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Progressive quenching (PQ) is a process in which we sequentially fix a system’s degrees of freedom, which
would otherwise evolve according to their stochastic dynamics. Previous studies have discovered what we refer
to as the hidden martingale property in PQ. Here we first attribute this martingale property to the canonicity of the
two-layer ensemble comprising quenched and thermal ensembles and demonstrate that the Markovian property,
coupled with the detailed balance (DB) of the evolution dynamics, underpins this canonicity. We then expand
the PQ to the Markovian dynamics on the transition network where the DB is not required. Additionally, we
examine the PQ of the systems that evolve through non-Markovian dynamics between consecutive quenching.
When non-Markovian dynamics ensure a trajectory-wise DB, such as in an equilibrium spin system with a
hidden part, the PQ can occasionally maintain the canonical structure of the overall statistical ensemble but not
always. Last, we analytically and numerically investigate the PQ of a non-Markovian spin system with delayed
interaction and illustrate how the reduction of spin correlations due to the delay can be compensated by the PQ.
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I. INTRODUCTION

Markov chains have been studied in depth for more than a
century now, whose fields of application are broad and diverse
[1–4]. This is especially the case of stochastic physics [5–7].
Some studies concern the effect of change of the parameters
of the Markov chain, that is, the topology of the transition
network and the rates associated with the jump on it [8–11].
What we call progressive quenching (PQ) belongs to this
category of studies, where the system that was initially in
equilibrium is modified by progressively fixing a part of the
system’s degrees of freedom.

In our previous work [12–14], the results of which
are briefly summarized in Sec. II for the sake of self-
containedness, we demonstrated that a martingale process
emerged during the progressive quenching of a model of
Ising spins. We tested this result both numerically and the-
oretically, using the inverse system size expansion as well
as tower-rule-based arguments under specific hypotheses.
This property enabled us to make predictions about the in-
dividual future trajectories of the process, in addition to
inferring the anterior one. We realized that there is a canonical
distribution underlying the ensemble of the final quenched
configurations, and we explored different approaches to
understand its origin via an explicit construction of path
weight through the “local invariance”, which is equivalent
to the martingale property that emerged during the evolution
process [14].

So far, we have assumed that before each quench-
ing operation, the unquenched part of the system is in
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thermal equilibrium under a given number of fixed spins,
and we have implicitly assumed continuous-time Markovian
dynamics. However, we have not been. conscious enough in
distinguishing the dynamic aspect from the statistical aspect
when defining the quenching process. In particular, we have
yet to fully appreciate the importance of the Markovian prop-
erty of the evolution dynamics.

In the present paper, we want to understand the conditions
under which the canonical characteristics of the whole ensem-
ble (both quenched and unquenched) are conserved along the
PQ process and how important is the Markovian assumption
on the stochastic evolution for the martingale and underlying
canonical structure. We will discuss the Markovian and non-
Markovian cases separately and distinguish the dynamics with
or without detailed balance.

The organization of the present paper is as follows: Sec. II
presents our model setup (Sec. II A) and previous results
(Sec. II B), where we explain the protocol of PQ, the prop-
erty that we call hidden martingale. In Sec. III we first
introduce the two-story ensemble and argue that the de-
tailed balance and the Markovian dynamics are required for
this ensemble to be canonical (Sec. III A). Then we ex-
tend the PQ defined on any Markovian transition network
(Sec. III B), where the condition of detailed balance is also
relaxed (Sec. III C). Then Sec. IV deals with the case of
non-Markovian systems. We argue that the canonical structure
that supported the hidden martingale of PQ is generally bro-
ken even if the (trajectory-wise) detailed balance is initially
assured (Sec. IV A). Finally, we focus on the spin model with
delayed interaction (Sec. IV B) and show how the operation
of PQ interferes with the non-Markovian delay through the
time interval between the consecutive quench. Finally, Sec. V
summarizes the results, and a comparison is made with the
linear voter model.
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II. MODELS AND PREVIOUS RESULTS

A. Model setup

Our previous studies focused on a globally coupled Ising
spins model, consisting of N0 spins interacting pairwise on
a complete graph with a coupling constant j = J

N0
. The

Hamiltonian reads

H = − j
N0∑
i< j

sis j = − j

2
M2

tot + j

2
N0, (1)

where Mtot = ∑N0
i=1 si. In this system, we attribute spin

indices i so that, after the T th progressive quenching
operation (1 � T � N0), the first T spins {s1, . . . , sT } con-
stitute the quenched part and the remaining N0 − T spins,
{sT +1, . . . , sN0}, the unquenched or free part. We denote by
MT the quenched magnetization at the T th stage:

MT =
T∑

i=1

si.

The Hamiltonian for the remaining part then reads

HT = − j
∑

T +1�i< j�N0

sis j − ( jMT + h)
N0∑

i=T +1

si, (2)

where h is the external field. We denote by ZT,MT the partition
function of the partially quenched system characterized by
HT above. Hereafter, we set the inverse temperature β =
(kBT )−1 = 1 through an appropriate unit of energy. The mean
magnetization of the free part at constrained thermal equilib-
rium, which we denote by m(eq)

T,MT
, reads

m(eq)
T,MT

= ∂ ln ZT,MT /∂h|h→0. (3)

With such a setting, the operation of PQ is to move and
transform a spin from the free part into the quenched part
in such a way that the value of that spin is maintained as it
is. Therefore, if the system has T quenched spins, then the
subsequently quenched spin sT +1 satisfies

E[sT +1|MT ] = m(eq)
T,MT

. (4)

When we regard T , the number of fixed spins, as a “time,”
we have two stochastic processes: the one being MT , the
magnetization of the quenched part of the system, and the
second being m(eq)

T,MT
, the equilibrated mean spin of the free

part.

B. Brief review of the previous results

1. Hidden martingale

For self-containedness, we first recall the definition of the
discrete-time martingale process. We call the stochastic pro-
cess {YT } martingale associated with the stochastic process
{XT } if (i) as for the past, YT is determined when (X0, . . . , XT )
are given, and (ii) as for the future, E[YT |X0, . . . , Xs] = Ys for
T � s.

We showed previously [12–14] that if we let the free
spins reach thermal equilibrium after each quenching step,
or equivalently quench the spin at ±1, respectively, with the

probability, P(sT +1 = ±1) = 1
2 (1 ± m(eq)

T,MT
), then the evolu-

tion of m(eq)
T,MT

satisfies the martingale law [15]:

E
[
m(eq)

T,MT

∣∣Ms
] = m(eq)

s,Ms
(T � s). (5)

Apparently m(eq)
T,MT

plays a role of YT , while as {X0, . . . , Xs}
we put only Ms because {Ms} is Markovian and m(eq)

s,Ms
is

independent of {M0, . . . , Ms−1} in the present problem. The
martingale property of m(eq)

s,Ms
is said “hidden” because it is not

of the main process, MT .

2. Consequences of the hidden martingale

This particular property gives a large amount of infor-
mation about the evolution of MT [12,13], first allowing an
approximate prediction of the final distribution of MT =N0

given the one at the early stage, even before the distribution
bimodality appears. Second, the hidden martingale implies an
invariance of the path probabilities under a local trajectory
modification. This property allowed us to derive a thermody-
namic decomposition of the probability distribution of MN0 ,
linking it to the canonical ensemble [14]. More concretely,
the probability of observing the quenched magnetization MN0

starting from an unconstrained thermal equilibrium, PPQ(MN0 )
reads

PPQ(MN0 ) ∝
(

N0
N0+MN0

2

)
e

j
N0

M2
N0 . (6)

We can extend this property to systems in which a part of it
has already been quenched with a specific magnetization.

3. Recycled quenching [14]

Moreover, we have studied the effect of an “annealing” by
which we relax a randomly chosen spin among the fixed ones
during PQ. When we repeat the cycle of random unquenching
and random quenching, the distribution of the fixed magneti-
zation MT of T quenched spins converges asymptotically to
the distribution which we would have by applying PQ up to T
spins starting from unconstrained equilibrium.

III. PQ IN MARKOVIAN MODELS

In this section, we limit our consideration to the Markovian
evolution models and investigate how the canonicity of the
statistics plays a role.

A. Canonicity on PQ in two-story ensemble

In the “Note added in proof” of Ref. [14], we predicted in
the forthcoming paper a further description about the origin
of canonical distribution of the final quenched magnetization,
MT =N0 , in fact with the implicit assumption of Markovian
dynamics. The main questions are as follows:

(i) A problem of combinatorics (Sec. III A 1): How the
quenched ensemble is compatible with the canonical statis-
tics on the consecutive quenching operations where the
unquenched spins are in constrained equilibrium?

(ii) A problem of dynamics (Sec. III A 2): At the level of
discrete spins (and even more microscopic) how is the oper-
ation of quenching compatible with the reversible evolution,
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FIG. 1. Schematic representation of the process of updating the
two-story ensemble. The blocks represent the partition of the spins
into the quenched part (the left column in blue) and the free part (the
right column in red). According to the sign of spins, each column is
subdivided: N+ + N− = T + 1 and n+ + n− = N0 − (T + 1) while
N+ − N− = M(= MT +1) and n+ − n− = μ(= μT +1).

given the apparent Deborah number, that is, the dimensionless
ratio of the relaxation time of the system and the observation
period, exceeding unity? Indeed, the quenching process phys-
ically implies rendering towards zero the transition rate for the
flipping of the spin in question.

1. Combinatorial approach

First, we introduce the notion of two-story ensemble, the
way of characterizing the statistics of N0 spins, which is
convenient for the PQ. We separate those N0 spins into
two groups, {s1, . . . , sT }, and the remainder, {sT +1, . . . , sN0}
(keeping the quenched or free spins distinction in mind) and
we introduce the subtotals of spins through MT = ∑T

i=1 si and
μT = ∑N0

j=T +1 s j . The joint probability PQF(MT , μT ) satisfies
PQF(MT , μT ) = PF |Q(μT |MT )PQ(MT ), where PQ(MT ) is the
marginal and PF |Q(μT |MT ) is the conditional probability.1

We interpret this identity in the way that PQ(MT ) charac-
terizes the families of spin configurations in the quenched
part, {s1, . . . , sT }, while PF |Q(μT |MT ) reflects the subensem-
ble of the spin configuration, {sT +1, . . . , sN0}, in each family
member. The configurations in the same family are realized
ergodically, while those belonging to a distinct quenched fam-
ily are nonergodic in the two-story ensemble. (In our model
on a complete graph, we replaced {s1, . . . , sT } by MT as a
collective tag of the family.)

The above is for a particular two-story ensemble. The
different values of T define the distinct constructions of
two-story ensembles. In the context of PQ, however, we
introduce a particular form of connection between a two-
story ensemble {PQ(MT ), PF |Q(μT |MT )} and its “neighbor”
ensemble, {PQ(MT +1), PF |Q(μT +1|MT +1)}. This connection is
schematically explained in Fig. 1, where N± and n± denote
the numbers of up-down (±1) spins in the quenched and
free parts, respectively. All the spins are initially unquenched
(T = 0 and M = 0) and thought to be in equilibrium with-
out an external field. The probability for μ0, denoted by

1For the simplicity of notations we suppressed the index T as
the number of quenched spins. For example, it is understood that
PQF(MT , μT ) is for the T quenched spins.

P(can)
F (μ0) reads

P(can)
F (μ0) = N0,0

(
N0

N0+μ0

2

)
e

j
N0

μ2
0 , (7)

where the normalization constant N0,0 is such that∑N0 (mod 2)
μ=−N0

P(can)
F (μ0) = 1. We further assume that, on the

quenching of the (T + 1)-th spin, the (N0 − T ) free spins have
already been re-equilibrated under the given fixed magneti-
zation, MT . In Appendix A we show by induction that the
joint probabilities, PQF(MT , μT ) for all T, obey the canoni-
cal statistics if the initial weight PF (μ0) obeys the canonical
statistics and that the PQ fixes the value of any one of the free
spins under constrained canonical equilibrium. Regarding the
statistics of quenched spins, the above result implies that at
any stage, for example, the T th stage, their magnetization MT

is distributed as if the T spins were randomly sampled from
an equilibrium ensemble of N0 spins.

Relation to martingale. In light of the canonicity under-
lying the two-story ensemble of quenched and free spins,
the mechanism that allowed the “martingality” of meq

T,MT ≡
E[sT +1|MT ] is easily understood: While E[sT +1|MT ] origi-
nally meant the expectation of the spin sT +1 on quenching
in the presence of the magnetization MT due to the T al-
ready fixed spins, the underlying canonicity allows us to
map it to the equilibrium expectation of sT +1 when the spins
{s1, . . . , sT } have the magnetization MT . Together with the
homogeneity among the free spins, {sT +1, . . . , sN0}, we finally
regard meq

T,MT as the canonical expectation E(can)[sN0 |MT ].
The “MT -martingality” for the latter follows directly from the
tower rule applied to mT ≡ E[z|s1, . . . , sT ], see Appendix B,
where z stands for any random variable belonging to the
above canonical ensemble. In this viewpoint, we can better
understand the effect of recycled quenching (RQ) [14] men-
tioned at the end of Sec. II B. After applying the RQ infinitely
many times, the probability PQ(MT ) of having the quenched
magnetization MT over T quenched spins in fact obeys the
canonical marginal distribution,

∑
μT

P(can)(μT , MT ), where
P(can)(μT , MT ) is the joint canonical distribution of the spins
when T randomly chosen spins have the magnetization MT .

The picture of the two-story ensemble and the underlying
canonical statistics should apply to systems other than the
Ising spins on a complete graph. See, as an example, Ap-
pendix C for the q = 3 Potts model. Note that the equivalence
between the martingale and the local invariance [14] is, how-
ever, specific to the Ising spin model.

2. Dynamical approach: Finite-time reversible operation

While the conservation of canonical structure was shown
based on the statistical argument above, we here check
whether the dynamics of quenching can be performed re-
versibly. The argument is done at the level where the spins
span a discrete state space. We will see below that, on
the Glauber level the canonical equilibrium weight can be
maintained under the time-dependent kinetic parameters. In
Sec. III B 2 we will come back to the dynamics problem at
a more microscopic level where each spin takes continuous
states in a double-well potential.

Glauber’s algorithm [16,17] is a representative model of
continuous-time Markovian evolution of Ising spins. In this
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FIG. 2. Invariance of the steady-state distribution of Glauber al-
gorithm with different values of ε, either fixed with time, variating,
or chosen randomly at each time step. U[0, 1] stands for a uniform
random variable over the interval [0,1].

model the flipping of the Ising spin si in the presence of the
interacting energy,

Ei(t ) = j
∑
k( �=i)

sk (t ), (8)

is characterized by the transition rate of the single-spin flip:

P[si(t + dt ) = −si(t )] = dt

2εi(t )
[1 − si(t ) tanh(βEi(t ))],

(9)

where the characteristic time εi(t ) may depend on the time t .
In this context the operation of quenching spin sT +1 amounts
to render εT +1(t ) to +∞. On the other hand, we know that
if the time constants {εi} are static, then the above algorithm
can establish the canonical distribution as its steady state with
whatsoever values of {εi}. While the latter does not imme-
diately imply that the quenching, or general time-dependent
modulation of εi’s, allows the canonicity to be kept intact
against the dynamic perturbation, it is assured by the fact that
the Kullback-Leibler divergence,

D(P‖Pcan ) = −
∑
{si}

P({si}, t ) ln
P({si}, t )

Pcan({si})
,

is a Lyapunov functional of the Markovian evolution of
P({s}, t ) whether or not {εi} are time dependent.2 Figure 2
demonstrates that the Glauber model keeps the canonicity re-
gardless of the choice of characteristic times {εi}, either static
or dynamic. To summarize, on the level of discrete spin space,
the quenching means to render to infinity the elementary tran-
sition time of the Glauber model, and this operation can be
performed in keeping the detailed balance in the Markovian
transition network.

2In the generic inequality, D(KP‖KQ) � D(P‖Q) for the probabil-
ity vectors P and Q with a transfer matrix K, we substitute P = Pt ,

Q = Pcan and K = 1 + dt R, where R is the rate matrix. Then we
have D(Pt+dt‖Pcan ) � D(Pt‖Pcan ).

B. PQ viewed in the transition network

1. Transition network of the spin system on complete graph

Here we aim to extend the PQ to the context of Markovian
transition networks (TN). First, we translate the PQ of a spin
system in the language of TN, i.e., we will deal with all
possible spin configurations and not just their quenched mag-
netization, MT (1 � T � N). This fine-grained description
allows us to take into account both quenched and unquenched
spins as the “coordinates” of TN. When pT (s1, . . . , sN ) is
the fine-grained probability distribution of the spins of which
{s1, . . . , sT } are quenched and the remainder, {sT +1, . . . , sN }
are in the constrained equilibrium state, the probability distri-
bution of the coarse-grained random variable M̂T ≡ ∑T

i=1 si,

which we denote by P(MT ), is given by

P(MT ) = E[δM̂T ,MT
]

:=
∑

s1=±1

· · ·
∑

sN =±1

δM̂T ,MT
pT (s1, . . . , sN ), (10)

where δa,b (a, b ∈ Z) is the Kronecker’s delta. We notice that
the joint distribution pT (s1, . . . , sN ) can be factorized into the
conditional thermal distribution, pT (sT +1, . . . , sN |s1, . . . , sT )
and the quenched spin distribution given as the marginal:∑

s′
T +1=±1· · ·

∑
s′

N =±1 pT (s1, . . . , sT , s′
T +1, . . . , s′

N ).
Slightly more generally, we consider a system with N

degrees of freedom denoted by {x1, x2, . . . , xN }. The set of
possible values of xi is denoted by Ai. For example, Ai =
{−1, 1} for an Ising spin si and we define MT := ∑T

i=1 Ai

when the first T degrees of freedom are quenched. The state
space A then reads A ≡ ⊗N

i=1 Ai. Any state α ∈ A can then
be described by a set of degrees of freedom, {x1, x2, . . . , xN }.
Inversely, any variable xi is the function of the state, xi(α). The
transition network in A is such that (i) if we exclude the simul-
taneous change of more than one variable, then the topology
of transition edges before quenching is hyper-rectangle, and
(ii) if any one variable, e.g., xi, is quenched, then the network
is divided into two groups, losing the ergodicity. Figure 3(b)
illustrates (i) and (ii) for three spins (N = 3), where an initial
TN graph is divided into nonconnected subgraphs.

Let R be the rate matrix of the master equation for the
network on A:

d 
P
dt

= R 
P,

and let 
Pst be the steady-state distribution; R 
Pst = 
0. We also
introduce the net probability current from α to α′ through

Jα′←α ≡ Rα′←αPα − Rα←α′Pα′ .

When the detailed balance (DB) is established for the steady
state, 
P st , we have Jα′←α = 0 for all the pair of states, (α, α′).

Having the progressing quenching in mind, we introduce
the class-Kronecker delta, δ

(T )
α,α′ (= δ

(T )
α′,α ) through3

δ
(T )
α,α′ =

{
1 : ∧T

i=1{xi(α) = xi(α′)}
0 : otherwise

, (11)

3∧T
i=1{Ci} means C1 ∧ · · · ∧ CT , where ∧ is the conjunction

operator.
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(b)

x1 = + 1

x1 = − 1

PQ on x1

(a) (c)

FIG. 3. Different viewpoints of progressive quenching. (a) A
double-well potential as a microscopic model of single-spin quench-
ing. The dashed parts of the curves are those inaccessible by thermal
activation with the experimental time. (b) Schematic illustration of
a cubic Markov transition network modulated by PQ (in the case
of three Ising spins for example). After quenching the first degree
of freedom denoted by x1, the cubic network is separated into two
square disconnected subnetworks. (c) Schematic illustration of a
network transformation. Some edges whose net probability flow has
been zero are removed (dashed line).

that is, it picks up those pair of states that belong to a subset
of the same tag, {x1, . . . , xT }. When the progressive quench-
ing has fixed {x1, . . . , xT } but leaves the other variables free
to fluctuate, the modified rate matrix, which we denote by
R̃T,α′←α is given as

R̃T,α′←α = δ
(T )
α,α′Rα′←α (12)

for α �= α′, and R̃T,α←α = −∑
β( �=α) R̃T,β←α for the di-

agonal element to satisfy the normalization conditions,∑
α′ R̃T,α′←α = 0 for ∀α. Equation (12) simply means the

state transition is possible only when δ
(T )
α,α′ = 1.

A simple but important observation is that if the steady
state of the unquenched system, 
Pst, satisfies the detailed
balance, then we have a trivial rewriting for every pair
(α, α′),

0 = Jα′←α

= Rα′←αPst
α − Rα←α′Pst

α′

= δ
(T )
α,α′

(
Rα′←αPst

α − Rα←α′Pst
α′
)

= R̃α′←αPst
α − R̃α←α′Pst

α′ . (13)

This means that 
P st satisfies also the DB condition for the
quenched system. The steady states of R̃ are in general not
unique because of the broken ergodicity [see Fig. 3(b)]. Nev-
ertheless, the canonical distribution, 
Pst, is among the possible
steady states.

2. Comments on the continuous-state description

The fact that the canonical equilibrium weight can be
maintained under the time-dependent kinetic parameters at the
level of Glauber dynamics (Sec. III A 2) does not automati-
cally assure the existence of a microscopic continuous-state

model that reproduces the persistence of the canonicity. We
show below that, on the microscopic level, we can quench a
single spin under a fixed external field in keeping the detailed
balance, i.e., the canonicity, but that its extension to multispin
systems seems to be at best approximative, which we argue
using the landscape argument.

In well-known modeling of the bit-memory analyzed by
Landauer [18], the individual classical spin (or a binary bit)
under a static bias field was visualized as a state point in
a double-well potential, see Fig. 3(a). The quenching of
a spin corresponds to the raising to infinity of the barrier
separating the double well. Though being oversimplified it
will be instructive to quantify the irreversibility associated
with the manipulation of the barrier height of the double-
well potential. The partial entropy production introduced by
Shiraishi [19–21] may be fitted for this purpose. If we approxi-
mately discretize the coordinate x of the double-well potential
[Fig. 3(a)], then the partial entropy production associated with
the (nearby) transitions x′ → x denoted by Ṡx,x′ reads

Ṡx,x′ = Rxx′ px′ ln
Rxx′ px′

Rx′x px
+ Rx′x px − Rxx′ px′ , (14)

where px is the probability and Rx′,x is the transition rate
from x to x′ and we assumed that the time-reversed state
of x is x itself. When the potential is modified sufficiently
slowly relative to the microscopic timescale, the probability
flows, Rxx′ px′ − Rx′x px, with x and x′ within the same valley,
remain effectively zero through the detailed balance, with
the only exception around the barrier top. In Appendix D,
we demonstrate that, by focusing on the barrier top, this
framework gives the famous Landauer’s entropic loss by ln 2
on the erasure process of a bit memory. By contrast, in the
present context, the quenching of a spin is made so that
the DB is observed including at the vicinity of the barrier
top. Then the local entropy production Ṡx,x′ in (14) vanishes
everywhere.

With the interacting N (> 1)-spin system, however, the
above argument should be lifted to a high-dimensional phase
space, RN . We suppose a free-energy landscape made by the
potential,

∑
i φ(xi, λi ) − j

∑
i< j xix j, where xi is the contin-

uous coordinate of the ith spin and the individual potential
φ(xi, λi ) has minima at xi = ±1. The initial detailed-balanced
statistical state implies the vanishing probability flow on this
free-energy landscape [27]. We have seen in Sec. III C 2 that
quenching of a spin in the presence of the other (unquenched)
spins implies to remove 2N−1 edges of the transition network
[see Fig. 3(b)]. As for the continuous-state version, if the ith
coordinate xi is quenched through a single function φ(xi, λi )
by operating the parameter λi, then it causes the simultane-
ous raising of 2N−1 barriers. Since the local landscape in the
neighborhood of each of the 2N−1 barriers reflects a particular
configuration of the remaining (N − 1) spins, the raising of
those barriers through a single function φ(xi, λi ) should in-
evitably bring about a nonzero probability flow across several
barriers though it can be quantitatively small. It is the reason
why we think the extension of reversible quenching for a
multispin system seems to be at best approximative at the
microscopic level.
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FIG. 4. An example of a two-layered transition network whose
steady state does not verify the detailed balance for any pair of states
but yet has the possibility of a “quench” leaving the stationary proba-
bilities intact. See Sec. III C 1 for details. Inset: A simple example of
a stationary Markov chain E without detailed balance. If r �= r′, then
there is a nonzero probability flux, and cutting a pair of antiparallel
arrows will cause a change in the stationary distribution.

C. PQ of Markovian transition network without
detailed balance

1. Removal of an edge without modifying steady-state probabilities

When the states space A is not a product space correspond-
ing to multiple degrees of freedom of the system, we may still
consider the action of quenching as the elimination of a part
of bidirectional edges from the TN. If the DB condition is
not globally satisfied, then the removal of bidirectional edges
in a TN generally causes the modification of its steady-state
distribution. The inset of Fig. 4 only shows a simple example
where the stationary state has a circulation of probability.
Before “quenching” the stationary probability on the three
states is {p1, p2, p3} = { 1

3 , 1
3 , 1

3 }. When we remove the edges
between the states 1 and 2, the stationary probability becomes
(r2 + rr′ + r2)−1{r′2, r2, rr′}. It is only when r = r′ that the
detailed balance holds globally, and the stationary distribution
remains unchanged by this operation.

When we consider the general TN and ask when the
removal of bidirectional edges leaves the steady-state prob-
ability intact, a rule of thumb is as follows: When a pair
of states, (α, α′) have realized the vanishing net probabil-
ity flow, Jα′←α = 0, we can eliminate simultaneously Rα′←α

and Rα←α′ without perturbing the stationary distribution. The
demonstration follows the idea of (13) above. We suppose
that the initial TN has a steady state 
P (st). We denote by χQ

all those pairs of states for which the net probability flow
vanishes, i.e.,

χQ ≡ {
(α, α′) |Rα′←αP (st)

α − Rα←α′P (st)
α′ = 0

}
. (15)

Here χQ’s suffix Q stands for “quenchable.” We introduce the
“optional”-Kronecker delta, δ

(Q)
α,α′ though

δ
(Q)
α,α′ = δ

(Q)
α′,α =

{
1 or 0 (optional) : (α, α′) ∈ χQ

1 : otherwise , (16)

that is, δ(Q) can vanish only for the pairs whose net steady
probability flow is zero. We then “quench” the original TN
according to the “optional”-Kronecker delta:

R̃α′←α ≡ δ
(Q)
α,α′Rα′←α. (17)

We can check that the “quenched” TN still has 
P (st) as its
stationary state. In fact, for every α′,∑

α

(
R̃α′←αP (st)

α − R̃α←α′P (st)
α′

)
=

∑
α

δ
(Q)
α,α′

(
Rα′←αP (st)

α − Rα←α′P (st)
α′

)
=

∑
α

(
Rα′←αP (st)

α − Rα←α′P (st)
α′

)
= 0. (18)

Here, to go to the third line, we have used the fact that
whenever the pair (α, α′) is �∈ χQ, we have δ

(Q)
α,α′ = 1 by def-

inition. The last equality is the stationary condition for the
original TN. The central part of Fig. 4 gives an example in
which the TN does not have a global detailed balance, but the
“quenching” of TN is possible. The system has two layers, R
and E . The former layer has the Glauber dynamics allowing
detailed balance among {α1, α2, α3, α4, α5}. The latter layer E
undergoes the stochastic circulation among {1, 2, 3}, see the
inset. We assume that the three values εk (k = 1, . . . , 3) are
the values of the global time constant of the Glauber dynamics
for the first layer R. Then we can quench the bidirectional
edges for any pairs of nodes on this layer.

Remark. The modification of the transition rates,
Rα′←α �→ R̃α′←α and Rα←α′ �→ R̃α←α′ should be
realized pairwise simultaneously, either instantaneously
or gradually, but in keeping the ratio R̃α′←α (t )/R̃α←α′ (t )
constant so as to maintain the flow-free condition,
[R̃α′←α (t )P (st)

α − R̃α←α′ (t )P (st)
α′ ] = 0.

2. Extension of PQ and its martingale to transition network

In fact, the martingale is more basic than the canonicity
when we extend the PQ to the generic Markovian networks.
The logic is as follows: The operation of PQ amounts to
stretching to infinity the microscopic response time of individ-
ual spin (εi for the ith spin for the Glauber model, Sec. III A 2).
In the extension to general Markovian TN, we can progres-
sively remove the bidirectional transition edges in a prefixed
manner until all the individual nodes become isolated.

Now the general condition of the martingale of the tower-
rule type is that there is the conditional expectation of a
common random variable, say, z, which is associated with a
growing filtration, i.e., a sequence of cumulative conditions in
the form, E[z],E[z|X1],E[z|X1, X2], . . . In the original PQ of
spins, while the sequence of the fixed spin naturally gave a
growing filtration (Sec. III B 1), we resorted to the canonicity
of MT so that the meq

T meets the general condition of the
martingale of the tower-rule type just mentioned. When we
extend PQ for discrete-state Markovian TN, we may find a
new sequence of conditional expectations without resorting to
canonicity or detailed balance.

In Appendix I, which is also dedicated to this question,
we show a concrete construction of a growing filtration spec-
ified by the history, {X1, . . . , Xt } ∈ (−1, 0, 1)t , through the
removal of the bidirectional edges one after another, where
enough (physical) time is allowed between the consecutive
quenches so that the probability flow becomes stationary in
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FIG. 5. (a) Model of non-Markovian spin system consisting of the visible (Si) and hidden (σi+ 1
2
) spins, see Eq. (19). In any case studied

below, the initial state obeys the canonical statistics. (b) Probability distribution of the visible spins M = S1 + S2 + S3 after all the visible spins
have been fixed. The solid red curve corresponds to the protocol in which K is decreased by half at each quench, starting from J = K = 1/3.

For comparison, the blue dashed curve denotes the canonical equilibrium. (c) Transient process corresponding to relaxation dynamics when
K is decreased by 50% at each quench, as pictured in (b) by the red solid curve. The second moment E[(M )2] (cf. E[M] = 0) of the whole
visible magnetization, M = S1 + S2 + S3, is plotted against the scaled time, t/ε, where the first [second] quenching are done at t/ε = 0 [at
�T/ε = 15], respectively, after each quenching. (d) In the same plane as (b), for the solid curves J and K are kept at (1/3)(kBT ) with the
interval between consecutive quench being �T/ε = 0 (blue), 1 (red), and 15 (violet), respectively. The dashed (green) curve corresponds to
variating values of J and K so that the effective J̃ remains constant; see the main text for the detailed protocol. (e) In the same plane as (c),
the transient processes corresponding to the protocol for the dashed curve in (d) are shown. All the data are obtained over 5 × 105 sample
trajectories.

between. There, the quenching of a spin in the original PQ is
replaced by the subdivision of ergodic islands in the TN but no
detailed balance on the TN is required. By choosing as z the
indicator function for reaching a particular node at the end,
just as a trivial example, we constructed a martingale process.

IV. PQ IN NON-MARKOVIAN MODELS

The previous results are valid only for Markovian systems.
Our study of progressive quenching is now extended to non-
Markovian systems, whether the DB is verified (Sec. IV A) or
not (Sec. IV B). The examples given are the Ising spin systems
studied above but with memory effects.

A. System with hidden spins satisfying detailed balance

1. Model, effective coupling and DB

In this part, we recall two known aspects of non-Markovian
processes through the case studies under a simple setup. As
a model we consider a chain of N “visible” spins {si} with
ferromagnetic nearest-neighbor coupling J. We also suppose
that the neighboring spin pairs, say, si and si+1 share a “hid-

den” spin σi+ 1
2
, through the coupling K . Figure 5(a) shows the

case of a closed chain with three visible spins and three hidden
ones. The energy of the entire system reads

E = −
N∑

i=1

Jsisi+1 − K
N∑

i=1

(si + si+1)σi+ 1
2
, (19)

where sN+1 ≡ s1. After taking the subtrace over σ ’s, the ef-
fective energy Ẽs and the effective partition function Z̃ read:

Ẽs = −
N∑

i=1

J̃sisi+1, Z̃ =
∑
{si}

e−βẼs , (20)

where the effective, temperature-dependent, coupling
constant J̃ is

J̃ ≡ J + (2β )−1 ln cosh(2βK ). (21)

The visible spins, therefore, follow the canonical statistics
with the apparent coupling J̃ as long as the single-time
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statistics are concerned.4 If the whole system evolves by a
Markovian dynamics such as the Glauber model, then the
observer who has only access to the visible spins {si} finds
its non-Markovian evolution. The non-Markovian nature in
a simple case is demonstrated in Appendix F 1. About the
visible spins, there is no more instantaneous DB. Neverthe-
less, if the whole system {s, σ } obeys a Markovian evolution
with DB, then the visible spins still satisfy a trajectory-wise
detailed balance:

P
([{si(t )}N

i=1

]T

t=0

) = P
([{si(t )}N

i=0

]∗T
t=0

)
, (22)

where [{si(t )}N
i=0]∗T

t=0 denotes the time reversal of the forward
trajectory, [{si(t )}N

i=1]T
t=0. The derivation of Eq. (22) is given

in Appendix F 2.

2. Effects of the PQ

Generic case. In principle, the quenching of a visible spin
can accompany any actions on the hidden part. Therefore,
even though the system starts with the canonical statistics,
the PQ generally alters the ensemble. On quenching we may
either impose the value of any hidden spin σi+ 1

2
or change the

value of the hidden coupling K. Those hidden changes will
not only drive the system transiently out of equilibrium but
also alter the stationary ensemble of the visible spins being
different from the original canonical statistics. Figure 5(b)
illustrates such a case, when the hidden coupling constant K is
decreased by 50% after each quench, while J is kept constant.
Figure 5(c) shows the relaxation of the second moment E[M2]
of the visible magnetization distribution towards the steady
state with the previous protocol.5

Case of unbroken canonicity on PQ. We take up again the
non-Markovian model shown in Fig. 5(a), with the energy
given by Eq. (19) wherein the steady state the DB holds. As
the first case of unbroken canonicity, a Glauber algorithm is
used to simulate the dynamics of the whole system, but we
progressively quench exclusively the visible spins while the
hidden variables remain intact. According to Sec. III B, the PQ
of that system, in particular the selective quenching of visible
spins, should not modify the distribution as the two-story en-
semble. Figure 5(d) (thick curves) verifies this idea, where the
probability distribution of the (visible) magnetization, M ≡
S1 + S2 + S3, after all these spins have been quenched. Here
the quenching of visible spins is progressively done with a
regular (dimensionless) interval, �T/ε = 0, 1 and 15 (solid
curves), where �T/ε = 0 is equivalent to the snapshot of
the equilibrium ensemble before quench. The distributions are
independent of the interval �T/ε.

4Note that, even without the quenching of spins, the hidden spins
generally modify the statistical weight of the visible part from the
typical form of (combinatorial factor)×(a Boltzmann factor) like (7),
while the whole ensemble obeys the canonical statistics. The present
example is an exception. To be general we use the term canonical
statistics instead of the canonical distribution.

5The normalized probabilities for the three spins in the absence of
an external field can always be interpreted as a canonical one of an
effective temperature. The quenching makes the latter temperature
different from that of the real one.

We also examined another ad hoc protocol in which the
canonicity of the visible spins remains unbroken. This time
the fixation of visible spin accompanies the modification of
the coupling parameters, J and K. At every quenching, the
value of J is reduced by 50% whole that of K is incremented
so that the effective coupling J̃ of Eq. (21) remains unchanged.
When we monitor the magnetization of visible spins, M ≡
S1 + S2 + S3, its distribution after sufficient interval �T/ε

recovers the canonical one by construction [Fig. 5(d), dotted
curve]. Nevertheless, there is a visible transient before the
equilibration in M, which we monitor through its variance
E[M2], see Fig. 5(e) (cf. E[M] = 0). The fluctuations of M
are transiently attenuated as a fast response to the reduction of
J, and then it recovers the canonical level (horizontal dotted
line) gradually due to the compensatory increment of K .

B. System with delayed interactions breaking detailed balance
(Choi-Huberman model)

We have seen in the previous subsection (Sec. IV A) that
the conservation of the canonicity on the PQ requires a Marko-
vian evolution rule, in addition to the detailed balance in the
starting steady state. In the last part of this paper we study
the effect of PQ on the non-Markovian system whose steady
state has been broken from the beginning, i.e., before quench-
ing the system’s degrees of freedom, to have a better
understanding of the PQ.

1. Original Choi-Huberman model and its steady state

The starting model is the one introduced by Choi and Hu-
berman in 1985 [22]. In their model, the interactions between
spins have a delay τ , i.e., each spin at time t “sees” the other
spins at time (t − τ ). The probability of flipping of the spin si

reads

P[si(t + dt ) = −si(t )] = dt

2ε
[1 − si(t ) tanh(βEi(t − τ ))],

(23)

with Ei being defined by Eq. (8). Except for the limit of the
Glauber model [16] with τ = 0, the steady-state distribution
should break the detailed balance because τ > 0 invalidates
the time-reversal symmetry. We characterize the irreversibility
by the nondimensionalized parameter, a ≡ τ/ε. Throughout
this section (IV B), the numerical simulation based on (23) is
done with the time mesh dt/ε = 0.1 for a � 1 and dt = 0.05
for a < 1. In Appendix G, we show analytically that the
steady state depends on the kinetic parameter, ε (via a), for the
system with two spins. We recall that the canonical equilib-
rium, i.e., a = 0, is independent of ε. Numerically, we show
in Fig. 6(a) how the steady-state distribution of the system
with eight spins depends on the irreversibility parameter a.

We see that the larger the value of a, the more paramagnetic
(unimodal) the system behaves as compared with the bimodal
distribution with Markovian limit, a = 0. Intuitively, when the
delay τ is augmented, the cooperative fluctuations among the
spins are lessened.

2. Effects of the PQ of the Choi-Huberman model

If we introduce the PQ in the above model of Choi-
Huberman, then what effect should we expect? First, we
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FIG. 6. Analyses of the distribution of the total magnetization, M = ∑N
i=1 si, in the Choi-Huberman model and its PQ with eight spins

(N = 8). (a) Plot of the steady-state distribution for different values of dimensionless delay a = τ/ε. The canonical distribution corresponds to
the a = 0 case. (b) Distribution of the magnetization after the progressive quenching has been completed with different values of �T/ε. The
steady-state distribution, as well as the canonical distributions, are also plotted for comparison. (c) Plot of the standardized second moment of
the magnetization after the PQ, E[M2]/E(0)[M2], versus the time interval parameter, �T/ε, where a = 1.07 is kept the same as (b). The levels
of the steady state (�T/ε = 0) and of the canonical case (a = 0) are also shown by dashed horizontal lines. The 2σ error bars are smaller than
the dots indicating calculated points. (d) Contour plot of the standardized mean square of the final quenched magnetization, E[M2]/E(0)[M2],
on the (a,�T/ε) plane. Each point corresponds to a E[M2] value computed over 5 × 105 samples, and the contours are calculated using the
ContourPy library. The pair of dashed contours above and below the contour of value 1 (solid red curve) corresponds to the 1 ± 2σ values.
They delimit the confidence zone where the actual contour of value 1 might be.

studied how the two-story distribution of the total magne-
tization evolves as a function of the number of quenched
spins. The irreversibility parameter a is kept at 1.07 where the
intact distribution is unimodal [see Fig. 6(a)]. We have given a
large-enough time interval �T between the consecutive
quenching so that �T/ε = 15 � a. Leaving the details in
Appendix H, we found that the evolution is qualitatively
similar to Fig. 6(a), where the increment in the number
of quenched spins corresponds to the reduction of the ir-
reversibility parameter a. This result may be qualitatively
understandable because the quenching of the spin si amounts
to the replacement of εi by ∞, or the reduction of ai to 0 for
that spin.

When the time interval between the consecutive quenching,
�T, is not exceedingly larger than either ε or τ, the second
dimension-free parameter, �T/ε, comes into play in addition
to a. Figure 6(b) shows how the final distribution of the total
magnetization, M, depends on the values of �T/ε, where the
dimensionless delay a is again fixed at 1.07. Note that for
�T/ε = 0, the original steady state of the Choi-Huberman
model is recovered as the quenched ensemble after PQ. With
increasing the value of �T/ε, the free spins have more time
to adapt to the quenched part, and the distribution of M under-

goes the change which is a qualitatively similar manner to the
case of decreasing the value of a.

The above results in Figs. 6(a) and 6(b) motivate to study
the possible synthetic effect of a and �T/ε, or the possible
characterization by (�T/ε)/a(= �T/τ ). Nevertheless, the
comparison on the level of the probability distribution of
M is too complicated. We therefore characterize each dis-
tribution by the second moment E[M2] standardized by its
canonical value (i.e., for a = 0 and arbitrary �T/ε), which
we denote by E(0)[M2], all knowing that some subtle aspects
of the distribution will be lost. For example, the equality,
E[M2] = E(0)[M2], does not mean that the distribution is
identical to the canonical one. Figure 6(c) shows this type
of “projection” from Fig. 6(b), being complemented by more
data points. Somewhat surprisingly the ratio E[M2]/E(0)[M2]
exceeds unity for �T/ε>

∼8. The unimodal-bimodal transition
of the distribution takes place where E[M2]/E(0)[M2] = 0.9
approximately (see below).

Figure 6(d) summarizes the contours of E[M2]/E(0)[M2]
on the plane of a and �T/ε, as the landscape of correla-
tion among quenched spins. Here the total number of spins
is N = 4 because of the limited computing time to ensure
good statistics. In fact, E[M2]/E(0)[M2] represents rather well
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the characteristics of the probability distribution of M. Es-
pecially the unimodal-bimodal transition of the distribution
of M is found to occur where E[M2]/E(0)[M2] � 0.9 (data
not shown). Along the vertical axis with a = 0, the model is
the reversible canonical one, therefore, E[M2]/E(0)[M2] = 1
by definition. However, there is another contour of “canoni-
cal” level. The zone above this contour is “supercanonical”
realizing E[M2]/E(0)[M2] > 1 although the excess part is
very small. This reveals some synergistic effect of the three
characteristic time constants, ε, τ , and �T . The weak undula-
tion of the landscape seen around where the two “canonical”
contours meet is due to the smallness of the system not being
an artifact of statistical error, because (i) the sample size is
large enough (4 × 106) and (ii) the amplitude of undulation
decreases when the system size is doubled (N = 8, data not
shown). Also, the “supercanonical” feature is more enhanced,
rather than contrary, for the larger system size.

In the parameter region below the second nonvertical
“canonical” contour, E[M2]/E(0)[M2] = 1, the landscape of
E[M2]/E(0)[M2] is monotone with respect to both a and
�T/ε. This suggests that there is a compensating nature of
�T for the delay τ . However, near the origin, the perturbation
by a is dominant over the influence of �T/ε.

V. SUMMARY AND REMARKS

In the previous works [12–14] we have studied the “hid-
den” martingale property in the PQ, that is, the martingale
property of the mean of the next quenched spin, associated
with the stochastic evolution of the total quenched mag-
netization. In the present work, we have demonstrated and
numerically verified that the canonical property of the two-
story ensemble is behind the martingality and that both the
detailed balance and the Markovianity of the stochastic evolu-
tion are required for such structure to be maintained. Under
these conditions, the canonicity is conserved even without
allowing the unquenched spins to reach a quasiequilibrium
before the subsequent fixation of spins as far as the system
starts with a canonical thermal ensemble (cf. when we go
down to a more microscopic scale, the detailed balance may
become incompatible with the quenching operation). When

the two-story canonical structure is assured, the hidden mar-
tingale holds through the tower-rule applied to the conditional
canonical expectations.

We also extended the PQ on the generic transition network
having a unique initial steady state. We could characterize
sequences of path history (i.e., growing filtration) and con-
stitute the martingale process based on the conditional
expectation associated with this filtration.

In the non-Markovian process, even when the system re-
alizes a trajectory-wise detailed balance, the quenching may
involve uncontrollable or unobservable modifications in the
underlying freedoms that constitute the memory of the ob-
servable parts, and such changes can cause the breaking of
canonicity of the observable part.

We also applied the PQ to the system for which the detailed
balance is absent even in the unquenched steady ensemble. In
the case of PQ on the Choi-Huberman model, the PQ opera-
tion can be formulated unambiguously. Monitoring through
the variance of the total magnetization, we examined the
interplay between the intrinsic non-Markovian parameter τ

of the dimension of time and the time interval between the
subsequent quenching, �T . While the canonical correlation
that favored the cooperative fluctuations of spins is attenuated
by the non-Markovian delay τ , the operation of quenching
reinforces the cooperative fluctuations through �T .

The last remark is on the similarity and difference between
the PQ and some form of “linear voter models”; see Ref. [23]
for introduction. In a typical example, the binary ([1,0]) site
(say, xi) and its neighbor (say, xi + ni) are chosen at random
at each discrete time step and the state of x copies the state
of x + n. In that model, Mt := ∑N0

i=1 xi(t )/N, where N is the
system size, is deemed to be either 1 or 0, according to the
so-called martingale convergence theorem (see, for example,
Ref. [24], Sec. 11.2, “Martingale Convergence Theorems,”
Example 11.16), while the mean of M∞ is M0/N by the
martingale property of Mt . If we compare such a model with
our PQ of spins, then a difference is that Mt of the voter
model eventually goes only to 1 or 0, unlike our PQ, while the
similarity is that (i) both models have a martingale observable,
and (ii) the individual realization tends to be polarized due to
the interaction with the environment that has a long memory.

APPENDIX A: DETAILS OF THE TWO-STORY ENSEMBLE CALCULATIONS

We show the canonicity of PF,Q(μT , MT ) through a proof by induction. The key combinatorial identity is the following:(
T + 1

N+

)(
N0 − (T + 1)

n+

)
= n+ + 1

N0 − T

(
T

N+ − 1

)(
N0 − T

n+ + 1

)
+ N0 − T − n+

N0 − T

(
T

N+

)(
N0 − T

n+

)
, (A1)

where, as noted in the main text, N+ = 1
2 (T + MT +1 + 1) and n+ = 1

2 (N0 − (T + 1) + μT +1) are the number of (+1) spins in
the quenched part and unquenched part, respectively. When T spins have been quenched, we put the hypothesis:

PF,Q(μT , MT ) = P(can)
F,Q (μT , MT ) ≡ NT

(
T

T +MT
2

)(
N0 − T

(N0−T )+μT

2

)
e

j
2N0

(μT +MT )2

, (A2)

where NT is the normalization constant such that
∑N0−T (mod 2)

μ=−(N0−T )

∑T (mod 2)
M=−T PF,Q(μT , MT ) = 1. According to Fig. 1, we combine

the case of sT +1 = 1 and sT +1 = −1 as the newly quenched spin with appropriate weight. With the above identity (A1) we can
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show that the joint probability after the (T + 1)-th quench, PF,Q(μT +1, MT +1) is again canonical:

P(can)
F,Q (μT +1, T + 1) = N0 − T + μT +1 + 1

2(N0 − T )
P(can)

F,Q (μT +1 + 1, T ), P(can)
F,Q (μT +1, MT +1)

= N0 − T + μT +1 + 1

2(N0 − T )
P(can)

F,Q (μT +1 + 1, MT +1 − 1)

+ N0 − T − μT +1 + 1

2(N0 − T )
P(can)

F,Q (μT +1 − 1, MT +1 + 1)P(can)
F,Q (μT +1,−(T + 1))

= N0 − T − μT +1 + 1

2(N0 − T )
P(can)

F,Q (μT +1 − 1,−T ), (A3)

where the first and the last lines apply, respectively for μT +1 � −(N0 − T ) + 1 and μT +1 � (N0 − T ) − 1, while the middle
line applies for −T � MT +1 � T . Because PF,Q(μ0, M0 = 0) = P(can)

F,Q (μ0, M0 = 0) by definition, the proof by induction is

completed. Once we establish PF,Q(μT , MT ) = P(can)
F,Q (μT , MT ) for all T, the marginal PQ(MT ) is given through PQ(MT ) =∑

μT
P(can)

F,Q (μT , MT ).

APPENDIX B: TOWER-RULE MARTINGALE

Let {a1, . . . , aN } := aN
1 be the random variables and

mT = mT
(
as

1 ∪ aT
s+1

)
:= E

[
aN |as

1 ∪ aT
s+1

]
, (B1)

where as
1 ∪ aT

s+1 = aT
1 . Then, by the tower rule of the condi-

tional probabilities, we have

E
[
mT |as

1

] = E
[
E

[
aN |as

1 ∪ aT
s+1

] |as
1

]
= E

[
aN |as

1

]
= ms. (B2)

This can be interpreted as the martingality of mT associated
with the process aT

1 .

The tower rule described above supposes that aN is always
the same single random variable. By contrast, in the main
text, what we wrote sN0 in the definition meq

T ≡ E[sN0 |MT ]
(0 � T � N0) is generally the stochastic process, i.e., the se-
quence of random variables for various “time” T . The sN0 in
this definition was implicitly supposed to be measured when
the T th spin is quenched. Then, most generally, even though
those meq

T with different T contain the same name, sN0 , they
concern different aN in terms of the above formal description.
Nevertheless, the canonicity of the whole ensemble of both
quenched and unquenched spins allows us to lift the distinc-
tion of the time at which the expectation of sN0 is taken. This is
where the canonicity plays a role. We could, therefore, apply
the mapping aN �→ sN0 regardless of the time. As a result, the
tower rule in this Appendix gives the martingality of meq

T .

In a previous paper [12], a derivation of the martingality of
meq

T has been done up to the precision of O(N0)−1, where
they based only on the constrained canonical response meq

T .

The present argument through the tower-rule confirms the link
between the canonicity of spin statistics and the martingality
of meq

T . In summary, for the spin model, the replacement by
the canonical expectation is indispensable for the martingal-
ity, while the availability of homogeneity holds even without
resorting to the canonicity.

APPENDIX C: DETAILED CALCULUS
FOR 3-POTTS MODEL

The picture of the two-story ensemble and the underlying
canonical statistics should apply to systems other than the
Ising spins on a complete graph. The q = 3 Potts model on the
complete graph is an example. Below, we describe the model
in some detail.

1. Energy and entropy of the q = 3 Potts model
on a complete graph

The energy of the q = 3 Potts model on a complete graph
reads

H = − J0

N0

∑
1�i< j�N0

ei · e j = − J0

2N0

∥∥∥∥∥∥
∑

1�i�N0

ei

∥∥∥∥∥∥
2

+ J0

2
,

where ei is the state of the ith Potts element, etc. To be
concrete, we represent the three states of the Potts element
on the plane: e(1) = (0, 1)t , e(2) = (

√
3

2 ,− 1
2 )t , and e(3) =

(−
√

3
2 ,− 1

2 )t . When T of N0 spins have been quenched, their
repartition of orientation is denoted by n(i) for the state e(i). We
note n(1) + n(2) + n(3) = T and n(1)e(1) + n(2)e(2) + n(3)e(3) =
MT , together with e(1) + e(2) + e(3) = 0. The distribution of
the T spins can then be characterized by the two parameters:
ν (1) = n(1) − n(3) and ν (2) = n(2) − n(3). By noticing ν (1) +
ν (2) = T − 3n(3), all n(i) are specified by ν (1) and ν (2),

n(1) = 1
3 [T + 2ν (1) − ν (2)]

n(2) = 1
3 [T − ν (1) + 2ν (2)]

n(3) = 1
3 [T − ν (1) − ν (2)].

With these in mind, the energy of the whole system reads

H = − J0

2N0

∥∥∥∥MT +
∑

T +1�i�N0

ei

∥∥∥∥2

+ J0

2
,

where MT = ν (1)e(1) + ν (2)e(2), and the entropy of quenched
part S(n(1), n(2), n(3) ) (with kB ≡ 1) reads

eS(n(1),n(2),n(3) ) = T !

n(1)!n(2)!n(3)!
.
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2. Consequences of martingality of mean equilibrium spin

When each node of the complete network has a q-state
Potts spin with q > 2, the homogeneity of the unquenched
Potts spins allows, as in the Ising (q = 2) case, the tower-
rule-based martingale of the mean equilibrium unquenched
spin, which in turn justifies the underlying two-story canonical
statistics. Unlike the q = 2 case [14], the martingale only does
not imply the Boltzmann-type weight for the path probability
per se. Nevertheless, certain constraints are imposed by this
martingale property, as will be shown below.

By meq
T ≡ ∑

sT +1
sT +1PT (sT |MT ), the martingale relation-

ship, E[meq
T +1|MT ] = meq

T reads∑
sT +2

∑
sT +1

(sT +2 − sT +1)PT +1(sT +2|MT + sT +1)PT (sT +1|MT )

= 0, (C1)

where we have made use of the identity,
∑

sT +2

PT +1(sT +2|MT + sT +1) = 1, with any T and MT . This is
valid for any q � 2 and whatsoever type of symmetric
spin-spin interactions such as clock or Potts, etc. If q = 2,

then this equality immediately goes back to the local
invariance because the summation contains only those
terms with (sT +2, sT +1) = (−1, 1) and (1,−1). For q = 3,

those processes that quench consecutively the two Potts
elements of the same state drop out from the summation and
the above relationship (C1) is reduced to an 2D equality, that
is, starting from a common frozen spin, MT = ∑T

i=1 si, there
are the two constraints on the local path probabilities of Mt :

PT +1,T (e(2), e(1)|MT ) − PT +1,T (e(1), e(2)|MT )

= PT +1,T (e(3), e(2)|MT ) − PT +1,T (e(2), e(3)|MT )

= PT +1,T (e(1), e(3)|MT ) − PT +1,T (e(3), e(1)|MT ). (C2)

Each line in the above should represent a common function of
MT .

APPENDIX D: PARTIAL ENTROPY PRODUCTION
APPLIED TO LANDAUER’S BIT MEMORY

In this Appendix, we introduce the partial entropy produc-
tion [25] and apply it to Landauer’s entropic loss by ln 2 on
the erasure of bit memory. After that, we modify this result
to show the absence of entropy production when a spin is
quenched slowly.

Using the stochastic entropy introduced by Seifert [26] the
rate of entropy production of a memory bit and the attached
heat bath, Ṡtot = ṠSys + ṠBath, reads

Ṡtot =
∑

x

ṗx ln
qx

px
, (D1)

where px is the probability density at time t while qx is the
steady-state probability satisfying the DB,

Rxyqy = R̃ỹx̃qx, (D2)

with x̃ being the time-reversed state of x (when the veloc-
ity is included in x) and Rxy = Wx←y for y �= x, and Rxx =
−∑

y( �=x) Wy←x being the minus of the escape rate. By def-
inition,

∑
x Rxy = 0. By substituting into (D1) the master

equation,

∂t px =
∑

y

Rxy py (D3)

and using the DB condition (D2) the partial entropy pro-
duction Ṡx,y specifically associated with the state transition
between x and y is given [25]:

Ṡx,y := Rxy py ln
Rxy py

R̃ỹx̃ px
+ R̃ỹx̃ px − Rxy py. (D4)

Here Ṡx,y is non-negative because of the generic inequality,
a ln a

b + b − a � 0.

When the above framework is applied to the double-
minimum potential as a model of memory bit, the spatial
coordinate x is finely discretized, and the probability density
px is supposed to be quasiequilibrium within each valley:
px = θt qx for x < 0 and px = (2 − θt )qx for x > 0. When a
memory stocked by this potential is erased through the sym-
metric lowering of the barrier separating the two valleys, we
take θt=0 = 2 and θt=∞ = 1.

If we substitute these hypotheses into (D1) and integrate
over time from 0 to ∞, then we already have the expected
result, ln 2. The advantage of the partial entropy production
is that (D4) allows us to pinpoint where this increment takes
place along the potential surface. Except for the vicinity of
the barrier top of the potential (x = 0), the detailed balance
(D2) is effectively established, and Ṡx,y vanishes, where we
supposed the time-reversal symmetry, x̃ = x and R̃ỹx̃ = Ryx.

The only transition that can be irreversible is between x = 0−
and x = 0+. More concretely,

Ṡ0−,0+

kB
= R0−,0+θt q0 ln

θt

2 − θt
+ R0+,0− p(0−) − R0−,0+ p(0+)

Ṡ0+,0−

kB
= R0+,0− (2 − θt )q0 ln

2 − θt

θt

+ R0−,0+ p(0+) − R0+,0− p(0−),

and the sum of these two gives

Ṡ0−,0+

kB
+ Ṡ0+,0−

kB
= [R0−,0+θt q0 − R0+,0− (2 − θt )q0] ln

θt

2 − θt
.

Here the quantity in the square bracket on the right-hand side
is the net flow of probability from the left to the right valley.
We, therefore, can write [R0−,0+θt q0 − R0+,0− (2 − θt )q0] =
1
2 |θ̇t |. With this estimation, the time integral of Ṡ0−,0+ + Ṡ0+,0−

from θ0 = 2 to θ∞ = 1, where |θ̇t | = −θ̇t , yields finally∫ ∞

t=0
dt

[
Ṡ0−,0+

kB
+ Ṡ0+,0−

kB

]

=
∫ ∞

0

(
−1

2
θ̇t

)
ln

θt

2 − θt
dt = ln 2.

Therefore, only the partial entropy production at the top of the
potential barrier is responsible for all the entropy loss.

When we retrace the above reasoning in our PQ case,
the total entropy production should also be concentrated at
the barrier top, x = 0±, where the barrier height is raised to
well above kBT . If the DB is maintained during the opera-
tion of PQ, then the current [R0−,0+θt q0 − R0+,0− (2 − θt )q0]
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vanishes, unlike the case of Landauer, and the production,
Ṡ0−,0+ + Ṡ0+,0− , does also. In conclusion, when the potential
barrier is raised slowly enough on the microscopic scale, the
operation of PQ is reversible, and, as a result, the two-story
canonical distribution is maintained.

APPENDIX E: DISCRETE-TIME VERSION
OF SECTION III B

We consider a discrete-time and discrete-state Markov pro-
cess characterized by the transition probabilities K (αi→α j ).
We suppose that this process is stationary, and we denote by
Pst (α) the stationary probability. We will show that if the DB

holds in the stationary ensemble, then the PQ allows Pst (αi )
to remain the stationary distribution.

When a group of degrees of freedom, say, {ai}Q, are
quenched, certain transitions that involve the change of
this variable are prohibited. We introduce δQ(α, α′) so that
δQ(α, α′) = 1 [0] if the transitions α→α′ and α′→α are al-
lowed [prohibited], respectively. Then under the condition of
quenched variables, {ai}Q, the off-diagonal transition proba-
bilities, that we denote by KQ(αi→α j ) (i �= j), should read

KQ(αi→α j ) = δQ(α, α′)K (αi→α j ).

To maintain the normalization condition of the probability, the
diagonal element of the transition probability should also be
compensated:

KQ(αi→αi ) = 1 −
( j �=i)∑

j

KQ(αi→α j ) = K (αi→αi ) +
( j �=i)∑

j

[1 − δQ(αi, α j )]K (αi→α j ). (E1)

We now ask whether the stationary distribution of the original TN, Pst (αi), remains so for the quenched TN if the former TN
satisfies the DB. We rewrite the stationarity condition of Pst (αi):

Pst (αi ) =
∑

j

Pst (α j )K (α j→αi ).

=
∑
j( �=i)

Pst (α j ){δQ(αi, α j ) + [1 − δQ(αi, α j )]K (α j→αi )} + Pst (αi)K (αi→αi )

=
∑
j( �=i)

Pst (α j )K
Q(α j→αi ) +

∑
j( �=i)

[1 − δQ(αi, α j )]P
st (α j )K (α j→αi ) + Pst (αi )K (αi→αi )

=
∑
j( �=i)

Pst (α j )K
Q(α j→αi ) + Pst (αi )

∑
j( �=i)

[1 − δQ(αi, α j )]K (αi→α j ) + Pst (αi )K (αi→αi )

=
∑
j( �=i)

Pst (α j )K
Q(α j→αi ) + Pst (αi )K

Q(αi→αi )

=
∑

j

Pst (α j )K
Q(α j→αi ), (E2)

where the fourth equality is due to the DB condition of the
original TN,

Pst (α j )K (α j→αi ) = Pst (αi )K (αi→α j ).

Equation (E2) means that Pst (αi ) is a stationary distribution of
the quenched system, though it may not be the unique one.

APPENDIX F: HIDDEN-SPIN MODEL

This Appendix gives some details of what we recall in
Sec. IV A 1 of the main text.

1. Non-Markovianity of the hidden-spin model

Let the system have the energy function,

H = −K (s1 + s2)σ,

where K > 0 and the variables, s1, s2, and σ, are Ising
spins. The “hidden” spin σ mediates the interaction between
the “observable” spins, s1 and s2. We shall use the unit
such that the inverse temperature is β = 1. We assume a
Markovian evolution of this system but observe only s1 and

s2. We introduce a short time step, dt, and focus on the three
consecutive instants, {tk−1, tk, tk+1} = {(k − 1) dt, k dt, (k +
1) dt}. We also introduce the notations, αk = (s1(tk ), s2(tk ))
and σk = σ (tk ). Supposing dt � ε, we will ignore the errors
of O((dt )2). Our main concern is the history-conditioned
probability, P(αk+1|αk, αk−1), and we claim the general
inequality, P(αk+1|αk, αk−1) �= P(αk+1|αk, α

′
k−1) for αk−1 �=

α′
k−1. The Markovian transition probability in terms of the

microstate (
αk

σk
) is written as P(

αk+1

σk+1
|αk

σk
). Using this, the con-

ditional probability P(αk+1|αk, αk−1) can be expressed as

P(αk+1|αk, αk−1)

= P(αk+1, αk, αk−1)

P(αk, αk−1)

=
∑

σk+1,σk ,σk−1
P
(
αk+1
σk+1

∣∣∣αk
σk

)
P
(
αk
σk

∣∣∣αk−1
σk−1

)
P
(
αk−1
σk−1

)
∑

σ ′
k ,σ

′
k−1

P
(
αk

σ ′
k

∣∣∣αk−1
σ ′

k−1

)
P
(αk−1
σ ′

k−1

) .

(F1)
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As for the probability P(
αk−1

σk−1
) we assume the canonical

weight, exp[−H (
αk−1

σk−1
)]/Z with the partition function, Z =

4 + 2e2K + 2e−2K . In the conditional probability P(
αk+1

σk+1
|αk

σk
)

we ignore the flipping of more than one spin because such
an event weights O((dt )2). As for the single spin flip, we
use the formalism of Bergmann-Lebowitz [27]: The transition
rate Wb←a from the microstate a to b for P(b|a) = Wb←adt
takes the form, Wb←a = ν0e−(�[a,b]−Fa ), which assures the (mi-
croscopic) Markovian DB. For those transition flipping σ we
assign �[a,b] = δ while for those keeping σ fixed we assign
�[a,b] = �. The energy value Fa takes among {−2K, 0, 2K}.
Some symbolic calculus tells that, while the transitions from
the antiparallel pair do not reflect the past further than O(dt )6;

P((++)|(+−), (++)) = P((−−)|(+−), (++))

= (ν0dt )e−�

P((++)|(+−), (+−)) = P((−−)|(+−), (+−))

= (ν0dt )e−�, (F2)

the transition from the parallel pair depends on the further
past7;

P((−+)|(++), (−+)) = P((+−)|(++), (−+))

= (ν0dt )e−� cosh(2K )

P((−+)|(++), (++)) = P((+−)|(++), (++))

= (ν0dt )e−�sech (2K ). (F3)

Thus, we claim the general inequality; P(αk+1|αk, αk−1) �=
P(αk+1|αk, α

′
k−1) for αk−1 �= α′

k−1. Intuitively, Eq. (F3) means
that if the state (++) is realized only during [(k − 1)dt, kdt],
then the transition to (−+) or to (+−) is enhanced by the
factor coth(2K ) (> 1) as compared with the case in which the
state (++) has been maintained before (k − 1)dt .

2. Trajectory-wise detailed balance

Suppose a system undergoes a Markovian stochastic pro-

cess and satisfies the DB. We denote by ωk = (
αk

σk
) the state

of the system at time tk, where α and σ stand for the visible
and hidden variables, respectively. For simplicity the time-
reversed state of ω is assumed to be ω. As in Sec. F 1 we
use the discretization of time with small interval dt . Then the
“instantaneous” DB condition for ω, reads

P(ωk−1|ωk )Peq
ωk

= P(ωk|ωk−1)Peq
ωk−1

. (F4)

In using repeatedly this relation, we have the trajectory-
wise DB for the variable ω starting from the canonical

6The notation (+-) means (s1, s2) = (1,−1), etc.
7Recall that at most only one spin can flip during dt . Therefore,

αk+1 �= αk implies σk+1 = σk .

state, Peq :

P
({ωk}Kk=0

) = P(ωK|ωK−∞) · · · P(ω2|ω1)P(ω1|ω0)Peq
ω0

= Peq
ωK

P(ωK−1|ωK) · · · P(ω1|ω2)P(ω0|ω1)

= P(ω0|ω1)P(ω1|ω2) · · · P(ωK−1|ωK)Peq
ωK

≡ P
({ωk}∗Kk=0

)
. (F5)

We then focus only on the history of the visible observables,
{αk}Kk=0. For that purpose we integrate out the hidden part,
{σk}Kk=0 :

P
({αk}Kk=0

) =
∑

{σm}Km=0

P ({ωk}Kk=0 ),

where the sum is taken under the fixed {αk}Kk=0. Applying (F5)
to each term on the right-hand side above, we have

l.h.s. =
∑

{σm}∗Km=0

P
({ωk}∗Kk=0

)
, (F6)

= P
({αk}∗Kk=0

)
. (F7)

Thus, we have the trajectory-wise DB relation.

P
({αk}Kk=0

) = P
({αk}∗Kk=0

)
. (F8)

The relation like (F4) does not hold any more because
P (αk+1, αk ) = P(αk+1|αk )Peq

αk contains behind many trajecto-
ries of ω.

APPENDIX G: ABSENCE OF DETAILED BALANCE
IN THE CHOI-HUBERMAN MODEL

This Appendix focuses on verifying the noncanonical na-
ture of the steady state of the Choi-Huberman model, the
Ising spin system with delayed interaction. The approach is
to take up a simplified and discrete-time version of the Choi-
Huberman model applied to the two Ising spins and to show
that its steady state depends on the kinetic parameters, which
is not the case for the canonical ensemble.

The time is discretized with the unit being unity, and we
set the delay of the interaction τ to be equal to this unit, i.e.,

τ = 1. We denote by 
s(t ) := [
s0(t )
s1(t )] the polarization of the two

spins at time t . Following the CH model, the probability that
s0(t ) [s1(t )] at t are flipped at the time (t + 1) depends on
the spin state of their (exclusive) neighbors but at the time
(t − 1), that is, on s1(t − 1) [s0(t − 1)]. In the spirit of the
(discrete-time) Glauber model, we adopt the probabilities,

P[s0(t + 1) = −s0(t )|
s(t ), 
s(t − 1)]

= 1

2ε
[1 − s0(t )s1(t − 1)η], (G1)

P[s1(t + 1) = −s1(t )|
s(t ), 
s(t − 1)]

= 1

2ε
[1 − s1(t )s0(t − 1)η], (G2)

with η = tanh(β j/2), where j/2 is the coupling constant for
this two spin system, similarly to the Glauber mode. (The
factor 1/2 is merely from the convention on the complete
graph applied to N = 2 spins.) For the sake of simplicity, we
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assume that the flip of the two spins takes place independently
for one from the other. Then the probability of 
s(t + 1) reads

P(
s(t + 1)|
s(t ), 
s(t − 1))

= 1

4

{
1 + s0(t + 1)s0(t )

[
1 − 1 − s0(t )s1(t − 1)η

ε

]}

×
{

1 + s1(t + 1)s1(t )

[
1 − 1 − s1(t )s0(t − 1)η

ε

]}
,

(G3)

where, for the discrete-time version, Glauber’s elementary
timescale, ε, should be no less than unity. To handle the
above non-Markovian transition probabilities, we follow the
usual technique of Markovianizing the original description
by extending the state so that the state involves more than
one moment. Here we choose as the extended state the 2 × 2

matrix, (
s(t + 1), 
s(t )) := [
s0(t + 1) s0(t )
s1(t + 1) s0(t )]. Through such

redefinition of the state, the transition from (
s(t ), 
s(t − 1))
to (
s(t + 1), 
s(t )) is Markovian (cf. the redundancy of the
description due to the reappearance of 
s(t ) does not harm the
procedure). Formally, this Markov chain should be written as
a 16 matrix, and the question of the steady-state probability
is reduced to the search of the eigenvector of this matrix
with the unitary eigenvalue. After some symbolic calculus, the
steady-state probability Pst (
s) is found to be

Pst

(+1
+1

)
= (1 + η)(ε − η)2(2ε + η − 1)

8ε3 − 4ε2(3η2 + 1) + 8εη2 + 4η2(η2 − 1)

= Pst

(−1
−1

)

Pst

(+1
−1

)
= (1 − η)(ε + η)2(2ε − η − 1)

8ε3 − 4ε2(3η2 + 1) + 8εη2 + 4η2(η2 − 1)

= Pst

(−1
+1

)
. (G4)

Evidently, the steady state depends on the kinetic parameter ε,

as a sign of noncanonical ensemble. Figure 7 shows the above
probabilities as function of ε(� 1). In the limit, ε → +∞,

the system behaves canonically (the top and bottom dashed
lines), whereas in the limit, ε → 1+, all the probabilities
become 1/4. The theoretical formula (G4) is also in excellent
agreement with numerical simulations.

APPENDIX H: EVOLUTION OF SPIN CORRELATIONS
ALONG PQ IN THE TWO-STORY ENSEMBLE

Figure 8 shows how the distribution of the total magneti-
zation evolves with the stages of PQ. Here it is understood
that, when a part of all of the spins are quenched, the total
magnetization M is calculated using the two-story ensem-
ble, including both quenched spins and thermally fluctuating
ones (see Sec. III A). The kinetic parameters are fixed at
(a,�T/ε) = (1.07, 15). As compared with the CH model
without quenching (the unimodal blue points and links), we
observe that the progress of quenching enhances the correla-
tion among the spins, as is the case with a decreased delay
parameter a observed in Figs. 6(a).

FIG. 7. Plot of the steady-state probabilities (solid curves):

Pst (
+1
+1

) = Pst (
−1
−1

) in blue, and Pst (
+1
−1

) = Pst (
−1
+1

) in red, as func-

tions of ε(� 1). η = tanh(β j) has been chosen at β j = 1/4. Data
were drawn using the formula (G4).

APPENDIX I: AN EXTENDED PQ ON THE TRANSITION
NETWORK AND MARTINGALE

We consider, thanks to a creative question of an anony-
mous reviewer, a generalized PQ that applies to any finite
Markovian TN. The edges of the network are supposed to
bear bidirectional transition rates such that the TN initially has
a unique steady state. We progressively remove bidirectional
transition edges (E in total) in the TN following a given proto-
col until all the individual state (V in total) becomes isolated.
We then ask whether there is a concomitant martingale pro-
cess. When we compare the martingality by the tower property
of the conditional expectation, meq

T,MT (see Appendix B),
with the martingality of the path probability ratio, which leads
to the integral fluctuation theorems - see [15] Sec. 2.1.3,
around Eq. (2.15) - we notice that the conditional probabilities
and the progressive specifications of histories {X1, . . . , Xn}, or
the growing filtration for mathematicians, are the underlying

FIG. 8. The distribution of magnetization at different stages of
PQ. The nondimensionalized delay a and the nondimensionalized
time interval between consecutive quenches, �T/ε, are fixed at
(a, �T/ε) = (1.07, 15).
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common basis. Therefore, it will be natural to keep these
notions in mind when extending the PQ martingale to the
transition network. Below is a proposition along this line.
We introduce the “microscopic time” k(= 1, . . . , E ) at which
the kth bidirectional edge is removed (“quenched”) from the
TN. We allow for enough (physical) time between consecutive
quenches so that the probability flow becomes stationary. This
protocol is fixed. We denote by {ω} the whole histories of tran-
sitions on the TN, each of which obeys the kinetic constraints
imposed by the PQ. We then introduce K1, K2, . . . such that
k = Kn is the nth “microscopic time stamp” at which a cluster
of TN is subdivided into two separate clusters. There are
(n + 1) isolated clusters after the time k = Kn. The index n,

therefore, plays a role of “macroscopic time” for the progress
of quenching. Even without detailed balance, the “neutrality”
of the PQ is assured since, on the nonergodic transition the
probability-flow through the so-called bridge bond to be re-
moved should have already been zero in the steady state. We
also notice max [ n ] = V − 1 since the number of clusters will
not exceed the number of states, V. Besides, the last division
must eliminate the last bridge bond. Therefore,

KV −1 = E . (I1)

For a particular history ω, the nth subdivision may or may
not happen in the cluster where ω finds itself at that time Kn.

When it does, this history ω should continue in one of the two
newly subdivided clusters, to which we assign Xn(ω) = ±1,

while when it does not, we assign Xn(ω) = 0. In this manner,
we can associate a sequence {X1, . . . , XV −1} (Xn ∈ {−1, 0, 1})
for each history ω.8 For n = 1 we note that X1 �= 0 because
any history ω must experience the division of the whole TN
at k = K1. In fact {X1, . . . , XV −1} can completely specify the
itinerary of ω on the cluster level, i.e., {X1, . . . , Xn} (1 � n �
V − 1) constitutes a growing filtration. In Fig. 9, we show a
simple example of PQ on Markovian TN.
These having been prepared, the conditional expectation,

Yn ≡ E[z|X1, . . . , Xn] (I2)

is martingale with respect to the process {X1, . . . , Xn}, where
z is a random variable as function of ω. As a trivial example,
z can be the binary indicator that tells whether the final state
of ω at k = E belongs to a prefixed subset of states, A :

z = 1ωk=E∈A. (I3)

Then Yn is the conditional probability,

Yn = P(ωk=E ∈ A|X1, . . . , Xn). (I4)

If we regard Yn as function of the subset A and fur-
ther chose as A the individual state {a} on the TN, then
pn(a) := Yn gives the probability distribution of final des-
tinations given the early partial itinerary, (X1, . . . , Xn). The

8By (X1, . . . , Xn) we know in which ergodic island the actual
system belongs to after nth ergodicity breaking.

FIG. 9. A simple example of PQ on the Markovian TN with
noncanonical steady state. Here #(edge) = E = 5 and #(vertex) =
V = 4. The initial TN is shown in leftmost within the top box. The
bidirectional transition rates on each edge have been chosen uni-
formly randomly from the interval [0,1]. The PQ of the TN is shown
in this box from left to right, where k counts the “time” at which
the kth bidirectional edge is removed, while k = Kn indicates the
occurrence of the nth ergodicity breaking of TN. After each quench,
we give enough (real) time so that the distribution is stationary within
each ergodic island. In the main figure, we show the branching of
the path ensemble (i.e., growing filtration) by thick arrows in which
the partition probabilities are also noted (cf. this is a stochastic
process while the sequence shown in the top box is deterministic).
The filtrations are indicated by the process {X1, . . . , Xn} (n � 1),
where we used the notation Xn = ± instead of (±1) for the sake
of visibility. Those thick arrows in orange color mean the change
of probability flow on the TN. Those pathways with zero transition
rates have been omitted. The red open circle indicates the absence of
a visit. The martingale process Yn with respect to {X1, . . . , Xn} can
be constructed in the form of Yn = E[z|{X1, . . . , Xn}] with z being a
stochastic process adapted to {X1, . . . , Xn}.

martingality,

E[pr (a)|X1, . . . , Xn] = pn(a), (r � n).

is then nothing but the tower-rule structure of the conditional
probability.

In the Fig. 9 where (E,V ) = (5, 4), we took z = 1ω5=1,

where Yn means the conditional probability for a process to
end at the state 1 subjected under the conditions {X1, . . . , Xn}
that specify those nonergodicity transitions undergone up to
the nth one.9 We can verify by hand, for example, E[Y3|X1] =
Y1(X1) with X1 = (−1). (The case for X1 = +1 is trivial.) We
evaluate E[E[1ω5=1|X1 = −1, X2, X3] |X1 = −1] by taking
the expectations for (X2, X3) = (−1, 1, 0), (−1,−1, 1) and
(−1,−1,−1). We end up with comparing E[Y3|X1 = −1] =
0.712 × 0.814(� 0.58) with Y1(X1 = −1) = 0.452/0.775(�
0.58).)

9For a general z the process Yn is non-Markovian because, to specify
an ergodic island from the data {X1, . . . , Xn}, we have to find the m
such that |Xm| �= 0 and Xm+1 = · · · = Xn = 0.
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