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We further develop the strong-coupling theory of thermodynamics and stochastic thermodynamics for con-
tinuous systems, constructed in the previous work [Phys. Rev. Res. 4, 013015 (2022)]. A small system strongly
interacting with a its environment, the dynamics of the system is assumed to be much slower than that of the bath.
The system Hamiltonian is defined to be the Hamiltonian of mean force, whereas the system entropy is defined as
the Gibbs-Shannon entropy. Equilibrium ensemble theories and thermodynamic theories are established for the
system. Variations of three types of parameters are considered: (i) the system parameter λ which couples to the
system and to the interaction, (ii) the bath parameter λ′ which couples to the bath only, and (iii) the temperature
T = 1/β. The work done to the system consists of three parts, proportional to dλ, dλ′, and dβ respectively. The
part proportional to dβ can be understood as the work done by the bath. As long as λ′ and β are not fixed, the work
is not the change of total energy of the joint system. The differences between our strong-coupling equilibrium
thermodynamics and the classical thermodynamics are discussed. The thermodynamic theory is promoted to
the nonequilibrium level. Both the first and second laws of thermodynamics, as well as fluctuation theorems,
are established for nonequilibrium processes. For processes with varying temperatures, fluctuation theorems
cannot be expressed in terms of integrated work alone. Regardless of various subtleties, however, the stochastic
thermodynamic theory is formulated in terms of system variables only, and dS − βd̄Q is the change of total
entropy. Thermodynamic quantities of the system are related to those of the joint system, and the equivalence
of theories at two levels of coarse-graining is explicitly demonstrated. Finally we show that there are infinite
numbers of equivalent strong-coupling theories, each determined by its definition of system Hamiltonian. Our
theory is distinguished by its maximal similarity with the weak-coupling theory.
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I. INTRODUCTION

The traditional formulations of classical thermodynamics
and stochastic thermodynamics are applicable only to systems
weakly interacting with their environments. In recent years,
there have been significant interests in generalizing the the-
ories to systems strongly coupled to environments [1–16].
Broadly speaking, there are two related aspects of strong-
coupling physics: the kinetic aspect and the thermodynamic
aspect. The kinetic aspect addresses the effective time evo-
lution of a system strongly interacting to its environment.
Application of projection operator methods [17–22] gener-
ally yields non-Markovian nonlinear Langevin equations with
colored noise and memory effects. It is only in the limit
of timescale separation (TSS) that these equations become
Markovian. By contrast, the thermodynamic aspect of strong-
coupling physics addresses how thermodynamic functions of
the system should be defined, such that thermodynamic laws
and fluctuation theorems can be established without referring
to the environment.

Several theoretical formalisms have been proposed
[3,6,7,15] to study the thermodynamic aspect of the
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strong-coupling problem. In all these theories, thermody-
namic quantities are defined in terms of the Hamiltonian of
mean force (HMF), which fully determines the equilibrium
probability distribution of the system variables. The rela-
tions between these formalisms have also been systematically
discussed [11,13,14]. Yet the opinions have not yet fully con-
verged. In particular, it is not clear whether a consistent theory
can be constructed without referring to the environmental
variables when the interaction and/or the bath properties are
time-dependent. Another related issue is how to uniquely fix
the Hamiltonian of mean force using measurable quantities of
the system. Finally, there are also worries about the lacking
of a simple guiding principle that picks out a particular theory
from an infinite number of possible theories that are consistent
with thermodynamic laws. A critical review of all these issues
can be found in Ref. [11].

Among all proposed strong-coupling theories of stochastic
thermodynamics, probably the most influential one was de-
veloped by Seifert [3] and critically reviewed by Hanggi et al.
[4,11,14]. This theory presumes that the interaction between
the system and the bath, as well as the bath Hamiltonian,
is time-independent. Work is defined as the energy change
of the joint system, which can be expressed as an integral
along the system’s trajectory, without explicitly referring to
the bath variables. The fluctuating internal energy is defined as
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∂β (βHX), where HX is the HMF. This theory is substantially
more complex than the weak-coupling theory, because many
thermodynamic quantities are modified by interactions. Fur-
thermore, if the interaction is time-dependent, such as in some
heat engine problems, the work thus defined can no longer be
expressed in terms of system trajectory alone [9], and hence
the theory becomes inapplicable. Finally, there has been no
discussion on the cases where the temperature or other bulk
properties of the bath are time-dependent.

In Ref. [15], an alternative theory of strong-coupling ther-
modynamics was developed under the assumption that the
system dynamics is much slower than the bath dynamics. The
fluctuating internal energy is identified with the HMF HX,
while the work is defined as d̄W ≡ (∂λHX)dλ. Except for
the subtlety that HX generally depends on the temperature,
this theory is formally identical to the weak-coupling theory
and hence is much simpler than the previous theories. More
importantly, this theory is applicable even if the interactions
are time-dependent. It turns out that the work defined in this
theory is the change of total energy averaged over fluctuations
of bath variables. Such an average is physically justified if the
dynamics of the bath is much faster than the dynamics of the
system and the variation of the control parameter. For systems
with fixed interaction, the equivalence between this theory and
other strong-coupling theories was also established.

The purposes of the present work are to extend the theory
in Ref. [15] to more general situations and to clarify several
conceptual issues raised in Refs. [4,11,14]. We discuss three
types of control parameters, which are the system parameter
λ that couples to the system and to the interaction, the bath
parameter λ′ that couples only to the bath, and the temperature
T = 1/β. We show that the work done to the system consists
of three parts, proportional to dλ, dλ′, and dβ, respectively.
The latter two parts have not been studied in the previous
works and arise only in strongly coupled systems. We show
that the physical meaning of the part proportional to dβ is the
work done by the bath to the system. Furthermore, as long as
λ′ or β varies with time, the work done to the system cannot
be interpreted as the change of the joint system, at variance
with most of the previous theories. We also prove the second
law of thermodynamics and fluctuation theorems for general
nonequilibrium processes where λ, λ′, β all vary with time.
If the temperature is time-dependent, the fluctuation theorems
can no longer be expressed in terms of work alone. Regardless
of all these subtleties, however, a consistent theory of thermo-
dynamics and stochastic thermodynamics shall be formulated
without explicitly referring to the bath variables. Finally,
we show that there is an infinite number of strong-coupling
theories that are all equivalent to our theory. Each of these
theories is completely determined by the definition of the
system Hamiltonian. Our theory is distinguished by its max-
imal similarity with the weak-coupling theory. Overall, the
present work supplies a complete theory for strong-coupling
thermodynamics and stochastic thermodynamics, and also
substantially extends the application domain of stochastic
thermodynamics.

To make the work as pedagogical and self-contained as
possible, we use Secs. II A and III A to review some relevant
parts of Ref. [15]. These sections are, however, not simple
repetitions of Ref. [15], since there are important notational

differences between the present work and Ref. [15]. Also the
equations in these sections are heavily used in the latter parts
of the work. Hence we do not recommend the readers to skip
these sections.

The remainder of this work is organized as follows: In
Sec. II we discuss the decomposition of Hamiltonian and
entropy, with special attention paid to the nonuniqueness
of HMF. In Sec. III we discuss strong-coupling equilib-
rium thermodynamics. In Sec. IV we discuss strong-coupling
stochastic thermodynamics. In Sec. V we construct a con-
tinuum of strong-coupling theory, and demonstrate their
equivalence. We also discuss the strong-coupling issue of
discrete Markov systems described by master equations. In
Sec. VI we use two simple examples to illustrate our theory.
Finally, in Sec. VII we draw the conclusion and project future
directions.

II. DECOMPOSITION OF ENERGY AND ENTROPY

As in Ref. [15], we consider a set of continuous variables
X, referred to as the system, strongly interacting with a set of
continuous variables Y, referred to as the bath. We assume
TSS, which means that the dynamics of Y is much faster than
that of X. Furthermore, there are two control parameters in
the Hamiltonian (2.1). λ, the system parameter, controls the
system and its interaction with the bath, whereas λ′, the bath
parameter, controls the bulk property of the bath.

A. Decomposition of Hamiltonian and energy

We first briefly review the decomposition of Hamiltonian
discussed in Ref. [15]. The total Hamiltonian of the joint
system XY is written as

HXY(x, y; λ, λ′) = H0
X(x; λ) + H0

Y(y; λ′) + H0
I (x, y; λ),

(2.1)

where x, y are the values of X, Y, respectively, H0
X(x; λ) and

H0
Y(y; λ′) are the bare Hamiltonians of the system and of the

bath, respectively, while H0
I (x, y; λ) is the bare interaction.

Note that three terms on the right-hand side (r.h.s.) of Eq. (2.1)
are not separately measurable. Hence the decomposition (2.1)
is rather arbitrary. Consider the typical situation where a small
system interacts with a large bath via short-ranged potential
energy,1 the dimension of Y is much larger than that of X,
and there is only a small fraction of fast variables significantly
interacting with the slow variables. Hence both HX and H0

I are
small whereas H0

Y(y; λ′) are extensive in the bath size.
Throughout this work, we use shorthand notations

∫
y ≡∫

dNy and
∫

x ≡ ∫
dNx, and shall set the Boltzmann constant

kB = 1. We assume that the joint system XY is further in weak
interaction with a superbath. With λ, λ′ remain fixed, the joint
system converges to a joint equilibrium state, specified by the

1The assumption of a short-range interaction is not as severe as it
may appear. A long-range electrostatic interaction is always screened
so that it becomes effectively short ranged. Gravitational interaction
cannot be screened but does not play any role in the statistical physics
of small systems.

034105-2



THERMODYNAMICS AND STOCHASTIC THERMODYNAMICS … PHYSICAL REVIEW E 109, 034105 (2024)

joint Gibbs-Boltzmann distribution

pEQ
XY(x, y; λ, λ′, β ) ≡ e−βHXY (x,y;λ,λ′ )

ZXY(λ, λ′, β )
, (2.2)

where ZXY(λ, λ′, β ) is the joint partition function

ZXY(λ, λ′, β ) ≡
∫

xy
e−βHXY (x,y;λ,λ′ ). (2.3)

By integrating out y in Eq. (2.2), we obtain the marginal
equilibrium probability density function (pdf) of the system
variables:

pEQ
X (x; λ, λ′, β ) ≡

∫
y

e−βHXY (x,y;λ,λ′ )

ZXY(λ, λ′, β )
. (2.4)

For the sake of simplicity, we often hide the parametric de-
pendencies of pdfs on λ, λ′, β below.

The Hamiltonian of mean force (HMF) [1,3,4,23] is defined
as

HX(x; λ, λ′, β ) ≡ −T ln

∫
y e−βHXY∫
y e−βH0

Y
(2.5)

= H0
X(x) − T ln

∫
y e−β(H0

Y+H0
I )∫

y e−βH0
Y

. (2.6)

We can rewrite Eq. (2.4) in terms of the HMF as [1,3,4,23]

pEQ
X (x) = e−βHX (x;λ,λ′,β )

ZX(λ, λ′, β )
, (2.7)

where ZX(λ, λ′, β ) satisfies

ZX(λ, λ′, β ) ≡
∫

x
e−βHX (x;λ,λ′,β ), (2.8)

which is the canonical partition function of the system.
It is easy to verify that

ZX(λ, λ′, β ) = ZXY(λ, λ′, β )

Z0
Y(λ′, β )

, (2.9)

where Z0
Y(λ′, β ) is the partition function of the bare bath:

Z0
Y(λ′, β ) ≡

∫
y

e−βH0
Y (y;λ′ ). (2.10)

If certain component of Y is not coupled to X, it does not
appear in H0

I . It is then easy to see from Eq. (2.6) that it does
not appear in the HMF either. Hence the HMF remains finite
even if the size of the bath becomes infinite. If the system
consists of two subsystems X1 and X2 which are widely
separated, those components of Y which couple to X1 do not
couple to X2, and hence the HMF can be broken into two
noninteracting components:

HX1X2 (x1, x2) = HX1 (x1) + HX2 (x2). (2.11)

For this reason, HX1X2 − HX1 − HX2 may be understood as
the effective interaction between two subsystems X1, X2, as
mediated by the bath. It is not difficult to construct explicit
proof for these results. We think, however, that the above
heuristic argument is more helpful.

The total Hamiltonian (2.1) can be decomposed into

HXY(x, y; λ, λ′) = HX(x; λ, λ′, β ) + HY(x, y; λ, λ′, β ), (2.12)

where HY(x, y; λ, λ′, β ) is defined as

HY(x, y; λ, λ′, β ) ≡ H0
Y(y; λ′) + H0

I (x, y; λ)

+ T ln

∫
y e−β(H0

Y+H0
I )∫

y e−βH0
Y

. (2.13)

We call HX and HY respectively the system Hamiltonian and
the bath Hamiltonian, and their values the system energy and
the bath energy. Such a decomposition of total Hamiltonian
and energy leads to huge simplification of the strong-coupling
theories of thermodynamics and stochastic thermodynamics.
Note that both HX and HY depend on all three parameters λ,
λ′, β.

Let us define the partition function of the bath as

ZY(λ′, β ) ≡
∫

y
e−βHY (x,y;λ,λ′,β ). (2.14)

Using Eqs. (2.13) and (2.10), we easily see that

ZY(λ′, β ) =
∫

y
e−βH0

Y = Z0
Y(λ′, β ). (2.15)

Hence, even though HY(x, y; λ, λ′, β ) depends on x and on
λ, the partition function ZY(λ′, β ) is independent of x and λ

anyway. The combination of Eqs. (2.15) and (2.9) leads to a
decomposition of the joint partition function:

ZXY(λ, λ′, β ) = ZX(λ, λ′, β )ZY(λ′, β ). (2.16)

Taking the derivative of Eq. (2.14) with respect to x and λ,
we obtain ∫

y
e−βHY

∂HY

∂x
=

∫
y

e−βHY
∂HY

∂λ
= 0. (2.17)

These results will play a significant role in our theory.

B. Nonuniqueness of the Hamiltonian of mean force

While the HMF uniquely determines the equilibrium pdf
of X via Eqs. (2.7) and (2.8), the converse is not true. The
fact that the HMF cannot be determined uniquely by observ-
ing the equilibrium distribution of the system variables has
been an important part of disputes in several recent studies
[4,11,13,14]. To see one origin of nonuniqueness of HX, we
may change H0

Y and H0
I on the r.h.s. of Eq. (2.1) simul-

taneously such that their sum remains fixed. According to
Eq. (2.5), such a change leads to a change in HMF, but not
in the total Hamiltonian.

But even the total Hamiltonian is not fully determined by
the joint equilibrium distribution (2.2). We may add to it an
arbitrary constant C(λ, λ′),

HXY → HXY + C(λ, λ′), (2.18)

which does not change the dynamic trajectories or the prob-
ability distributions of the joint system. Nonetheless, such
a transformation (2.18) does change various thermodynamic
potentials, such as internal energy and free energy. In other
words, thermodynamics is not completely determined by dy-
namics alone.

As one possible way to uniquely fix the total Hamilto-
nian, one may impose the condition that HXY vanishes in a
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particular reference state (x0, y0):

HXY(x0, y0; λ, λ′) = 0. (2.19)

An alternative method is to fix the joint partition function to
be a constant at a particular set of parameters λ0, λ′

0, β0 as
practiced in Ref. [13]:

Z0 = ZXY(λ0, λ
′
0, β0) =

∫
xy

e−βHXY (x,y;λ0,λ
′
0,β0 ). (2.20)

Different conventions may turn out to be more convenient
in different situations. In the following, we always assume
that one choice is made, so that the total Hamiltonian HXY
is uniquely determined by the equilibrium pdf of the joint
system.

Let φY(y; λ′) be an arbitrary function of y and λ′. Consider
the following transformation:

H0
X → H0

X, (2.21a)

H0
Y → H0

Y + φY(y; λ′), (2.21b)

H0
I → H0

I − φY(y; λ′), (2.21c)

which preserves the total Hamiltonian HXY in Eq. (2.1). The
equilibrium pdf (2.7) of system variables of course also re-
mains invariant. According to Eqs. (2.5) and (2.13), this leads
to the following transformations of HX and HY:

HX → HX − ψ (λ′, β ), (2.22a)

HY → HY + ψ (λ′, β ), (2.22b)

ψ (λ′, β ) ≡ T ln

∫
y e−βH0

Y∫
y e−β(H0

Y+φ0
Y)

. (2.22c)

Note that ψ (λ′, β ) depends λ′ and β but not on λ, nor on the
dynamic variables x, y. This shows explicitly how we may
change the HMF without changing the equilibrium distribu-
tion pEQ

X .
We may also consider a different transformation:

H0
X → H0

X + φX(x; λ, λ′), (2.23a)

H0
Y → H0

Y, (2.23b)

H0
I → H0

I − φX(x; λ, λ′), (2.23c)

which also leaves the total Hamiltonian HXY intact. But it is
easy to verify that this does not lead to any change of HX and
HY, as defined in Eqs. (2.5) and (2.13). Finally, one may also
consider the following transformation:

H0
X → H0

X + C(λ′), (2.24a)

H0
Y → H0

Y − C(λ′), (2.24b)

H0
I → H0

I , (2.24c)

where C(λ′) is independent of x, y. But this may be understood
as the combination of two transformations discussed above,
with φX = −φY = C(λ′).

To uniquely fix the HMF HX, we may impose the following
condition, which is similar to Eq. (2.19):

HX(x0; λ, λ′, β ) = 0. (2.25)

Combining this with Eq. (2.19), we also obtain the following
condition for the bath Hamiltonian:

HY(x0, y0; λ, λ′, β ) = 0. (2.26)

The fact that the HMF can be fixed only by introducing
an arbitrarily chosen condition should not bother us. In gen-
eral, energy-like quantities are obtained via the integration of
dynamic equations and are determined only up to an additive
constant.

C. Decomposition of probability distribution

As shown in Ref. [15], using the decompositions (2.12) of
Hamiltonian and (2.16) of partition function, we can rewrite
the joint equilibrium pdf Eq. (2.2) as

pEQ
XY(x, y) = e−βHX (x;λ,λ′,β )

ZX(λ, λ′, β )

e−βHY (x,y;λ,λ′,β )

ZY(λ′, β )
. (2.27)

Since the first term on the r.h.s. is the marginal pdf of x,
cf. Eq. (2.7), the second term on the r.h.s. is precisely the
conditional pdf of y given X = x:

pEQ
Y|X(y|x) = e−βHY (x,y;λ,λ′,β )

ZY(λ′, β )
, (2.28)

such that Eq. (2.27) becomes the familiar decomposition of
the joint pdf into a marginal pdf and a conditional pdf:

pEQ
XY(x, y) = pEQ

X (x)pEQ
Y|X(y|x). (2.29)

Here the superscript EQ in pEQ
Y|X(y|x) means equilibrium of the

fast variables conditioned on the values of the slow variables.
The above decomposition can be generalized to the

nonequilibrium case. The joint nonequilibrium pdf pXY(x, y)
can also be decomposed as

pXY(x, y) = pY|X(y|x)pX(x), (2.30)

pX(x) =
∫

y
pXY(x, y), (2.31)

pY|X(y|x) = pXY(x, y)

pX(x)
, (2.32)

where pX(x) and pY|X(y|x) are respectively the marginal pdf
of x and the conditional pdf of y given X = x.

Since we assume that the dynamics of Y is much faster than
that of X, it is legitimate to consider intermediate timescales
τY � t � τX, so that Y already equilibrate conditioned on X
while X remains out of equilibrium. The joint pdf Eq. (2.30)
then reduces to

pXY(x, y) = pX(x)pEQ
Y|X(y|x), (2.33)

with pEQ
Y|X(y|x) given by Eq. (2.28). States in the form of

Eq. (2.33) are called the stationary preparation class by
Hanggi [4].

D. Decomposition of entropy

For a nonequilibrium pdf of the joint system pXY(x, y), the
total entropy is defined as the usual Gibbs-Shannon entropy:

SXY[pXY] = −
∫

x,y
pXY ln pXY. (2.34)
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Throughout this work, we use AX[pX], AXY[pXY], etc. to
denote a nonequilibrium thermodynamic quantities as func-
tionals of the pdfs pX, pXY, whereas the equilibrium quantities
will be simply denoted as AX, AXY, etc. It is known that with a
fixed energy, this entropy is maximized by the microcanonical
distribution, i.e., a constant pdf on the energy shell, which
corresponds to the thermal equilibrium state. Furthermore, the
equivalence between Gibbs-Shannon entropy and thermody-
namic entropy at thermal equilibrium is well understood. The
meaning of thermodynamic entropy in nonequilibrium situa-
tions is not clear in the setting of classical thermodynamics.
Yet in stochastic thermodynamics, Gibbs-Shannon entropy
(2.34) acquires clear physical meaning, because it can be used
to construct nonequilibrium free energy, which can be proved
to decreases monotonically in nonequilibrium processes.

We carry out the following decomposition of the nonequi-
librium entropy (2.34):

SXY[pXY] = SX + SY|X, (2.35a)

SX[pX] = −
∫

x
pX(x) ln pX(x), (2.35b)

SY|X[pXY] = −
∫

xy
pXY(x, y) ln pY|X(y|x), (2.35c)

where SX is the entropy of X and SY|X is the conditional
entropy of Y given X. Note that while SX is a functional
of the marginal pdf pX(x), SY|X is a functional of the joint
pdf pXY(x). This decomposition is well known in informa-
tion theory [24]. They are nonequilibrium generalization of
decomposition of entropy discussed in Ref. [15].

There is a related concept of conditional entropy:

SY|X=x[pY|X] = −
∫

y
pY|X(y|x) ln pY|X(y|x), (2.36)

which is called the conditional entropy of Y given X = x.
Note that SY|X[pXY] as defined in Eq. (2.35c) is the average
of SY|X=x[pY|X] over the marginal pdf pX(x):

SY|X[pXY] =
∫

x
pX(x)SY|X=x[pY|X]. (2.37)

Another concept that plays important role in stochastic
thermodynamics is the stochastic entropy [25]

SXY[pXY, x, y] ≡ − ln pXY(x, y), (2.38)

which is understood as a functional of the pdf pXY and also
as a function of the microstates (x, y). It admits a similar
decomposition parallel to Eqs. (2.35):

SXY[pXY, x, y] = SX[pX, x] + SY|X=x[pY|X, x, y],

(2.39a)

SX[pX, x] ≡ − ln pX(x), (2.39b)

SY|X=x[pY|X, x, y] ≡ − ln pY|X(y|x). (2.39c)

Averaging of Eqs. (2.39) over pXY yields Eqs. (2.35).
Mathematically it is also legitimate to discuss conditional

pdf of slow variables given the fast variables. These distribu-
tions, however, cannot be easily measured.

III. STRONGLY COUPLED EQUILIBRIUM
THERMODYNAMICS

We now use the decompositions of energy and entropy,
introduced in the preceding section, to develop a consistent
theory of equilibrium thermodynamics for a system strongly
coupled to bath. We consider the variations of both the system
parameter λ, and the bath parameter λ′, as well as the temper-
ature 1/β. As we will see, the variations of λ′ and β lead to a
new twist in the notion of thermodynamic work.

A. Brief review of equilibrium thermodynamics theory
discussed in Ref. [15]

In this part we first briefly review the equilibrium thermo-
dynamics of Ref. [15] that are relevant to the present work.
Readers who are familiar with Ref. [15] may skip this section
and go directly to Sec. III B.

We assume that the joint system (consisting of the sys-
tem and the bath) is weakly coupled to a superbath. Hence
the formalism of classical equilibrium statistical mechanics
is applicable to the joint system. Using Eq. (2.3), various
thermodynamic quantities for the joint system can be written
as

FXY(λ, λ′, β ) = −T ln ZXY(λ, λ′, β ), (3.1a)

EXY(λ, λ′, β ) =
∫

x,y
pEQ

XYHXY, (3.1b)

SXY(λ, λ′, β ) = −
∫

x,y
pEQ

XY ln pEQ
XY, (3.1c)

which satisfies the following relations:

EXY = ∂βFXY

∂β
, (3.2a)

SXY = β2 ∂FXY

∂β
, (3.2b)

FXY = EXY − T SXY. (3.2c)

The partial derivatives with respect to β are taken with λ,
λ′ fixed.

We assume that, for fixed slow variables, the dynam-
ics of the fast variables is ergodic. In an intermediate
timescale where τY � t � τX, the slow variables barely
change, whereas the fast variables equilibrate conditioned
on the slow variables X = x. The conditional equilibrium
pdf of the fast variables is given by Eq. (2.28), which is
Gibbs-Boltzmann pdf with respect to the bath Hamiltonian
HY(y; x, λ, λ′, β ). In this conditional canonical ensemble of
the fast variables, x serves as a fixed parameter, just like λ, λ′,
and β. Using Eq. (2.14), we define the equilibrium free energy
of the bath:

FY(λ′, β ) = −T ln ZY(λ′, β ), (3.3)

which depends on λ′, β but not on x, λ. According to the
decomposition of energy and entropy discussed in Sec. II,
the internal energy and entropy of bath in the conditional
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equilibrium state are

EY(x) =
∫

y
pEQ

Y|X(y|x)HY(y; x, λ, λ′, β ), (3.4a)

SY|X=x = −
∫

y
pEQ

Y|X(y|x) ln pEQ
Y|X(y|x), (3.4b)

both of which depend on the slow variables x and the system
parameter λ. They can be combined to form the free energy of
the bath: FY(λ′, β ) = EY(x) − T SY|X=x, which is known to be
independent of x and λ. Note that Eq. (3.4b) is the equilibrium
version of the conditional entropy Eq. (2.36).

If we observe the joint system in the very long timescale
t � τX � τY, both the slow variables and the fast variables
equilibrate. The equilibrium distribution of slow variables is
already shown in Eq. (2.7). This allows us to construct a
reduced canonical ensemble theory for the system alone, with
HX serving as the effective Hamiltonian. The equilibrium free
energy of the system is defined as

FX(λ, λ′, β ) = −T ln ZX(λ, λ′, β ), (3.5)

where ZX(λ, λ′, β ) is given in Eq. (2.8). According to the
discussion in Sec. II, the internal energy and entropy of the
equilibrium system are

EX(λ, λ′, β ) =
∫

x
pEQ

X (x)HX(x; λ, λ′, β ), (3.6a)

SX
(
λ, λ′, β

) = −
∫

x
pEQ

X (x) ln pEQ
X (x), (3.6b)

which are related to the equilibrium free energy (3.5) via

FX(λ, λ′, β ) = EX(λ, λ′, β ) − T SX(λ, λ′, β ). (3.6c)

Taking the logarithm of Eq. (2.16), and using Eqs. (3.1a)
and (3.3), as well as Eq. (3.5), we obtain

FXY(λ, λ′, β ) = FX(λ, λ′, β ) + FY(λ′, β ). (3.7)

Hence the free energy of the joint system is the sum of the free
energies of the system and of the bath.

Inserting Eqs. (2.12) and (2.29) in Eqs. (3.1b) and (3.1c),
and using Eqs. (3.6) and (III.4), we find the following decom-
position of internal energy and equilibrium entropy:

EXY = EX +
∫

x
pEQ

X (x)EY(x), (3.8a)

SXY = SX + SY|X, (3.8b)

where SY|X is the average of Eq. (3.4b) over pEQ
X (x):

SY|X =
∫

x
pEQ

X (x)SY|X=x = −
∫

y
pEQ

XY(x, y) ln pEQ
Y|X(y|x),

(3.9)

which is the equilibrium version of Eq. (2.35c).

B. Differential thermodynamic relations

We consider infinitesimal changes of the parameters λ, λ′,
β. The differential of the joint free energy (3.1a) is

dFXY = ∂FXY

∂T
dT + ∂FXY

∂λ
dλ + ∂FXY

∂λ′ dλ′. (3.10)

Using Eqs. (3.1a), (2.3), and (3.1c), we can calculate all three
partial derivatives:

∂FXY

∂T
= −SXY, (3.11)

∂FXY

∂λ
=

∫
x,y

pEQ
XY

∂HXY

∂λ
≡ 〈〈∂λHXY〉〉EQ, (3.12)

∂FXY

∂λ′ =
∫

x,y
pEQ

XY

∂HXY

∂λ′ ≡ 〈〈∂λ′HXY〉〉EQ, (3.13)

where we have introduced the notation 〈〈 · 〉〉EQ to denote the
average over the joint equilibrium pdf pEQ

XY:

〈〈 · 〉〉EQ ≡
∫

x,y
· pEQ

XY(x, y). (3.14)

As is well known in classical statistical mechanics, (∂λFXY)dλ

and (∂λ′FXY)dλ′ may be understood as the differential re-
versible work done by the agents who control the system
parameter and the bath parameter, respectively. (Here the term
reversible pertains because the quasistatic transitions between
equilibrium states are reversible.) Below we refer to these
agents as the λ agent and λ′ agent, respectively. Therefore we
have the following expression for the differential reversible
work on the joint system:

d̄WXY = ∂FXY

∂λ
dλ + ∂FXY

∂λ′ dλ′

= 〈〈dλHXY〉〉EQ + 〈〈dλ′HXY〉〉EQ, (3.15)

where we have introduced the notation

dλHXY ≡ (∂λHXY)dλ, (3.16a)

dλ′HXY ≡ (∂λ′HXY)dλ′. (3.16b)

We can then rewrite Eq. (3.10) as

dFXY = −SXYdT + 〈〈dλHXY〉〉EQ + 〈〈dλ′HXY〉〉EQ. (3.17)

Combining Eqs. (3.17) with (3.2c), we derive the differential
form for the internal energy:

dEXY = T dSXY + 〈〈dλHXY〉〉EQ + 〈〈dλ′HXY〉〉EQ. (3.18)

This is nothing but the first law of thermodynamics, where
the first term on the r.h.s. is the differential heat, whereas the
other two terms are the differential work. Using Eqs. (3.1c)
and (3.15), we can also rewrite heat and work as

d̄QXY = T dSXY =
∫

xy
HXYd pEQ

XY, (3.19a)

d̄WXY =
∫

xy
pEQ

XY(dλHXY + dλ′HXY). (3.19b)

Hence for weakly coupled systems and for quasistatic pro-
cesses, heat is the change of internal energy due to the change
of pdf, whereas work is the change of internal energy due to
the change of Hamiltonian. We will see that such interpre-
tations of heat and work remain applicable also for strongly
coupled small systems, both for quasistatic processes and for
nonequilibrium processes.
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Let us now take the differential form of the free energy of
the system, defined by Eq. (3.5). We obtain

dFX = ∂FX

∂T
dT + ∂FX

∂λ
dλ + ∂FX

∂λ′ dλ′, (3.20)

which describes quasistatic transition between equilibrium
states of the system. Let us first calculate the first partial
derivative ∂FX/∂T . Using Eqs. (3.5), (2.8), and (3.6b), we find

∂FX

∂T
dT = −SXdT +

∫
x

pEQ
X (∂βHX)dβ

= −SXdT + 〈∂βHX〉EQdβ, (3.21)

where we have introduced the notation 〈 · 〉 to denote the
average over the pdf pEQ

X of slow variables:

〈 · 〉EQ ≡
∫

x
· pEQ

X (x). (3.22)

In strong contrast with Eq. (3.11), here −∂T FX is not the
system entropy. The extra term in the r.h.s. of Eq. (3.21)
arises due to the temperature dependence of HX, and hence
is a unique signature of strongly coupled systems. Its physical
meaning will be discussed shortly after. For weakly coupled
systems, HX is independent of β and this extra term vanishes
identically. Alternatively, if the temperature is held fixed as
assumed in all previous works of strong-coupling theories
[1–15], the extra term on the r.h.s. of Eq. (3.21) also vanishes.

We can also calculate the partial derivatives of FX with
respect to λ and λ′ and obtain

∂FX

∂λ
= 〈∂λHX〉EQ, (3.23a)

∂FX

∂λ′ = 〈∂λ′HX〉EQ. (3.23b)

Substituting Eqs. (3.21), (3.23a), and (3.23b) back into
Eq. (3.20) we find

dFX = −SXdT + 〈dλHX〉EQ + 〈dλ′HX〉EQ + 〈dβHX〉EQ,

(3.24)

where dβHX ≡∂βHXdβ is the differential of HX due to varia-
tion of temperature. Combining this with Eq. (3.6c) we derive
the differential of the internal energy of the system:

dEX = T dSX + 〈dλHX〉EQ + 〈dλ′HX〉EQ + 〈dβHX〉EQ.

(3.25)

This must be identified with the first law of thermodynamics:

dEX = d̄QX + d̄WX. (3.26)

For quasistatic transitions between equilibrium states, we
must have T dSX = d̄QX. The remaining three terms on the
r.h.s. of Eq. (3.25) are then the differential reversible work
acting on the system:

dWX = 〈dλHX〉EQ + 〈dλ′HX〉EQ + 〈dβHX〉EQ. (3.27)

It is clear that 〈dλHX〉 and 〈dλ′HX〉 are respectively the work
done by the λ agent and the λ′ agent. Even though λ′ is
not directly coupled to the system variables, it does transmit
energy to the system. This is obviously achieved through the
interaction between the system and the bath. The last term on
the r.h.s. of Eq. (3.27), 〈dβHX〉, then must be understood as

the work done by the bath on the system, due to a change of
temperature.

Using Eqs. (3.6b) and (3.27), we can rewrite heat and the
reversible work into

d̄QX = T dSX =
∫

x
HXd pEQ

X , (3.28a)

d̄WX =
∫

x
pEQ

X (dλHX + dλ′HX + dβHX), (3.28b)

which again shows that heat is the change of internal energy
due to the change of pdf, whereas work is the change of
internal energy due to the change of Hamiltonian.

We can obtain a similar differential relation for the con-
ditional free energy of the environment, which is defined
in Eq. (3.3). Note also that there is no contribution from
the variation of λ and x because, as we have shown earlier,
FY(λ′, β ) does not depend on these parameters. We introduce
the notation

〈 · 〉EQ
Y ≡

∫
y

· pEQ
Y|X(y|x), (3.29)

to denote the average over the conditional equilibrium pdf
(2.28) of the fast variables. Comparing this with Eqs. (3.14)
and (3.22), we have

〈〈 · 〉〉EQ = 〈〈 · 〉EQ
Y 〉EQ. (3.30)

Using Eq. (2.14) we find

dFY = −SY|X=xdT + 〈dλ′HY〉EQ
Y + 〈

dβHY
〉EQ
Y

= −SY|X=xdT + 〈dλ′HY〉EQ
Y − dβHX. (3.31)

In the second equality of Eq. (3.31) we have used ∂βHX =
−∂βHY which follows from the fact that the total Hamiltonian
Eq. (2.12) is independent of β. Note that we need not average
dβHX over y because HX is independent of y.

We can further average Eq. (3.31) over the equilibrium pdf
pEQ

X (x) of the slow variables and obtain

dFY = −SY|XdT + 〈〈dλ′HY〉〉EQ − 〈dβHX〉EQ, (3.32)

where we used Eq. (3.9). Since 〈〈dλ′HY〉〉 is the work done
on the bath by the λ′ agent, −〈dβHX〉 must be understood as
the work done by the system on the bath. This is of course
consistent with our earlier claim that 〈dβHX〉 is the work done
by the bath on the system. Put another way, 〈dβHX〉 is a
nondissipative exchange of energy between the system and
the bath as the temperature is varied.

Summing up Eqs. (3.32) and (3.24), and using Eqs. (3.7),
(3.8b), and (2.12), we obtain

dFXY = −SXYdT + 〈dλHX〉EQ + 〈〈dλ′HXY〉〉EQ. (3.33)

Recalling Eqs. (2.12) and (2.17), we have

〈〈dλHXY〉〉EQ = 〈〈dλHX + dλHY〉〉EQ = 〈dλHX〉EQ. (3.34)

Hence, Eq. (3.33) is equivalent to Eq. (3.17), as expected.
Recall that 〈〈dλHXY〉〉EQ is the work done by the λ agent

on the joint system, whereas 〈〈dλHX〉〉EQ and 〈〈dλHY〉〉EQ may
be understood as the work done by the λ agent on the system
and on the bath. Equation (3.34) then tells us that the λ agent
does no work to the bath on average, regardless of the fact
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that the bath Hamiltonian HY depends on λ. This is of course
well expected since as we already know the bath free energy
FY is independent of λ. In fact, we will see later in this work
that the λ agent does no work to the bath even if the system
is out of equilibrium. In contrast, generically both 〈dλ′HX〉EQ

and 〈〈dλ′HY〉〉EQ are nonzero, which means that the λ′ agent
does work both to the system and to the bath. Finally we note
that the work 〈〈dλ′HY〉〉EQ done by the λ′ agent to the bath,
which is extensive in the size of the bath, is invisible in the
thermodynamic theory of the system.

C. Connections and differences with classical equilibrium
thermodynamics

Here we discuss the differences between our strong-
coupling theory of equilibrium thermodynamics and the
classical theories of equilibrium statistical mechanics as well
as equilibrium thermodynamics.

We summarize Eqs. (2.7), (2.8), (3.5), and (3.6):

pEQ
X (x) = e−βHX (x;λ,λ′,β )

ZX(λ, λ′, β )
, (3.35a)

ZX(λ, λ′, β ) =
∫

x
e−βHX (x;λ,λ′,β ), (3.35b)

FX(λ, λ′, β ) = −T ln ZX(λ, λ′, β ), (3.35c)

EX(λ, λ′, β ) =
∫

x
pEQ

X (x)HX(x; λ, λ′, β ), (3.35d)

SX(λ, λ′, β ) = −
∫

x
pEQ

X (x) ln pEQ
X (x). (3.35e)

These formulas, which can be found in every textbook
on statistical mechanics, constitute the core of the classical
canonical ensemble theory. Using these results, other ther-
modynamic quantities can be computed straightforwardly.
Hence, at the fundamental level, the Gibbsian formalism of
equilibrium statistical mechanics, which applies to large sys-
tems, also applies to small systems strongly coupled to their
environments.

However, at the level of thermodynamics, there are im-
portant differences between a strongly coupled small system
and a large system. These differences are mainly due to the
temperature dependence of the HMF. First, we have already
seen in Eq. (3.21) that the partial derivative of the free energy
with respect to the temperature is not the same as the entropy.
Likewise, from Eq. (3.25) we see that the partial derivative of
the internal energy with respect to the entropy is not the same
as the temperature. More explicitly we have

∂FX

∂T
= −SX + 〈∂T HX〉EQ, (3.36)

∂EX

∂S
= T +

(
∂SX

∂T

)−1

〈∂T HX〉EQ. (3.37)

The last equation can also be written as

∂EX

∂T
= T

(
∂SX

∂T

)
+ 〈∂T HX〉EQ = Cλ̂ + 〈∂T HX〉EQ. (3.38)

That is, the specific heat is not the same as the partial deriva-
tive of the internal energy with respect to the temperature.

Furthermore, neither ∂T EX nor Cλ̂ is proportional to the vari-
ance of energy fluctuation:

∂EX

∂T
	= β2

[〈
H2

X

〉EQ − (〈HX〉EQ)2
]
, (3.39)

Cλ̂ 	= β2
[〈

H2
X

〉EQ − (〈HX〉EQ)2
]
. (3.40)

As a consequence, neither ∂T EX nor Cλ̂ is guaranteed to be
positive. [The stability of the strong-coupling thermodynam-
ics is guaranteed by the concave nature of the nonequilibrium
free energy, defined in Eq. (4.9) below.] In other words, the
positivity of specific heat or ∂T EX can no longer be deemed
as a prerequisite of stability. Last but not least, the analogs of
relations (3.2a) and (3.2b) do not hold in our strong-coupling
thermodynamics:

EX 	= ∂βFX

∂β
, SX 	= β2 ∂FX

∂β
. (3.41)

There are many other thermodynamic relations that hold in
classical thermodynamics but not in our strong-coupling ther-
modynamics. Detailed studies of these relations are better
carried out in the setting of concrete experimental systems,
which are reserved for future studies. We note that in all the
above partial derivatives, λ and λ′ are held fixed.

There are other ways to define various thermodynamic
quantities of strong-coupling thermodynamics, so that some
thermodynamic relations can be restored back to the original
forms in classical thermodynamics. The cost to pay is to
replace Eqs. (3.35d) and (3.35e) by different expressions. Fur-
thermore, the theory of stochastic thermodynamics becomes
much more complicated. Since statistical mechanics are more
fundamental than equilibrium thermodynamics, we believe it
is not worth saving some thermodynamic relations at the cost
of making statistical mechanics more complicated.

Other important differences also arise due to the small-
ness of the system being studied. In classical equilibrium
thermodynamics, there are a large number of Legendre
transformations which can be used to transform one thermo-
dynamic potential into another. All these potentials, such as
energy, Helmholtz free energy, Gibbs free energy, enthalpy, or
grand potential, are equivalent in the sense that any of them
can be used to derive thermodynamic functions and equations
of states. It is well understood that the fundamental reason for
this equivalence of thermodynamic potentials is the equiva-
lence of statistical ensembles, which in turn follows from the
largeness of system size and negligibility of fluctuations. In
strong-coupling thermodynamics of small systems, however,
fluctuations are certainly not negligible, and different statis-
tical ensembles are not equivalent. Different thermodynamic
potentials are then not related by Legendre transformation as
in classical thermodynamics. Experimental setup defines the
specific statistical ensemble that should be used in theoretical
study.

IV. STRONGLY COUPLED STOCHASTIC
THERMODYNAMICS

We now promote the strong-coupling thermodynamic the-
ory to the nonequilibrium level. A nonequilibrium state of the
joint system at the ensemble level is characterized by the joint
pdf pXY(x, y). We consider nonequilibrium processes where
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λ, λ′, β are varied according to some externally controlled
protocol, which is assumed to be much slower than the dy-
namics of bath variables. The evolution of the joint system
is described either by microscopic unitary dynamics, or a
Markov dynamics, depending on whether it is coupled to a
superbath. Explicit analysis using projection operator theory
[22] then shows that, in the limit of TSS, and as long as we
only concern timescales much longer than that of the fast
dynamics, the joint pdf can be decomposition as Eq. (2.33),
and the pdf of system variables pX evolves according to a
Markov process, specified either by a nonlinear Ito-Langevin
equation:

dxk + (Lk j∂ jU − ∂ jL
k j )dt = bkαdWα, (4.1)

or by the corresponding Fokker-Planck equation [26]

∂t pX = ∂iL
i j[∂ j + (∂ jU )]pX, (4.2)

where Li j (x; λ̂) is the matrix of kinetic coefficients, and
U (x; λ̂) is the generalized potential, related to the HMF and
the free energy of the system via

U (x; λ̂) = β[HX(x; λ̂) − FX(λ̂)]. (4.3)

Here we use λ̂ to denote the collection of the system parameter
λ, the bath parameter λ′, and the inverse temperature β:

λ̂ ≡ (λ, λ′, β ), (4.4)

and call λ̂ the parameters. For fixed λ̂, the system then con-
verges to an equilibrium state (2.7), which can be rewritten
as

pEQ
X (x) = e−U (x;λ̂). (4.5)

It was further shown in Ref. [22] that the kinetic matrix
Li j (x; λ̂) can be expressed in terms of correlation functions of
fast variables, conditioned on the value of the slow variables.
The time-reversal symmetry of equilibrium states demands
that the Langevin equation (4.1) satisfies the conditions of
detailed balance, which are given in Eqs. (4.22). These con-
ditions are equivalent to the fluctuation-dissipation relation of
the second kind, as called by Kubo [27].

Our purpose is to construct a consistent theory of stochas-
tic thermodynamics for the system, which involves the pdf
pX(x, t ), the HMF HX(x; λ, λ′, β ), as well as the kinetic ma-
trix Li j (x; λ, λ′, β ) but does not involve the bath variables.
The entropy production computed in this theory equals the
increase of the total entropy of the universe, assuming that the
joint system can be described by a weak-coupling theory of
stochastic thermodynamics. We will also see that our strong-
coupling theory exhibits a few novel features, again due to the
temperature dependence of the HMF.

A. Internal energy and entropy

In analogy with the notations defined in Eqs. (3.14) and
(3.22), we define the following notations for averaging over
nonequilibrium distributions:

〈〈 · 〉〉 ≡
∫

x,y
· pX(x)pEQ

Y|X(y|x), (4.6)

〈 · 〉 ≡
∫

x
· pX(x). (4.7)

Recall that in Sec. II we defined the system Hamiltonian as
the HMF, see Eq. (2.5). The value of HX is called the fluctu-
ating internal energy of the system, using the terminology in
Refs. [4,23]. The nonequilibrium internal energy is defined as
the ensemble average of HX:

EX[pX] ≡
∫

x
pX(x)HX(x; λ, λ′, β ) = 〈HX〉. (4.8)

Strictly speaking, the functional EX[pX] depends also on the
parameters λ, λ′, β. But to avoid cluttering, we shall hide these
dependencies. The nonequilibrium entropy is already defined
in Eq. (2.35b). The nonequilibrium free energy of the system
is then defined in the standard way:

FX[pX] ≡ EX[pX] − T SX[pX] = 〈HX + T ln pX〉, (4.9)

which turns out to be the same as the free energy defined in
several previous theories [3,4,6,11]. FX[pX] is minimized by
the equilibrium pdf Eq. (2.7). As we show below, in the limit
of TSS, FX[pX] is also invariant under coarse-graining up to
an additive constant.

These nonequilibrium entropy, energy, and free energy
are in fact formally identical to those in weak-coupling the-
ory, with HX understood as the system Hamiltonian. For an
equilibrium state pX = pEQ

X , these thermodynamic variables
reduce to their equilibrium counterparts, Eqs. (3.6a), (3.6b),
and (3.5), respectively.

B. Nonequilibrium work and heat

Consider an infinitesimal trajectory where the system state
evolves from x to x + dx, while the parameters λ, λ′, β

change, respectively, to dλ, dλ′, dβ. Inspired by the form
of equilibrium work, Eq. (3.27), we define the differential
nonequilibrium work at the trajectory level as

d̄WX ≡ dλHX + dλ′HX + dβHX. (4.10)

The nonequilibrium work at the ensemble level is then the
ensemble average of d̄WX:

d̄WX ≡
∫

x
pX(dλHX + dλ′HX + dβHX)

= 〈dλHX〉 + 〈dλ′HX〉 + 〈dβHX〉. (4.11)

Similar to the reversible work (3.28b), Eq. (4.10) and (4.11)
both contain three parts, which are respectively the works
done by the λ agent, the λ′ agent, and the bath. If the process
is quasistatic, Eqs. (4.10) and (4.11) reduce to the reversible
work (3.27). These definitions of work reduce to those in
Ref. [15] if dβ = dλ′ = 0. Finally, using the shorthand (4.4),
we may also rewrite Eqs. (4.10) and (4.11) as

d̄WX = dλ̂HX, (4.12)

d̄WX = 〈dλ̂HX〉. (4.13)

The differential heat at the trajectory level and at the en-
semble level are then defined as

d̄QX ≡ dxHX, (4.14)

d̄QX ≡ 〈〈d̄QX〉〉, (4.15)
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where 〈〈 · 〉〉 means average over both X and Y. An alternative,
more intuitive, expression for heat at the ensemble level is

d̄QX =
∫

x
HXd pX, (4.16)

where d pX is the change of pdf pX during the infinitesimal
process. Equivalence of Eqs. (4.15) and (4.16) can be ex-
plicitly proved using Langevin dynamics and the associated
Fokker-Planck dynamics [22].

Note that Eqs. (4.11) and (4.16) are formally identical to
Eqs. (3.28b) and (3.28a). Hence, as we claimed earlier, even
for nonequilibrium processes, work and heat are respectively
the change of internal energy of the system due to the changes
of the pdf and of the Hamiltonian of the system.

The first law of thermodynamics at the trajectory level
follows directly from the definitions (4.10) and (4.14):

dHX = d̄WX + d̄QX, (4.17)

where the left-hand side (l.h.s.) is the differential of the fluc-
tuating internal energy.

The first law at the ensemble level can be obtained either
by taking the ensemble average of Eq. (4.17), or taking the
differential of Eq. (4.8). Let us take the latter route. The
differential is due to changes in λ, λ′, β and the evolution of
pX, with x behaving as a dummy variable. Hence we obtain

dEX[pX] =
∫

x
[(dλHX + dλ′HX + dβHX)pX + HXd pX]

=
∫

x
(pXdλ̂HX + HXd pX)

= dWX + dQX, (4.18)

which is the first law at the ensemble level.
Let us take the differential of the nonequilibrium free en-

ergy (4.9) to obtain

dFX = dWX + d̄QX − T dSX − SXdT . (4.19)

This can be rewritten into

dStot = dSX − βd̄QX = β(dWX − dFX − SXdT ). (4.20)

It was proved in Ref. [26] that, with the system dynamics
described by Eqs. (4.1) and (4.2), and with entropy and heat
defined by Eqs. (2.35b) and (4.16), the Clausius inequality
always holds:

dStot = dSX − βd̄QX

=
∫

x
[∂k (ln pX + U )]Bk j p[∂ j (ln pX + U )]

� 0, (4.21)

where Bi j is the symmetric part of Li j and is always positive
definite. This is the second law of thermodynamics for a small
system strongly coupled to a single heat bath.

Note that if the process is quasistatic, pX is given by
Eq. (2.7) and d pX is solely due to changes of λ, λ′, and
β. We can then explicitly calculate Eq. (4.16) and verify
d̄QX = T dSX. The change of the total entropy, as given by
Eq. (4.20), then vanishes identically. Also for quasistatic pro-
cesses, Eq. (4.18) reduces to Eq. (3.25), and Eq. (4.19) reduces
to Eq. (3.24). All these are of course completely expected.

C. Fluctuation theorems

It is assumed that, for fixed parameters λ̂ = (λ, λ′, β ),
the system converges to a thermal equilibrium state which
has time-reversal symmetry. It was shown in Ref. [26] that
this implies the following detailed balance properties for the
Langevin dynamics (4.1):

U (x∗, λ̂∗) = U (x, λ̂), (4.22a)

εiL
i j (x∗, λ̂∗)ε j = L ji(x, λ̂), (4.22b)∫

x
e−U (x,λ̂) = 1, (4.22c)

where U (x, λ̂) is defined in Eq. (4.3), and λ̂∗ = (λ∗, (λ′)∗, β )
is the time-reversal of λ̂. (Note that temperature is even in
time, hence β∗ = β.)

Using Eqs. (4.22), and assuming that both the temperature
and the bath parameter λ′ are fixed, various fluctuation theo-
rems were proved for processes starting from and eventually
relaxing back to equilibrium states [26]. These theorems can
be formulated solely in terms of statistical properties of the
total work defined along dynamic trajectories.

We now adapt the proof of fluctuation theorems in Ref. [26]
to processes where all parameters λ̂ = (λ, λ′, β ) vary with
time. It was shown in Eq. (A27) of Appendix A of Ref. [26]
that the detailed balance properties (4.22) implies the fol-
lowing symmetry for short-time transition probabilities of the
Langevin dynamics (4.1):

ln
Pλ̂(x + dx|x; dt )

Pλ̂∗ (x∗|x∗ + dx∗; dt )
= −dxU (x; λ̂), (4.23)

where the subscripts λ̂ and λ̂∗ specify the dynamic processes.
Hence Pλ̂(x + dx|x; dt ) is the probability density that the
system goes from x to x + dx in the forward process with
the fixed parameters λ̂, whereas Pλ̂∗ (x∗|x∗ + dx∗; dt ) is the
probability density that the system goes from x∗ + dx∗ to x∗
in the backward process with the fixed parameters λ̂∗.

Recalling Eqs. (4.3) and (4.14) we see that the r.h.s. of
Eq. (4.23) is related to the heat via

−dxU (x; λ̂) = −βdxHX(x; λ̂) = −βd̄QX, (4.24)

which may be interpreted as the change of the environmental
entropy during the infinitesimal process.

We now consider a forward process of finite duration 0 �
t � τ , with time-dependent control parameters and temper-
ature λ̂(t ), which shall be called a dynamic protocol. The
system starts at time t = 0 from an equilibrium state with
initial parameters λ̂(0):

pF (x, 0) = e−U (x;λ̂(0)). (4.25)

The backward process is defined by the backward pro-

tocol ˜̂λ(t ) = λ̂∗(τ − t ) = (λ∗(τ − t ), [λ′(τ − t )]∗, β(τ − t )),
and initial parameters λ̂∗(τ ) = (λ∗(τ ), [λ′(τ )]∗, β(τ )). Fur-
thermore, the initial state of the backward process is given by
the equilibrium state associated with λ̂∗(τ ):

pB(x, 0) = e−U (x;λ̂∗(τ )). (4.26)

Consider now a forward trajectory γ = x(t ) in the for-
ward process and the corresponding backward trajectory
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γ̃ = x∗(τ − t ) in the backward process. We may break both
trajectories into a large number of infinitesimal segments and
apply Eq. (4.23) to each pair of segments. Summing all these
relations up we obtain

ln
PF [γ |γ0]

PB[γ̃ |γ̃0]
= −

∫
γ

dxU (x(t ); λ̂(t )), (4.27)

where γ0 = x(0) and γ̃0 = x∗(τ ) denote respectively the ini-
tial states of the forward and backward trajectories, while
PF [γ |γ0] and PB[γ̃ |γ̃0] are respectively the conditional proba-
bility density functions of the forward (backward) trajectories
in the forward (backward) processes, given their respec-
tive initial states. Further using Eqs. (4.25) and (4.26) we
may form the ratio of the unconditional probabilities of
trajectories:

PF [γ ]

PB[γ̃ ]
= PF [γ |γ0]

PB[γ̃ |γ̃0]

e−U (x(0);λ̂(0))

e−U (x∗(τ );λ̂∗(τ ))
. (4.28)

The first ratio on the r.h.s. can be replaced using Eq. (4.27),
whereas using the detailed balance (4.22a) the second ratio
can be replaced by

eU (x(τ );λ̂(τ ))−U (x(0);λ̂(0)) = e
∫
γ

dU
, (4.29)

where dU = dxU + dλ̂U is the complete differential of the
generalized potential U (x; λ̂). Consequently, Eq. (4.28) can
be rewritten as

ln
PF [γ ]

PB[γ̃ ]
= −

∫
γ

dxU +
∫

γ

dU . (4.30)

While the first term on the r.h.s. is the change of environmental
entropy along the trajectory [cf. Eq. (4.24)], the second term
is the change of the stochastic entropy along the forward
trajectory of the forward process, with the understanding that
the system is in equilibrium both in the initial time and in the
final time of the process. Hence Eq. (4.30) may be understood
as the entropy production �F [γ ] along the forward trajec-
tory of the forward process. Since the forward and backward
trajectories and processes are related to each other by time
reversal, Eq. (4.30) may also be understood as negative the
entropy production �B[γ̃ ] along the backward trajectory of
the backward process. Hence we arrive at

�F [γ ] = −�B[γ̃ ] =
∫

γ

dλ̂U =
∫

γ

(dλU + dλ′U + dβU ).

(4.31)

Further repeating the proof in Sec. IV E of Ref. [26], we
may prove the following fluctuation theorems for the pdfs of
entropy production in the forward and backward processes:

pF (σ ) = eσ pB(−σ ), (4.32a)

〈e−σ 〉F = 1. (4.32b)

To make contact between the entropy production and the
nonequilibrium work previously defined, we use Eqs. (4.3)
and (4.10) to rewrite Eq. (4.31) into

�F [γ ] =
∫

γ

βd̄WX +
∫

γ

HXdβ

+β(0)FX(λ̂(0)) − β(τ )FX(λ̂(τ )). (4.33)

If the temperature is fixed along the process, then Eq. (4.33)
reduces to

�F [γ ] = βWX[γ ] − βFX, (4.34)

and Eqs. (IV.32) reduce to the familiar Crooks fluctuation
theorem and Jarzynski equality:

pF (WX) = eβ(WX−FX ) pB(−WX), (4.35a)

〈e−βWX〉F = e−βFX , (4.35b)

where 〈 · 〉F means average over trajectories in the forward
process. If, however, the temperature is varied during the
process, the entropy production as given by Eq. (4.33) cannot
be expressed in terms of work alone. The fluctuation theorems
(IV.32) then are genuinely different from the Crooks fluctua-
tion theorem and Jarzynski equality.

D. Coarse-graining and physical meanings of work and heat

For the moment we assume that the joint system XY is
weakly coupled with a superbath whose dynamics are even
faster than that of Y. The statistical physics of the joint system
is then described by the weakly coupled stochastic thermo-
dynamics, with HXY being the Hamiltonian. Below we refer
to this theory as the fine-grained theory, whereas the strong-
coupling stochastic thermodynamics for the slow variables
will be referred to as the coarse-grained theory. With the aid
of TSS, we discuss the connection between these two theories
of stochastic thermodynamics and thereby clarify the physical
meanings of work and heat in the strong-coupling theory.

The thermodynamic quantities of the fine-grained theory
are defined as

EXY[pXY] ≡
∫

XY
pXY(x, y)HXY(λ, λ′), (4.36a)

SXY[pXY] ≡ −
∫

XY
pXY ln pXY, (4.36b)

FXY[pXY] ≡ EXY[pXY] − T SXY[pXY]

=
∫

x
pXY(HXY + T ln pXY). (4.36c)

Using Eqs. (2.12) and (2.33), they may be rewritten as

EXY[pXY] = EX[pX] +
∫

x
pX(x)EY(x), (4.37a)

SXY[pXY] = SX[pX] + SY|X
[
pX pEQ

Y|X
]
, (4.37b)

FXY[pXY] = FX[pX] + FY
(
λ′, β

)
, (4.37c)

where EY(x) is defined in Eq. (3.4a), SY|X is the conditional
entropy of Y given X:

SY|X
[
pX pEQ

Y|X
] = −

∫
xy

pX pEQ
Y|X ln pEQ

Y|X, (4.38)

whereas FY(λ′, β ) is the bath free energy defined in Eq. (3.3).
Equation (4.37c) says that the nonequilibrium free energy

FXY[pXY] of the fine-grained theory differs from that of the
coarse-grained theory, FX[pX], only by an additive constant
FY(λ′, β ) that is independent of pX. In other words, the
nonequilibrium free energy is invariant under coarse-graining
in the limit of TSS, up to an additive constant. This partially
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explains why the nonequilibrium free energy plays such an
important role in stochastic thermodynamics.

The work and heat of the fine-grained theory are defined
using the standard theory of stochastic thermodynamics. At
the trajectory level, we have

d̄WXY ≡ dλHXY + dλ′HXY, (4.39)

d̄QXY ≡ dxyHXY. (4.40)

Note that there is no term dβHXY in the work, because HXY is
independent of β. At the ensemble level, we have

d̄WXY ≡
∫

xy
pXY(dλHXY + dλ′HXY), (4.41)

d̄QXY ≡
∫

xy
HXYd pXY. (4.42)

Evidently, the two terms in the works d̄WXY and d̄WXY are
due to the λ agent and the λ′ agent, respectively. As a well-
known feature of weak-coupling stochastic thermodynamics,
the work in the fine-grained theory is the change of the total
energy of the universe, assuming that there is no parameters
other than λ, λ′ varying over time.

We now establish the connection between the work defined
in the fine-grained theory and that in the coarse-grained the-
ory. First using Eq. (2.12), we have

dλHXY = dλHX + dλHY. (4.43)

The l.h.s. is the work done to the joint system by the λ agent
at the trajectory level, whereas the two terms on the r.h.s. are
respectively the work done to the system and to the bath by
the λ agent. Note that dλHY is generically nonzero. Yet if we
average dλHY over the conditional equilibrium pdf (2.28) of
the fast variables, we obtain identically zero due to Eq. (2.17).
That is, the average work done by the λ agent to the bath
vanishes, even though the work along a particular trajectory
may not vanish.

Now, consider a time interval t satisfying τX � t �
τY. Time-average of physical quantities within this interval
should be equivalent to the ensemble average over the condi-
tional equilibrium pdf (2.28), at least for a typical trajectory.
This means that, for a typical trajectory, dλHY is a rapidly
oscillating function with the typical timescale set by τY, such
that its time-average becomes vanishingly small if t/τY �
1. Hence, in the limit of TSS, and for typical trajectories, the
λ agent does no work on the bath.

The story is different for the work done by the λ′ agent,
which can also be decomposed into two parts:

dλ′HXY = dλ′HX + dλ′HY. (4.44)

Here, neither term on the r.h.s. vanishes, even if averaged over
the fast variables. Hence the λ′ agent generically does work
both to the system and to the bath.

Using Eqs. (4.43) and (4.44), together with the fact
that HXY = HX + HY is independent of β, we may rewrite
Eq. (4.39) as

d̄WXY = dλHX + dλ′HX + dβHX + dλHY + dλ′HY + dβHY

= d̄WX + d̄WY, (4.45)

where d̄WX is the work in the coarse-grained theory as given
by Eq. (4.10), and d̄WY is the work on the bath at the trajec-
tory level:

d̄WY = dλHY + dλ′HY + dβHY. (4.46)

Among all three terms on the r.h.s., the first term dλHY is
a rapidly oscillating function and averages to zero, as we
have already shown above, whereas dλ′HY is generically non-
vanishing, and is extensive in the bath size. The last term
dβHY = −dβHX represents the work done by the system due
to variations of the temperature. We emphasize that d̄WY
is generically nonzero. Hence the work d̄WX in the coarse-
grained theory is not the same as the work d̄WXY in the
fine-grained theory.

In most previous theories on strong-coupling stochastic
thermodynamics, it is always assumed that the bare interaction
Hamiltonian H0

I remains fixed, and the work is always defined
as the change of the total energy. Since H0

Y is independent of
λ, it can be seen easily from Eqs. (2.6) and (2.1) that if H0

I is
independent of λ,

dλHX = dλH0
X = dλHXY. (4.47)

Hence if both λ and β are also fixed, we have

d̄WX = dλHX = dλHXY, (4.48)

which means that the work defined in our theory (the l.h.s.)
agrees with the work defined in the previous theories (the
r.h.s.). However, if the bare interaction Hamiltonian H0

I de-
pends on λ, dλHXY = dλH0

X(x; λ) + dλH0
I (x, y; λ) generically

involves both x and y. Definition of work as dλHXY then fails
to yield a strong-coupling theory involving only system vari-
ables. For this reason, the previous strong-coupling theories
cannot be used to study small systems with variable coupling
to their environments.

We can similarly establish the connection between heat in
the fine-grained theory and that in the coarse-grained theory.
We only do it at the ensemble level. To further simplify the
matter, we also assume that the bath parameter and tempera-
ture remain fixed, whereas the system parameter λ is varied.
First we take the differential of Eq. (2.33) and obtain

d pXY(x, y) = d pX pEQ
Y|X + pXd pEQ

Y|X, (4.49)

where d pEQ
Y|X is due to the change of λ, while d pX(x) arises

due to the time evolution of pX. Let us use this and Eq. (2.12)
to rewrite Eq. (4.42) into

d̄QXY =
∫

xy
(HX + HY)

(
d pX pEQ

Y|X + pXd pEQ
Y|X

)

=
∫

x
HXd pX

∫
y

pEQ
Y|X +

∫
x

HX pX

∫
y

d pEQ
Y|X

+ d
∫

xy
HY pXY −

∫
x

pX

∫
y

(dλHY)pEQ
Y|X. (4.50)

On the r.h.s., the first term is just the heat d̄QX, defined in
Eq. (4.16), since the y integral of pEQ

Y|X yields unity, whereas
the second term vanishes due to the normalization condition
of pEQ

Y|X, the third term is the differential of the internal energy
〈〈HY〉〉 of the bath, and the final term vanishes identically due
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to Eq. (2.17). Summarizing, we have

d̄QXY = d̄QX + d〈〈HY〉〉. (4.51)

Let us now revisit the conditional entropy of the bath,
Eq. (4.38). Using Eq. (2.28), we can rewrite it as

SY|X =
∫

xy
pXY(ln ZY + βHY) = ln ZY + β〈〈HY〉〉. (4.52)

Recalling that ZY is independent of λ, we can take the differ-
ential of the preceding equation and obtain

dSY|X = βd〈〈HY〉〉. (4.53)

Combining this with Eq. (4.51), we obtain

dQXY − dQX = d〈〈HY〉〉 = T dSY|X. (4.54)

The physical meaning of this result is very clear: The heat
absorbed by the joint system d̄QXY consists of two parts. The
first part d̄QX is the heat absorbed by the system, whereas
the second part d〈〈HY〉〉 is the change of the internal energy
of the bath. Because the bath remains in conditional thermal
equilibrium, the second part also equals to the change of the
conditional entropy of the bath, multiplied by the temperature.

If the joint system is thermally closed, i.e., if we take the
bath to be the rest of the universe, d̄QXY = 0, whence

−d̄QX = T dSY|X = d〈〈HY〉〉. (4.55)

Hence −βd̄QX can be understood as the change of the
conditional entropy of the environment, while d̄QX can be
understood as the change of the internal energy of the envi-
ronment.

It is known that the combination dSXY − βdQXY may be
interpreted as the entropy production, i.e., the change in the
total entropy of the universe. We may use Eqs. (2.33) and
(2.28) in Eqs. (4.36b) and (4.42) to obtain

dStot = dSXY − βdQXY = dSX − βd̄QX. (4.56)

Hence dSX − βd̄QX, which we proved in Eq. (4.21) to be
positive definite, is indeed the entropy production.

Alternatively, we may take Y to be the rest of the universe
and use Eq. (4.55). We obtain

dSX − βdQXY = dSX + dSY|X = dSXY = dStot. (4.57)

In all the above discussions, the conditional equilibrium
nature of the bath, and the independence of ZY on λ play
essential roles. Both properties follow from TSS and the ju-
dicious decomposition of Hamiltonian, Eq. (2.12).

V. ALTERNATIVE THEORIES

The entire theory constructed in this work follows from
the particular decomposition of Hamiltonian (2.12). It is,
however, possible to start from a different decomposition of
Hamiltonian and derive a consistent strong-coupling theory
of thermodynamics and stochastic thermodynamics. Such an
alternative theory no longer has many of the nice features
discussed in this work. For example, the system entropy is
no longer the Gibbs-Shannon entropy, and the equilibrium
pdf of the system variables is no longer the Gibbs-Boltzmann
distribution.

We consider an alternative strong-coupling theory where
the system Hamiltonian is chosen to be

H̃ (x) ≡ H (x) + χ (x), (5.1)

where χ (x) is an unspecified function. (From now on, we drop
all subscripts X, since there is no danger of confusion.) The
nonequilibrium thermodynamic quantities in this new theory
are denoted as Ẽ , S̃, F̃ , d̄W̃ , d̄ Q̃, etc., where H , E , S, F ,
d̄W , d̄Q will be used to denote thermodynamic quantities in
our theory. We only consider thermodynamic quantities at the
ensemble level since they also uniquely determine thermody-
namic quantities at the trajectory level.

To construct the alternative strong-coupling theory, which
shall be called the tilde theory, we only need to express Ẽ , S̃,
F̃ , d̄W̃ , d̄ Q̃, etc. in terms of E , S, F , d̄W , d̄Q, and χ (x). We do
so by imposing the following three consistency conditions,2

which guarantee that the tilde theory is equivalent to our the-
ory from the thermodynamic and stochastic-thermodynamic
point of view:

(i) The tilde theory yields the same nonequilibrium free
energy as our theory:

F [p] = E [p] − T S[p] = F̃ [p] = Ẽ [p] − T S̃[p], (5.2)

where F [p] is given by Eq. (4.9). This guarantees that two
theories predict the same equilibrium state.

(ii) The tilde theory satisfies

dE − d̄W − d̄Q = dẼ − d̄W̃ − d̄ Q̃. (5.3)

This guarantees that the first laws of thermodynamics in two
theories are equivalent.

(iii) Two theories yield the same entropy production:

dStot = dS − βd̄Q = dS̃ − βd̄ Q̃. (5.4)

This guarantees that the second laws in the two theories are
equivalent.

The internal energy Ẽ [p] is just the ensemble average of
the system Hamiltonian H̃ (x). Using Eq. (5.1) we have

Ẽ [p] = E [p] +
∫

x
χ (x)p(x). (5.5)

Then condition (i) demands that S̃[p] is given by

S̃[p] = S[p] + β

∫
x
χ (x)p(x). (5.6)

Further assume that the work d̄W̃ is given by

d̄W̃ = d̄W + d̄φ(x), (5.7)

where d̄φ(x) is a (generally inexact) differential form. Then
condition (ii) demands that the tilde heat is given by

d̄ Q̃ = d̄Q + d
∫

x
χ (x)p(x) − d̄φ(x). (5.8)

2It is important to note that our consistency conditions are fun-
damentally different from those imposed by Seifert [3], which are
Eqs. (V.20).
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Finally we impose condition (iii). Using Eqs. (5.6) and (5.8)
in Eq. (5.4), we determine d̄φ(x) in terms of χ (x):

d̄φ(x) = −β−1dβ

∫
x
χ (x)p(x). (5.9)

Substituting this back into Eqs. (5.7) and (5.8), we obtain

d̄W̃ = d̄W − β−1dβ

∫
x
χ (x)p(x), (5.10)

d̄ Q̃ = d̄Q + β−1d

(
β

∫
x
χ (x)p(x)

)
. (5.11)

Equations (5.1)–(5.6) and (5.10), (5.11) determine all thermo-
dynamic quantities in the tilde theory in terms of an arbitrary
function χ (x). In general, these quantities are much more
complicated than those in our theory.

The choice made by Seifert [3], which has been followed
by many others, is

χ (x) = β∂βH (x; λ, λ′, β ), (5.12)

so that the system Hamiltonian, i.e., the fluctuating internal
energy, becomes

H̃ (x; λ, λ′, β ) = ∂β (βH ), (5.13)

which is the same as our definition only if the HMF is in-
dependent of temperature. Various thermodynamic quantities
are

Ẽ [p] =
∫

x
p∂β (βH ), (5.14)

S̃[p] =
∫

x
p(− ln p + β2∂βH ), (5.15)

d̄W̃ =
∫

x
p(dλH + dλ′H ), (5.16)

d̄ Q̃ =
∫

x
H̃d p + 2

∫
x

pdβH

+β

∫
x

p∂β (dλH + dλ′H + dβH ). (5.17)

Comparing Eqs. (5.16) with (4.11), we see that the work in
this tilde theory does not contain dβH . Other thermodynamic
quantities in this theory, especially the heat, are much more
complicated than those in our theory. Note that in Seifert’s
theory and many of the following works, it is always assumed
that H0

I [see Eqs. (4.47) and (4.48), as well as the discussion
around them], and that λ′, β do not vary. Hence the tilde theory
we constructed here is an extension of Seifert’s theory. For
the particular case where β, λ′ are fixed, Eqs. (5.13)–(5.17)
reduce to the third column of Table I in Ref. [15]. It is evident
that among all these theories, our theory with χ = 0, H̃ = H
is the simplest and exhibits the maximal similarity with the
weak-coupling theory of stochastic thermodynamics.

Work and heat at the trajectory level in this alternative
theory can also be easily determined:

d̄W̃ = dλH + dλ′H, (5.18)

d̄Q̃ = dxH̃ + 2(dβH ) + β[∂β (dλH + dλ′H + dβH )], (5.19)

whose ensemble averages yield Eqs. (5.16) and (5.17).

In the equilibrium state, the internal energy in the tilde
theory is

Ẽ =
∫

1

Z
e−βH∂β (βH ) = ∂

∂β
(βF ), (5.20a)

where F = −T ln
∫

e−βH is the equilibrium free energy. It
then follows that the tilde equilibrium entropy becomes

S̃ = β2 ∂

∂β
F. (5.20b)

Equations (5.20) were called “thermodynamic consistency
conditions” by Seifert. Note, however, that they imply neither
the first nor the second law of thermodynamics.

We note that a similar issue also arises in the stochas-
tic thermodynamics of discrete systems described by master
equations. Generally the interaction between a discrete sys-
tem and its environment is strong. It is well known that
the energy function εk appearing in the equilibrium Gibbs-
Boltzmann distribution eβ(F−εk ), which is the analog of HMF
in our problem, is actually a constrained free energy of the
mesoscopic state k. It is generally a function of tempera-
ture and can be decomposed into an energy part and an
entropy part:

εk = ek − T sk, (5.21a)

ek ≡ ∂βεk

∂β
, (5.21b)

sk ≡ β2 ∂εk

∂β
. (5.21c)

The Gibbs-Shannon entropy −pk ln pk is strictly speak-
ing not the real thermodynamic entropy. Nonetheless, in the
standard theory of stochastic thermodynamics, we choose to
define the system energy as εk and the system entropy as
−pk ln pk . (For a lucid discussion on this topic, we refer
the readers to Sec. 3.3 of Ref. [28].) This is consistent with
our definitions of energy and entropy for strongly coupled
systems. As an alternative choice which share the same spirit
as Seifert’s strong-coupling theory, we may define the system
energy as ek and system entropy as

S =
∑

pk (− ln pk + sk ). (5.22)

The resulting theory of stochastic thermodynamics would be
much more complicated and much different from the stan-
dard theory. Hence our strong-coupling theory of stochastic
thermodynamics for continuous systems is more naturally
connected to the standard theory of stochastic thermodynam-
ics for discrete systems.

VI. TWO EXAMPLES

We illustrate our strong-coupling theory using two simple
examples.

A. A small piston

We consider an ideal gas consisting of N noninteracting
point particles confined in a cylinder with a frictionless piston.
The volume of the gas is Ax, where A is the cross section and
x is the length, which varies as the piston moves. The gas is
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immersed in a liquid with temperature T = 1/β and pressure
P. We further assume the walls of the cylinder conduct heat
well so that it remains in equilibrium with the liquid outside.
(This assumption may be rather unrealistic. But remember
that we are discussing this example only to illustrate our
theory.) Assuming the overdamped limit for the piston, the
only slow variable is the length x, whose equilibrium pdf is

pEQ(x) = 1

Z
e−βH (x;T,P) = 1

Z
e−N ln (Nξ 3/Axe)−βPAx, (6.1)

where ξ = ξ (T ) = h/
√

2πmT is the de Broglie thermal
wavelength. This corresponds to the HMF

H (x; T, P) = NT ln
Nξ 3

Axe
+ PAx, (6.2)

which can be understood as the Helmholtz free energy of the
gas and the liquid, up to an additive constant. Alternatively,
H (x; T, P) may be also understood as the fluctuating Gibbs
energy of the gas inside the cylinder. Note that H (x; T, P)
explicitly depends on temperature and pressure. The partition
function Z is then determined by the condition of normaliza-
tion:

Z =
∫

dxe−βH (x;T,P). (6.3)

We take the view point that the system consists of solely
the piston, and the bath consists of both the gas inside the
cylinder and the liquid outside. Note that an isolated piston has
vanishing potential energy, hence both terms on the r.h.s. of
Eq. (6.2) are due to the interaction between the piston and the
environment. It then follows that there is no system parameter
in this example and A, P, N , and ξ should be all understood as
the bath parameters. Remarkably, even such a simple exam-
ple of stochastic thermodynamics demands a strong-coupling
theory! Also note that as long as we figure out the HMF of x,
there is no need to know the detailed Hamiltonian of the gas
and the liquid.

We assume that β, P are tunable, but A, ξ are fixed. Using
Eqs. (4.10) and (4.14), heat and work at the trajectory level
are given by

d̄Q = dxH = −NT
dx

x
+ PAdx, (6.4)

d̄W = dβH + dPH

= N ln

(
Nξ 3

Axe5/2

)
dT + AxdP. (6.5)

It is interesting to compare our theory with Seifert’s theory
for this particular example. Using Eq. (5.13) we see that the
fluctuating internal energy is

H̃ = PAx, (6.6)

which a linear function of the length of the cylinder x. The
heat in Seifert’s theory is very complicated, as one can work
out using Eq. (5.17).

While the entropy in our theory is defined as the Gibbs-
Shannon entropy of the piston, the entropy in Seifert’s theory
can also be worked out using Eq. (5.15):

S̃ = −
∫

x
p(x) ln p(x) +

∫
x

p(x)N ln
Axe5/2

Nξ 3
. (6.7)

While the first term on the r.h.s. is the Gibbs-Shannon entropy
of the piston, the second term turns out to be the thermo-
dynamic entropy of the gas inside the cylinder. Hence for
this particular model, the difference between our theory and
Seifert’s theory lies in whether we treat the gas confined in the
cylinder as part of the system or as part of the bath. We must
emphasize, of course, that Seifert’s theory cannot be used to
describe processes with variable temperature and pressure.

B. Modified harmonic-oscillator bath model

In this section, we illustrate our theory using a toy model
of Brownian motion, with coordinate and momentum {x, p},
coupled to a large number of harmonic oscillators, with
canonical variables {qi, pi}. This model is a generalization of
the harmonic-oscillator model studied by Zwanzig [29,30] as
well as by Caldeira and Leggett [31,32]. The total Hamilto-
nian is given by

H tot =
(

p2

2m
+ V (x)

)
− λ(t )

∑
j

γ jq jx

+
N∑
j

(
1

2
p2

j + ω2
j

2
q2

j

)
, (6.8)

where the three parts on the r.h.s. are respectively H0
X, H0

I , H0
Y

in Eq. (2.1). Hence, in this model, λ(t ) and {γ j} are system
parameters, whereas {ω j} are bath parameters.

The timescale of bath dynamics is characterized by all
frequencies {ω j}. We assume that all inverse frequencies 1/ω j

are sufficiently large so that all oscillators always remain
in conditional equilibrium given the instantaneous values of
λ(t ) and x, p. This of course also implies that the varia-
tion of the control parameter λ(t ) needs to be much slower
than the dynamics of the oscillators. In the limit of TSS,
the effective dynamics of the Brownian particle obeys a
nonlinear Langevin equation with white noise, where the
time-dependent friction coefficient is given by

γ (t ) = βλ(t )2
∫ +∞

0
dt

∑
j

γ 2
j

ω2
j

cos ω jt . (6.9)

A detailed derivation of Eq. (6.9) is given in Ref. [22].
Note that, unlike in previous works [29–34], we have not

explicitly introduced the counter-terms in the Hamiltonian.
Note also that we have introduced a control parameter λ(t )
in front of the coupling terms, which can be varied systemat-
ically. We can follow the strategy discussed in Sec. II A and
decompose the total Hamiltonian in the form of Eq. (2.12),
with

HX = p2

2m
+ V (x) − λ(t )2

⎛
⎝∑

j

γ 2
j

2ω2
j

⎞
⎠x2, (6.10)

HY =
N∑
j

⎡
⎣1

2
p2

j + ω2
j

2

(
q j − λ(t )γ j

ω2
j

x

)2
⎤
⎦. (6.11)

Note that both HX and HY depend explicitly on λ(t ) and
{γ j}. The bath partition function and free energy, however, are
independent of λ and {γ j}, as demonstrated in Eq. (2.15).
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Assuming that the external potential V (x) is fixed, the heat
and work at the trajectory level are respectively

d̄Q = p

m
d p +

⎡
⎣V ′(x) − 2λ2

⎛
⎝∑

j

γ 2
j

2ω2
j

⎞
⎠x

⎤
⎦dx, (6.12)

d̄W = 2λ

⎛
⎝∑

j

γ 2
j

2ω2
j

⎞
⎠x2dλ. (6.13)

Consider now a process where we tune the control parameter
λ(t ) systematically. For a given trajectory of the joint system,
the external agent does work both to the system and to the
bath, as given by Eq. (4.43). The total work done to the system
and the bath in general cannot be expressed in terms of the
system variables alone. As we have argued in Sec. IV D, how-
ever, since the dynamics of the oscillators is very fast, along
a typical trajectory, the integrated work done to the bath by
the external agent is vanishingly small. Hence the integrated
work WX = ∫

γ
dλHX is the change of total energy, up to a

negligibly small and rapidly fluctuating error. Neglecting this
error, the stochastic thermodynamics of this process is fully
described by our theory which involves only system variables.
This conclusion is both highly nontrivial and conceptually
satisfactory.

The problem studied above is special in the sense that the
HMF is independent of temperature so that the bath does no
work to the system as the temperature is varied. We can easily
modify the model such that the HMF is temperature depen-
dent. Consider for example the following total Hamiltonian:

H tot =
(

p2

2m
+ V (x)

)
+ λ(t )x2

2

∑
j

c2
j q

4
j

+
N∑
j

(
1

2
p2

j + ω2
j

2
q2

j

)
, (6.14)

which involves nonlinear couplings between x and qj . The
HMF can be easily computed using Eq. (2.6):

HX = p2

2m
+ V (x) − T

∑
j

ln
∫

dy√
π

e
− y2

2 − λc j x2y4

βω2
j . (6.15)

It is evident that HX depends on both β and λ.

VII. CONCLUSION

In this work, we have demonstrated how to extend the
standard theories of thermodynamics and stochastic ther-
modynamics for continuous systems to the strong-coupling
regime, where system parameters, bath parameters, and tem-
perature may be systematically varied. There is no need to
explicitly refer to the environmental degree of freedom, as
long as we define the system Hamiltonian as the Hamilto-
nian of mean force (HMF), and the system entropy as the
usual Gibbs-Shannon entropy. Differences with the classical
theories, however, do arise due to the temperature dependence
of HMF, both in the equilibrium theory and in the nonequi-
librium theory. The most important new feature is that the
environment does work on the system when the temperature
is varied. We have also constructed an infinite number of
equivalent strong-coupling theories, each characterized by its
definition of system Hamiltonian. Among all these theories,
our theory is distinguished by its maximal similarity to the
weak-coupling theory, and by its natural connection with
the standard theory of stochastic thermodynamics of discrete
systems.

To appreciate the descriptive power of our theory, consider
a colloid immersed in a nematic liquid crystal and confined
by an optical trap. The system parameter λ would control the
optical trap or the surface anchoring strength of nematogens,
whereas the bath parameter λ′ would be the magnetic field
acting on the nematogens but not on the colloid. As another
example, consider a heat engine working between two heat
baths. The system parameter λ may control the coupling
between the engine and the baths, which vanishes during
adiabatic processes, but are nonvanishing during isothermal
processes. These problems can be naturally addressed using
our theory, but not using the other strongly coupling theories
of stochastic thermodynamics.
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