
c,k (∞) − θ i,A

c,k (∞)|]
and |θ I

c,k (∞) − θA
c,k (∞)| [|θ i,I

c,k (∞) − θ i,A
c,k (∞)|] gives the er-

ror bar for each determination of θc,k (∞) [θ i
c,k (∞)]. In this

case, the values obtained were θc,k=2(∞) = 0.524 87(3) and
θ i

c,k=2(∞) = 0.475 13(3). For the rest of the paper, we denote
the standard and inverse percolation thresholds for each size
k by θc,k and θ i

c,k , respectively [for simplicity we drop the
symbol “(∞)”].

By following the procedure of Fig. 7, standard and inverse
percolation thresholds were calculated for different values of
k. The results are collected in Fig. 8: solid black circles and
open red circles represent standard and inverse percolation
thresholds for k-tiles on triangular lattices, respectively. For
comparison, the figure includes the values of the standard
percolation thresholds obtained by Dujak et al. [41] (open
triangles). The figure also shows the jamming curves corre-
sponding to standard (θ j,k vs k, solid squares) and inverse (θ i

j,k
vs k, open squares) problems.

In the case of standard percolation, θc,k is a monotonically
increasing function of k in the interval [1,6]. However, when

FIG. 7. Extrapolation of the standard [panel (a)] and inverse
[panel (b)] percolation thresholds toward the thermodynamic limit
according to the theoretical predictions given by Eqs. (1) and (2).
The values presented in the figure were obtained for k = 2. Squares,
circles, and triangles denote the values of θX

c,k (L) [θ i,X
c,k (L)] obtained

by using the criteria I , A, and U , respectively. The bar error in each
measurement is smaller than the size of the corresponding symbol.

k increases above six (k � 7), all jammed configurations are
nonpercolating states, and consequently, there is no perco-
lating phase. This phenomenon can be better understood by
examining Fig. 9, where the curves of RX

L,k (θ ) (X = I,U, A

FIG. 8. Standard (solid circles and open triangles) and inverse
(open circles) percolation thresholds for k-tiles on triangular lattices.
The figure also includes the jamming data corresponding to standard
(solid squares and solid line) and inverse (open squares and solid
lines) problems. Open and solid circles represent data obtained in
this work. Open triangles correspond to data obtained by Dujak et al.
[41]. The curves were obtained by following the isotropic deposition-
removal scheme. The dotted lines are simply a guide for the eye.
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FIG. 9. (a) Fraction of percolating lattices RX
L,k (θ ) as a function

of the concentration θ for the isotropic case, k = 6 and different
lattice sizes: L = 128 (squares), 192 (down triangles), and 384 (up
triangles). Blue, red, and green symbols represent data for U , A, and
I criteria, respectively. Dashed line denotes the percolation threshold
in the thermodynamic limit L → ∞, respectively. (b) Same as panel
(a) but for k = 7. For clarity, only the curves for L = 192 (down
triangles) and L = 384 (up triangles) are plotted. The vertical dashed
line indicates the jamming coverage.

as indicated) as a function of the concentration θ are shown
for k = 6 [Fig. 9(a)] and k = 7 [Fig. 9(b)]. Three lattice
sizes are shown for k = 6: L = 128 (squares), L = 192 (down
triangles), and L = 384 (up triangles). In the case of k = 7,
only the curves for L = 192 (down triangles) and L = 384 (up
triangles) are plotted.

For k = 6, the probabilities RA
L,k (θ ), RI

L,k (θ ), and RU
L,k (θ )

look similar to those of Fig. 6. Namely, the curves for different
lattice sizes cross each other in a unique point (which depends
on the criterion X used), determining the percolation threshold
in the thermodynamic limit. In this case, θc,k=6 = 0.622 07(4).
The situation is different for k = 7, where the curves of
RX

L,k (θ ) remain almost constant and close to zero up to the
jamming coverage θ j,k=6 = 0.628 65(3) (vertical dashed line
in the figure). This finding is a clear indication that (i) the
percolation phase transition disappears, and (ii) there is only
one phase (the nonpercolating phase) for k > 6.

The interplay between the percolation and the jamming
effects is responsible for the existence of a maximum value
of k (in this case, kmax = 6) from which the percolation
phase transition no longer occurs. In fact, as established in
Ref. [42], different behaviors can be observed depending on
the relationship between the dimension of the deposited object
and the dimension of the substrate. When the dimension of
the lattice is the same as the dimension of the depositing
object, which is the case considered here, the percolation
threshold is an increasing function of the size k in the range
(k � kmax) and, for k > kmax, the percolation phase transition
disappears. Thus, (1) kmax = 1 for straight rigid k-mers on
one-dimensional (1D) lattices [1,5]; (2) kmax = 3 for k × k
square tiles (k2-mers) on 2D square lattices [33–35]; (3)

kmax = 16 for k × k × k cubic objects (k3-mers) deposited
on three-dimensional (3D) simple cubic lattices [42]; and (4)
kmax = 6 for k-tiles on 2D triangular lattices (this work).

Returning to Fig. 8, a good agreement is obtained between
our results and those of Dujak et al. [41] in the interval k =
2–5. For k = 6, no percolation was found in Ref. [41]. This
was possibly due to the fact that the difference between θ j,k=6

and θc,k=6 is very small, which makes it difficult to calculate
percolation properties.

In the case of inverse percolation (open red circles in
Fig. 8), θ i

c,k is a decreasing function of k in the range 2 � k �
6. For k � 7, all jammed configurations are percolating states
(the lattice remains connected even when the highest allowed
concentration of removed sites is reached) and, consequently,
there is no nonpercolating phase. As shown in the figure, a
complementarity property between the percolation thresholds
for standard and inverse percolation is found: θc,k + θ i

c,k = 1.
This property, which has also been observed for linear k-mers
on triangular lattices [26], is exact for the case k = 1 [1]
and it holds for the entire range of k where the percolation
phase transition exists. For each k, θc,k + θ i

c,k = 1 within the
numerical error (see Table I). The complementarity property is
a typical property of the triangular lattice [54,55] and it is not
observed in other geometries, such as square [30,33–35,40,56]
or honeycomb lattices [57,58].

III. STANDARD AND INVERSE PERCOLATION
OF PERFECTLY ORIENTED k-TILES

ON TRIANGULAR LATTICES

To have a more complete insight of the percolation pro-
cesses of k-tiles on the triangular lattice, in this section, the
oriented percolation is studied with a focus in the complemen-
tary property observed in the isotropic case.

A. Model and basic definitions

To study the effect of k-tile alignment on percolation, the
deposition process is performed as in Sec. II A but, now, the
following restriction is considered: the k-tiles are attempted to
be deposited only in the up direction [s1 structure in Fig. 2(a)].
This leads to the formation of an oriented structure as depicted
in Fig. 10(a). Periodic boundary conditions are considered in
the deposition procedure.

To distinguish between isotropic and oriented problem,
for the rest of the paper we use the variable ϑ to denote
the concentration of occupied sites for the case of perfectly
oriented deposition. It is important to note that, in the present
paper, we treat with completely aligned states generated by
irreversible adsorption of k-tiles. This phenomenon should not
be confused with the classical nematic condition occurring
in thermodynamic equilibrium. Interesting examples of equi-
librium ordered states of k-tiles with k = 2 can be found in
Ref. [59].

The inverse percolation problem is also considered for
the case of perfectly oriented k-tiles in the up direction. We
start from an initially fully occupied lattice, where all lattice
sites are occupied by single monomers (each monomer occu-
pies one lattice site). The full occupation state is diluted as
follows: (1) set of k(k + 1)/2 sites forming a up k-tile is

034107-9



N. M. DE LA CRUZ FELIZ et al. PHYSICAL REVIEW E 109, 034107 (2024)

FIG. 10. (a) Schematic representation of a typical configuration
obtained by deposition of 3-tiles perfectly oriented in the up direction
(up 3-tiles). Solid spheres represent the units (monomers) belonging
to the deposited up 3-tiles, and open circles correspond to empty
sites. (b) Schematic representation of a typical configuration obtained
by removing up 3-tiles from an initially fully occupied portion of
lattice. Solid spheres represent occupied sites (monomers), and open
circles indicate empty sites resulting from the removal of the up
3-tiles.

chosen at random; and (2) if the k(k + 1)/2 sites selected in
step (1) are occupied, then an up k-tile is removed from those
sites. Otherwise, the attempt is rejected. Steps (1) and (2) are
repeated until the desired number of k-tiles N is removed
from the lattice and the concentration of occupied particles
is ϑ i = [M − k(k + 1)N/2]/M. The removal process leads to
configurations as depicted in Fig. 10(b). Periodic boundary
conditions are considered.

B. Jamming properties

Following the procedure used for the isotropic case (see
Fig. 4), the jamming thresholds were determined from the
intersection points of the probability curves W ′

L,k (ϑ ) for differ-
ent values of L (these data are not shown here for brevity). The
values of n, k, and L used in the simulations were the same as
those in Sec. II B: n = 2 × 104; k = 2–8, L = 128–640; and
k = 12–32, L = 256–1280. The results are shown in Fig. 11
(solid diamonds) and compiled in Table II.

As can be observed from Fig. 11, ϑ j,k monotoni-
cally decrease with increasing k. From k � 2, the data
can be well fitted by the function ϑ j,k = A + B/k + C/k2,
with A = ϑ j,k=∞ = 0.366 19(8), B = 0.5565(8), and C =
0.199(2). The adjusted coefficient of determination is R2 =
0.999 98. The limit jamming ϑ j,k=∞ = 0.366 19(8) is less
than the value θ j,k=∞ = 0.5540(4) obtained for the isotropic
case. These results are qualitatively different from those

FIG. 11. Jamming coverage ϑ j,k as a function of k for perfectly
oriented k-tiles on triangular lattices with k between 2 and 32 (solid
diamonds). The size of the points is larger than the corresponding
error bars. The solid line corresponds to the fitting function as dis-
cussed in the text.

obtained for straight rigid k-mers, where the limit jamming
for isotropic straight rigid k-mers is less than the limit jam-
ming for aligned straight rigid k-mers: θ j,k=∞ = 0.660(2) [44]
and ϑ j,k=∞ = 0.747 597 920 2 [60] for square lattices; and
θ j,k=∞ = 0.5976(5) [23] and ϑ j,k=∞ = 0.747 597 920 2 [60]
for triangular lattices.2 Clearly, the structure of the lattice
plays a fundamental role in determining the statistics and
percolation properties of extended objects.

Finally, the jamming coverage for the inverse problem ϑ i
j,k

can be written as ϑ i
j,k = 1 − ϑ j,k . Then, ϑ i

j,k = 0.63381 −
0.5565/k − 0.199/k2 (k � 2).

2For a 2D system of aligned straight rigid k-mers, the rods
are deposited only along an axis of the lattice, and the jamming
problem (independently of the lattice geometry) reduces to the one-
dimensional (1D) case. In this limit, the jamming coverage for
infinitely long rods (k → ∞) tends to the Rényi’s parking constant
cR ≈ 0.747 597 920 2 [60].

TABLE II. The table compiles the numerical values of ϑ j,k , ϑc,k ,
and ϑ i

c,k obtained in the present work. Statistical errors are in the last
digit and are indicated in parentheses.

Nematic case

Standard model Inverse model

k ϑ j,k (jamming) ϑc,k (percolation) ϑ i
c,k (inverse percolation)

2 0.69412(1) 0.49854(2) 0.50147(3)
3 0.57393(1) 0.50140(4) 0.49867(4)
4 0.51774(2) 0.50071(4) 0.49935(3)
5 0.48538(2)
6 0.46440(2)
8 0.43877(3)
12 0.41391(2)
16 0.40181(3)
24 0.38985(3)
32 0.38369(3)
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FIG. 12. Standard (solid triangles) and inverse (open stars) per-
colation thresholds for k-tiles on triangular lattices. The figure also
includes the jamming data corresponding to standard (solid dia-
monds and solid line) and inverse (open diamonds and solid line)
problems. The curves were obtained by following the nematic
deposition-removal scheme. The dotted lines are simply a guide for
the eye.

C. Percolation properties

The standard and inverse percolation thresholds are ob-
tained thorough the extrapolation given by Eqs. (1) and (2).
In this case, the equations can be written as

ϑc,k (L) = ϑc,k + ÃkL−1/ν, (7)

and

ϑ i
c,k (L) = ϑ i

c,k + Ãi
kL−1/ν, (8)

where Ãk and Ãi
k are the scaling constants for the standard

and inverse perfectly oriented problem, respectively. Once the
positions ϑc,k (L) and ϑ i

c,k (L) are determined from the percola-
tion probability functions RL,k (ϑ ), the percolation thresholds
ϑc,k and ϑ i

c,k can be obtained using the extrapolation scheme
in Eqs. (7) and (8).

The results obtained for ϑc,k and ϑ i
c,k as functions of size

k are shown in Fig. 12 and collected in Table II. Solid trian-
gles and open stars represent standard and inverse percolation
thresholds, respectively. The behavior of ϑc,k and ϑ i

c,k in terms
of k is reported here. Figure 12 includes the jamming curves
corresponding to standard (ϑ j,k vs k, solid diamonds) and
inverse (ϑ i

j,k vs k, open diamonds) problems.
The behavior of ϑc,k (ϑ i

c,k) is similar to that obtained for
isotropic deposition (removal), see Fig. 8. In this case, kmax =
4. For k > 4, the percolation phase transition disappears.
In addition, the values of standard and inverse percolation
thresholds are symmetric to each other with respect to the
line ϑ = 0.5. Thus, as in the isotropic percolation problem,
ϑc,k + ϑ i

c,k = 1 within the numerical error and, accordingly,
the complementarity property is also valid for the perfectly
oriented percolation problem.

Finally, it is interesting to analyze the inverse percolation
problem in terms of robustness. The focus of robustness in
complex networks is the response of the network to the re-
moval of nodes or links [9–12]. Combining the percolation (in

FIG. 13. The figure shows the boundary curves separating
percolating and nonpercolating or forbidden regions for inverse per-
colation of k-tiles on triangular lattices. Solid squares and solid
diamonds correspond to isotropic and nematic model, respectively.
Accordingly, region A (region A and region B) represents the perco-
lating area for the nematic (isotropic) removal scheme.

the range 2 � k � kmax) and jamming (in the range k > kmax)
thresholds, the boundary curves separating percolating and
nonpercolating or forbidden regions can be constructed. The
results of this procedure are shown in Fig. 13 for inverse
percolation and isotropic (solid squares) and nematic (solid
diamonds) removal scheme. As can be observed from the
figure, the percolating area for the isotropic case (region A
and region B) is larger than the corresponding percolating
area for the nematic case (region A). This means that the
phase of occupied sites is more robust when the k-tiles are
removed isotropically. A contrary behavior has been observed
for inverse percolation of straight rigid k-mers on triangular
lattices [26], where the boundary curve for isotropic percola-
tion is above the oriented one in the whole range of k. In this
case, it is easier to disconnect the system when the needles
are isotropically removed. In other words, the system is more
robust when the removed needles are aligned in only one
direction.

IV. CRITICAL EXPONENTS AND UNIVERSALITY

In this section, the critical exponents corresponding to
jamming and percolation problems will be calculated. In the
first case, the jamming exponent ν j will be obtained from
the probability curves W ′

L,k . In the second case, the complete
set of static critical exponents will be determined from the
scaling behavior of the curves of percolation probability RX

L,k
(ν), order parameter P (β), and susceptibility χ (γ ). Knowing
ν, β, and γ is enough to characterize the universality class of
our system and understand the related phenomena.

A. Jamming critical exponent

The critical exponent ν j of the jamming transition was
obtained for the isotropic and nematic cases. As discussed in
Sec. II B, the quantity W ′

L,k = 1 − WL,k can be fitted by the
error function. Thus, dW ′

L,k/dx (x = θ for the isotropic case
and x = ϑ for the nematic case) is expected to behave like the
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FIG. 14. Log10-log10 plot of (dW ′
L,k/dx)max as a function of L

for two different cases: k = 2 and isotropic problem (x = θ , solid
squares); and k = 2 and nematic problem (x = ϑ , open squares). Ac-
cording to Eq. (10) the slope of the line corresponds to 1/ν j . In this
case, ν j = 1.01(2) (isotropic problem) and ν j = 0.99(2) (nematic
problem).

Gaussian distribution [53],

dW ′
L,k

dx
= 1√

2π	′
L,k

exp

⎧⎨
⎩−1

2

[
x − x j,k (L)

	′
L,k

]2
⎫⎬
⎭, (9)

where x j,k (L) is the concentration at which the slope of
dW ′

L,k/dx is the largest and 	′
L,k is the standard deviation from

x j,k (L).
Then, ν j can be calculated from the maximum of the

derivative of W ′
L,k: (

dW ′
L,k

dx

)
max

∝ L1/ν j . (10)

If (dW ′
L,k/dx)max is plotted as a function of L in log10-log10

scale, the slope of the line will correspond to 1/ν j . Figure 14
shows log10[(dW ′

L,k/dx)max] as a function of log10 L for k = 2
and isotropic (x = θ , solid squares) and nematic (x = ϑ , open
squares) cases. Then, ν j can be obtained from the inverse of
the slope of the line. In the cases of Fig. 14, ν j = 1.01(2)
(isotropic problem) and ν j = 0.99(2) (nematic problem).

The procedure was repeated for different values of k. The
results are shown in Table III. In all the cases, the values
obtained for ν j (1) remain close to 1, and (2) coincide, within
the numerical errors, with the values previously reported in
other 2D monolayer systems [34,35,40,61].

As shown in previous, the properties of W ′
L,k are identical

to those of RX
L,k in standard percolation transitions. Namely,

RX
L,k obeys the same scaling relation in Eq. (10), and the

intersection of the curves of RX
L,k for different system sizes

can be used to determine the critical point that characterizes
the percolation transition occurring in the system. Then, based
on these features, we propose the following scaling behavior
at criticality for the probability W ′

L,k:

W ′
L,k (x) = W ′

k [(x − x j,k )L1/ν j ], (11)

where W ′
k is the corresponding scaling function and as estab-

lished above, x = θ for the isotropic case and x = ϑ for the
nematic case.

TABLE III. The table compiles the numerical values of the jam-
ming critical exponent ν j obtained in the present work. Statistical
errors are in the last digit and are indicated in parentheses.

Jamming critical exponent ν j

k Isotropic model Nematic model

2 1.01(2) 0.99(2)
3 0.99(2) 1.00(2)
4 1.01(2) 0.99(2)
5 0.99(2) 1.02(2)
6 1.01(1) 1.00(1)
8 0.99(2) 0.99(2)
12 1.00(2) 0.99(2)
16 1.00(2) 1.01(2)
24 1.01(2) 1.00(3)
32 1.00(2) 0.98(3)

The scaling tendency in Eq. (11) has been tested by plotting
W ′

L,k (x) versus (x − x j,k )L1/ν j and looking for data collapsing.
As an example, Fig. 15 shows the obtained results for k = 2
and isotropic [Fig. 15(a)] and nematic [Fig. 15(b)] cases. Us-
ing the values of θ j,k=2 = 0.796 96(2), ϑ j,k=2 = 0.694 12(1),
and ν j = 1, the curves present an excellent scaling collapse.
This data collapse study allows for consistency check of the
value ν j = 1 calculated in Fig. 14.

B. Percolation critical exponents

To determine the universality class which this problem
belongs to, the critical exponents ν, β, and γ have been
calculated. As was done in previous section, and for a more
compact notation, we define the generalized coverage x,
which represents the percolation variable associated with each
system studied. Thus, (i) x = θ for standard percolation and
isotropic deposition model; (ii) x = ϑ for standard percolation

FIG. 15. (a) Data collapse of W ′
L,k (θ ) versus (θ − θ j,k )L1/ν j

[Eq. (11)] for k = 2 and isotropic case. The curves were obtained
using θ j,k=2 = 0.796 96(2) and ν j = 1. (b) Same as in panel (a),
but for nematic case. In this case, the curves were obtained using
ϑ j,k=2 = 0.694 12(1) and ν j = 1.
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FIG. 16. Percolation order parameter P as a function of cover-
age x for k = 2 and four different cases: (a) standard percolation
and isotropic deposition model (x = θ ); (b) standard percolation
and nematic deposition model (x = ϑ); (c) inverse percolation and
isotropic removal model (x = θ i); and (d) inverse percolation and
nematic removal model (x = ϑ i). Different symbols correspond to
different lattice sizes: circles, L = 128; squares, L = 192; diamonds,
L = 256; stars, L = 384; up triangles, L = 512; and down triangles,
L = 640.

and nematic deposition model; (iii) x = θ i for inverse percola-
tion and isotropic removal model; and (iv) x = ϑ i for inverse
percolation and nematic removal model.

The strategy used to obtain the percolation critical expo-
nents is based on the scaling properties of the percolation
probability RL,k and the order parameter P (and its deriva-
tives). Typical curves of RL,k versus coverage for different
lattices sizes L are shown in Fig. 6. In the case of the order
parameter, an illustrative example of the behavior of P(x)
for different values of L is presented in Fig. 16(a), standard
percolation and isotropic deposition model, x = θ ; Fig. 16(b),
standard percolation and nematic deposition model, x = ϑ ;
Fig. 16(c), inverse percolation and isotropic removal model,
x = θ i; and Fig. 16(d), inverse percolation and nematic re-
moval model, x = ϑ i. Different symbols correspond with
different lattice sizes: circles, L = 128; squares, L = 192;
diamonds, L = 256; stars, L = 384; up triangles, L = 512;

and down triangles, L = 640. In all cases, the curves were
obtained for k = 2.

According to scaling assumptions, the standard finite size
scaling theory [47–49] provides several ways to estimate the
critical exponent ν from simulation data. One of these meth-
ods is from the maximum of the function dRX

L,k/dx,

(
dRX

L,k

dx

)
max

∝ L1/ν . (12)

In Fig. 17(a), log10[(dRA
L,k/dx)max] has been plotted as

a function of log10 L (note the log10 - log10 functional de-
pendence) for k = 2 and four different cases as indicated.
According to Eq. (12), the slope of each line corresponds
to 1/ν. As can be observed, the slopes of the curves remain
constant, being ν = 1.334(9) for standard percolation and the
isotropic deposition model; ν = 1.342(15) for standard per-
colation and the nematic deposition model; ν = 1.345(14) for
inverse percolation and the isotropic removal model; and ν =
1.336(11) for inverse percolation and the nematic removal
model.

Once ν was known, the exponent γ can be determined by
scaling the maximum value of the susceptibility in Eq. (4).
The behavior of χ at criticality is χ = Lγ /νχ (u), where u =
(x − xc,k )L1/ν and χ is the corresponding scaling function. At
the point where χ is maximal, u = const and χmax ∝ Lγ /ν .
The data for χmax with k = 2 and the same cases in Fig. 17(a)
are shown in Fig. 17(b). The values obtained are γ = 2.40(2)
for standard percolation and the isotropic deposition model;
γ = 2.40(2) for standard percolation and the nematic de-
position model; γ = 2.41(4) for inverse percolation and the
isotropic removal model; and γ = 2.41(3) for inverse perco-
lation and the nematic removal model.

And finally, the exponent β can be determined from the
scaling behavior at criticality of the order parameter in Eq. (3):
P = L−β/νP(u′), where u′ = |x − xc,k|L1/ν and P is the scal-
ing function. At the point where dP/dx is maximal, u′ = const
and (dP/dx)max = L(−β/ν+1/ν)P(u′) ∝ L(1−β )/ν .

The scaling tendencies of (dP/dx)max are shown in
Fig. 17(c) for the same cases as in Figs. 17(a) and 17(b).
From the slopes of the curves, the following values of β

were obtained: β = 0.131(9) for standard percolation and
the isotropic deposition model; β = 0.144(7) for standard
percolation and the nematic deposition model; β = 0.145(7)
for inverse percolation and the isotropic removal model; and
β = 0.145(9) for inverse percolation and the nematic removal
model.

The study carried out in Fig. 17 was repeated for all val-
ues of k where the percolation phase transition exists. For
each k, the values of ν, γ , and β were determined from
the corresponding linear regressions. The obtained results are
compiled in Table IV. In all cases, these results are consistent
(within the statistical error) with the exact values of the critical
exponents of the ordinary percolation, ν = 4/3, γ = 43/18,
and β = 5/36.

Finally, the scaling behavior has also been tested by
plotting PLβ/ν versus |x − xk,c|L1/ν , χL−γ /ν versus (x −
xk,c)L1/ν , RA

L versus (x − xk,c)L1/ν , and U versus (x −
xk,c)L1/ν and looking for data collapsing. Using the values
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FIG. 17. (a) Log10-log10 plot of (dRA
L,k/dx)max as a function of L for k = 2 and four different cases: standard percolation and isotropic

deposition model (x = θ , solid diamonds); standard percolation and nematic deposition model (x = ϑ , open diamonds); inverse percolation
and isotropic removal model (x = θ i, solid circles); and inverse percolation and nematic removal model (x = ϑ i, open circles). According to
Eq. (12), the slope of each line corresponds to 1/ν = 3/4. (b) Log10-log10 plot of χmax as a function of L for the cases in panel (a). The slope
of each line corresponds to γ /ν = 43/24. (c) Log10-log10 plot of (dP/dx)max as a function of L for the same cases reported in panels (a) and
(b). The slope of each line corresponds to (1 − β )/ν = 31/48.

of xk,c calculated above and the exact values of the criti-
cal exponents corresponding to ordinary percolation ν = 4/3,
γ = 43/18, and β = 5/36, we obtain an excellent scaling
collapse, as shown in Figs. 18 and 19 for k = 2 and different
percolation criteria as indicated. This leads to independent

controls and consistency checks of the values of all the critical
exponents.

It is well known that RSA has very short-range correlations
which corroborated by the values of ν, γ , and β reported
in previous paragraphs. This also means that the percolation

TABLE IV. The table compiles the numerical values of the percolation critical exponents ν, β, and γ obtained in the present work.
Statistical errors are in the last digit and are indicated in parentheses.

Isotropic case Nematic case

Standard model Inverse model Standard model Inverse model

k ν β γ ν β γ ν β γ ν β γ

2 1.334(9) 0.131 (9) 2.40(2) 1.345(14) 0.145(7) 2.41(4) 1.342(15) 0.144(7) 2.40(2) 1.336(11) 0.145(9) 2.41(3)
3 1.339(8) 0.141 (8) 2.41(3) 1.341(10) 0.143(9) 2.41(3) 1.340(11) 0.139(7) 2.37(3) 1.341(10) 0.142(7) 2.39(3)
4 1.337(9) 0.137 (7) 2.39(4) 1.339(9) 0.142(8) 2.39(3) 1.338(11) 0.137(8) 2.41(4) 1.339(11) 0.140(8) 2.40(3)
5 1.336(9) 0.140 (9) 2.38(3) 1.342(11) 0.143(8) 2.42(4)
6 1.339(9) 0.142 (9) 2.41(4) 1.338(12) 0.141(9) 2.40(4)

034107-14



STANDARD AND INVERSE SITE PERCOLATION OF … PHYSICAL REVIEW E 109, 034107 (2024)

FIG. 18. Data collapsing of the percolation order parameter, PLβ/ν vs |x − xc,k |L1/ν , and of the susceptibility, χL−γ /ν vs (x − xc,k )L1/ν

(inset), for k = 2 and four different cases: (a) standard percolation and isotropic deposition model (x = θ ); (b) standard percolation and
nematic deposition model (x = ϑ); (c) inverse percolation and isotropic removal model (x = θ i); and (d) inverse percolation and nematic
removal model (x = ϑ i). The plots were made using θc,k=2 = 0.524 87(3), ϑc,k=2 = 0.498 54(2), θ i

c,k=2 = 0.475 13(3), ϑ i
c,k=2 = 0.501 47(3)

and the exact percolation exponents ν = 4/3, β = 5/36, and γ = 43/18. Different symbols correspond to different lattice sizes: circles,
L = 128; squares, L = 192; diamonds, L = 256; stars, L = 384; up triangles, L = 512; and down triangles, L = 640.

properties of the systems presented here correspond to the
same universality class as the random percolation problem.
This is of course true for the small range of k values where
percolation is achieved; for larger values of this parameter this
analysis is not possible.

V. CONCLUSIONS

In this paper, standard and inverse percolation properties
of triangular tiles of side k (k-tiles) on triangular lattices have
been studied by numerical simulations and finite-size scal-
ing analysis. Two models have been addressed: the isotropic
model, where the deposition (removal) of the triangular ob-
jects occurs with the same probability in any lattice direction;
and the perfectly oriented model, where one lattice direction
is privileged for depositing (removing) the k-tiles. In both
cases (deposition and removal), the desired lattice coverage is
reached following a generalized random sequential adsorption
(RSA) mechanism.

First, the dependence of the jamming coverage θ j,k on
the size k was studied for standard deposition, the isotropic
model, and k ranging from 2 to 32. The results are in
excellent agreement with previous data in the literature
[19,20,41]. By fitting the simulation data, it was found that

θ j,k = 0.5540(4) + 0.530(3)/k − 0.084(2)/k2. According to
this equation, the jamming coverage θ j,k rapidly decreases for
small values of k and asymptotically converges towards a defi-
nite value for infinitely large k-tiles θ j,k=∞ = 0.5540(4). This
value is less than the value θ j,k=∞ = 0.5976(5) obtained for
linear k-mers on triangular lattices [23], showing that linear
k-mers are more effective in filling the lattice than k-tiles.

It was demonstrated that the removal process of k-tiles
from the original lattice is equivalent to a RSA process of k-
tiles on the complementary lattice. Each empty (occupied) site
of the original lattice transforms into a occupied (empty) one
of the complementary lattice. On the basis of these arguments,
it is straightforward to conclude that θ i

j,k = 1 − θ j,k , where
θ i

j,k represents the inverse jamming coverage corresponding
to the removal process. In the present case, θ i

j,k can be written
as θ i

j,k = 0.4460 − 0.530/k + 0.084/k2 (k � 2).
Once the limiting parameters θ j,k and θ i

j,k were deter-
mined, the percolation properties of the isotropic system were
studied. It was found that the standard (inverse) percolation
threshold θc,k (θ i

j,k) increases (decreases) monotonically with
increasing k up to k = 6. For k � 7, all jammed configurations
are nonpercolating (percolating) states, and, consequently, the
percolation phase transition disappears. This implies that for
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FIG. 19. Data collapsing of the percolation probability, RA
L,k (x) vs (x − xc,k )L1/ν , and the cumulant, UL vs (x − xc,k )L1/ν (inset), for k = 2

and four different cases: (a) standard percolation and isotropic deposition model (x = θ ); (b) standard percolation and nematic deposition
model (x = ϑ); (c) inverse percolation and isotropic removal model (x = θ i); and (d) inverse percolation and nematic removal model (x = ϑ i).
The plots were made using θc,k=2 = 0.524 87(3), ϑc,k=2 = 0.498 54(2), θ i

c,k=2 = 0.475 13(3), ϑ i
c,k=2 = 0.501 47(3) and the exact percolation

exponent ν = 4/3. Different symbols correspond to different lattice sizes: circles, L = 128; squares, L = 192; diamonds, L = 256; stars,
L = 384; up triangles, L = 512; and down triangles, L = 640.

larger values of k (k > 6) the jamming critical concentration
occurs before the percolation phase transition.

The existence of a maximum value of k (in this case,
kmax = 6) from which the percolation phase transition no
longer occurs reinforces the arguments given in Ref. [42].
Namely, when the dimension of the lattice is the same as the
dimension of the depositing object, which is the case consid-
ered here, the percolation threshold is an increasing function
of the size k in the range [k � kmax] and, for k > kmax, the per-
colation phase transition disappears. This behavior has been
observed in a wide variety of systems [1,5,33–35,42].

In addition, and as observed for linear k-mers on triangular
lattices [26], a complementarity property between the percola-
tion thresholds for standard and inverse percolation is found:
θc,k + θ i

c,k = 1. This complementarity property is a typical
property of the triangular lattice [54,55].

Regarding the perfectly oriented case, the problem
of aligned k-tiles deposited on triangular lattices was
studied here for the first time. The jamming coverage
dependence on the size k follows a decreasing law: ϑ j,k =
0.366 19(8) + 0.5565(8)/k + 0.5565(8)/k2, being A =

ϑ j,k=∞ = 0.366 19(8) less than the value θ j,k=∞ = 0.5540(4)
obtained for the isotropic case. These results are qualitatively
different from those obtained for straight rigid k-mers,
where the limit jamming for isotropic straight rigid k-mers
is less than the limit jamming for aligned straight rigid
k-mers [23,44,60]. In addition, the jamming coverage for
the inverse problem ϑ i

j,k can be written as ϑ i
j,k = 1 − ϑ j,k =

0.63381 − 0.5565/k − 0.199/k2 (k � 2).
It was also found that, for the nematic deposition and

removal problem, the percolation phase transition occurs only
for k = 2, k = 3, and k = 4. For k � 5, the percolation phase
transition disappears. In addition, and as in the isotropic
case, the sum of standard and inverse percolation thresholds
equals one (ϑc,k + ϑ i

c,k = 1, k = 2, 3, 4), confirming the gen-
erality of this behavior in triangular lattices. Thus, the simple
complementarity relationship between standard and inverse
percolation thresholds seems to be a property typical for the
triangular lattice, regardless of isotropic or oriented deposition
or removal.

The isotropic and nematic inverse percolation problems
were analyzed in terms of robustness. The obtained results
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indicate that the percolating area for the isotropic case is
larger than the corresponding percolating area for the nematic
case. This means that the phase of occupied sites is more
robust when the k-tiles are removed isotropically. Or, in
other words, it is easier to disconnect the system when the
k-tiles are removed according the nematic scheme. A contrary
behavior has been observed for inverse percolation of straight
rigid k-mers on triangular lattices [26], where the system is
more robust when the removed needles are aligned in only
one direction.

The complete set of percolation critical exponents ν, β, and
γ was determined. The results obtained confirm that the per-
colation phase transition involved in the system, which occurs
for k varying between 1 and 5(3) for the isotropic (nematic)
problem, belongs to the same universality class as the standard
two-dimensional percolation. Even though the geometry of
the percolating object drastically affects the behavior of the
percolation threshold as a function of the k size, it does not
alter the nature of the percolation transition occurring in the
system. In addition, the critical exponent characterizing the

jamming process (ν j) was measured for isotropic and nematic
schemes and for different values of k ranging between k = 2
and k = 32. In all cases, the values obtained for ν j remain
close to one, confirming that ν j = 2/d for RSA processes on
d-dimensional Euclidean lattices [61].

Future efforts will be devoted to extending the present
analysis to bilayer and n-layer systems (with n > 2).
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