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We consider the isochrone curves in first-passage percolation on a 2D square lattice, i.e., the boundary of
the set of points which can be reached in less than a given time from a certain origin. The occurrence of an
instantaneous average shape is described in terms of its Fourier components, highlighting a crossover between a
diamond and a circular geometry as the noise level is increased. Generally, these isochrones can be understood as
fluctuating interfaces with an inhomogeneous local width which reveals the underlying lattice structure. We show
that once these inhomogeneities have been taken into account, the fluctuations fall into the Kardar-Parisi-Zhang
universality class with very good accuracy, where they reproduce the Family-Vicsek Ansatz with the expected
exponents and the Tracy-Widom histogram for the local radial fluctuations.
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I. INTRODUCTION

Random curves have attracted attention in many fields of
science [1], such as physics, mathematics, and biology. For
instance, they appear in fields such as polymer physics [2],
quantum gravity [3], or the characterization of biophysical
objects such as membranes and cells [4]. Let us focus on
isochrone curves within a random two-dimensional mani-
fold, i.e., the boundaries of balls with different radii, when
the metric is flat on average and presents only short-range
correlations. It was shown in previous work [5,6] that in
the continuum these isochrones present a fractal behavior
described by the celebrated Kardar-Parisi-Zhang (KPZ) uni-
versality class, which accounts for the fluctuation statistics
of many growing interfaces [7–9]. The average roughness of
the isochrone, W (t ), defined as the root-mean-square devia-
tion of the ball radii at time t , grows as W (t ) ∼ tβ , while
the correlation length ξ grows as ξ ∼ t1/z, where β = 1/3
and z = 3/2 are, respectively, the growth exponent and the
dynamic exponent for the 1+1 dimensional (1+1D) KPZ uni-
versality class. Moreover, for long times, the local roughness
at a length scale l behaves as w(l ) ∼ lα , where α is called the
roughness exponent, which is related to the other two through
the Family-Vicsek relation α = βz, and takes the value 1/2
for the KPZ class.

The discrete analog of this problem is known as first-
passage percolation (FPP) [10], which was originally pro-
posed as a model of fluid flow through random media. The
FPP model has received substantial attention within prob-
ability theory, giving rise to important results such as the
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subadditive ergodic theorem [11], which has remarkable rele-
vance for classical problems such as the Ulam-Hammersley
problem, and contributed to develop the field of integrable
probability [12]. Moreover, integrable probability was, in turn,
instrumental to characterize the one-point and two-point fluc-
tuations within the KPZ universality class, specifically the
emergence of the Tracy-Widom (TW) distributions [13–15],
which were originally defined as the probability distributions
for extreme eigenvalues in random matrix ensembles [16].
The FPP model has been thoroughly studied numerically in
our previous work [17,18], both in the weak and strong disor-
der regimes, confirming the predictions regarding KPZ scaling
in the asymptotic regime for the geodesics. Yet, a similar
characterization of the statistical properties of the isochrones
has not been reported so far, to the best of our knowledge,
which is the task undertaken in this paper. The main difficulty
to this end is the fact that the average shape of the isochrones is
not circular, in general, due to the anisotropy of the lattice. In
fact, the existence and characterization of such average shapes
in the long run constitute a relevant area of mathematical re-
search, which has led to the celebrated shape theorem [19,20].

More generally, many other contexts for the growth of pla-
nar clusters present analogous complexities, in the sense that
nontrivial interface fluctuations occur around well-defined
macroscopic shapes. Examples can be found, for instance,
in different growth processes on a lattice [21], in epitaxial
growth of thin solid films in the submonolayer regime [22], or
in the spreading of precursor layers of wetting fluids [23–25].
Both of these systems inherently host strong interface fluctu-
ations due to the small typical scales which are involved. And
also, in both cases, being able to subtract characteristic shapes
from front fluctuations can prove significant to correctly iden-
tify the universality class (if appropriate) of the latter.

2470-0045/2024/109(3)/034104(8) 034104-1 ©2024 American Physical Society

https://orcid.org/0000-0002-3985-5351
https://orcid.org/0000-0003-2218-7980
https://orcid.org/0000-0002-3563-771X
https://orcid.org/0000-0003-2006-1938
https://orcid.org/0000-0002-6521-526X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.034104&domain=pdf&date_stamp=2024-03-04
https://doi.org/10.1103/PhysRevE.109.034104


IVÁN ÁLVAREZ DOMENECH et al. PHYSICAL REVIEW E 109, 034104 (2024)

This paper is organized as follows. We start with a
description of the basic properties of the FPP model in Sec. II.
In Sec. III, we characterize the instantaneous average shape
(IAS) of the isochrones for different noise levels using their
Fourier components. The growth and dynamic exponents, β

and z, are determined in Sec. IV, and the histogram of the
radial fluctuations is obtained in Sec. V. In both cases, the
lattice anisotropy masks the expected KPZ behavior unless
the statistical data are angularly resolved. The roughness
exponent, α, presents an additional numerical challenge
because any uncertainty in the IAS may interfere with its mea-
surement. In Sec. VI, we address this issue, and we find that
the aforementioned uncertainty manifests itself as an intrinsic
roughness. The paper concludes in Sec. VII with a discussion
of our main conclusions and suggestions for further work.

II. MODEL

Let us consider the integer lattice Z2, with edge set E . We
can associate a random variable τe > 0 to each edge e ∈ E ,
which we will call its passage time or link time. The variables
{τe}e∈E are assumed to be independent, identically distributed
(i.i.d.), with distribution function F (τ ), such that F (0) = 0,
i.e., we assume that τe is strictly positive with probability
one. The associated density function will be denoted by f (τ ),
and μ and s will denote, respectively, its mean and deviation,
which we will assume to be finite.

A finite path is defined as a sequence of edges,
e1, e2, . . . , en, such that ei and ei+1 share exactly one endpoint.
For each path γ = {e1, . . . , en}, we can define its passage time
T (γ ) as T (γ ) = ∑

i τi, where the sum runs over all edges in
γ . Finally, given two different nodes, x, y ∈ Z2, we can define
the passage time between them, T (x, y), as the minimum
passage time over all paths joining x with y, which we will
denote by

T (x, y) = min
γ∈�(x,y)

T (γ ), (1)

where �(x, y) denotes the set of paths joining these two
points. The random function T (x, y) plays the role of a dis-
tance, and the pair (Z2, T (·, ·)) defines a metric space in
which the geodesic between two nodes is given by the path
of minimal arrival time [17]. The FPP model is mathemati-
cally equivalent to the problem of optimal paths in weighted
networks [26,27]. Depending on the properties of the network
and on the physical meaning of the weights assigned to the
links, we may find a wide variety of applications. For example,
for directed lattices and bond weights representing the local
energy, we get the problem of directed polymers in random
media [2,28].

We can define the ball B(t ; x0) around a fixed node x0 for
time t � 0,

B(t ; x0) = {x ∈ Z2 : T (x0, x) � t}. (2)

Its boundary, ∂B(t ; x0), will be termed the isochrone corre-
sponding to time t . Balls and isochrones can be obtained
using, e.g., Dijkstra’s algorithm [29]. Throughout this work,
all the balls will be centered at the origin of coordinates
x0 = 0, so we will write simply B(t ).

FIG. 1. Random balls B(t ) for an FPP system on a square lattice,
centered on the origin of coordinates for different times. (a) Balls
obtained for a uniform link-time distribution using μ = 5 and CV =
0.57. (b) Balls obtained for a uniform link-time distribution using
μ = 5 and CV = 0.11. Colors are changed every 	t = 100, and the
total lattice size is 500 × 500 for (a) and 250 × 250 for (b).

Following Ref. [17], we control the strength of the disorder
through the coefficient of variation of the distribution, CV,
defined as CV = s/μ. It has been shown [18] that for strong
disorder conditions (CV � 1), the isochrones grow initially
as the clusters obtained in bond percolation with increasing
occupation probability p = F (t ). Then a crossover takes place
at a certain time, which increases monotonically with the dis-
order strength, from which the isochrones evolve towards the
asymptotic circular shape with KPZ statistics. In this paper,
we will focus on the dynamics and geometry of the isochrones
in the weak disorder regime, i.e., when CV < 1 [17]. The CV
has a strong effect on the shape of the isochrones, as illustrated
in Fig. 1, where we can see circular isochrones associated to
CV = 0.57, in Fig. 1(a), and diamondlike shapes associated
to CV = 0.11, in Fig. 1(b).

To characterize the isochrones, we have performed nu-
merical experiments on a (2L + 1) × (2L + 1) square lattice
with L = 1200. In this paper, we will employ two different
link-time distributions: First, a uniform distribution on an
interval [τ0, τ1], for which the maximal attainable value of
CV is 1/

√
3 ≈ 0.58, since τ0 � 0 necessarily. Furthermore,

we have also employed a Weibull distribution, given by the
probability density function

f (τ ) = k

λ

(τ

λ

)k−1
exp(−(τ/λ)k ), (3)

with shape parameter k > 1, which is only defined for positive
τ and allows any positive value for CV. Thus, we employ a
bounded and an unbounded distribution—both of them fulfill
the conditions for the limit shape theorem, i.e., all the mo-
ments exist and are finite, and F (0) = 0 [19,30].

In our simulations, we fix μ = 5 and choose different
values of CV in to survey the different possible limit shapes.
Thus, we use the notations U (CV) and Wei(CV), respectively,
for the uniform and Weibull distributions with parameter CV.
In all simulations discussed in this paper, we employ Ns =
104 different noise realizations. Measurements are performed
at Nt = 100 logarithmically distributed times, ranging from
tmin = 10μ = 50 to tmax, chosen so the average radius of the
isochrone reaches 3L/4 = 900.
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III. SHAPE ANALYSIS

A. Limit shape and instantaneous average shape

The shape theorem ensures that the growth rates of the
FPP isochrones along any fixed direction converge towards a
limiting function, v(θ ) [19,20,30]. In other terms, if we scale
down the different isochrones, t−1∂B(t ), we will notice that,
with probability one, they are contained in a deterministic,
convex and compact set B, which must be invariant under
reflections around the axes of the underlying lattice. Under
very general conditions, this limit shape is determined by
v(θ ). For large values of CV, this limit shape will be close
to a circumference, while for small CV the average isochrone
approaches a diamond shape [17], given by

{(x, y) ∈ R2 : |x| + |y| = K}, (4)

where K is a constant ensuring that the average radius is 1:

K = π√
2 log(23/2 + 3)

≈ 1.26. (5)

Let us parametrize our isochrone as a polar curve for each
time, r(θ, t ). The mean circumference at time t will be cen-
tered at the origin, with radius given by

R(t ) ≡ 〈r(θ, t )〉, (6)

where we denote spatial averages over θ with an overbar, and
averages over noise realizations with angular brackets. Let us
then define an IAS as

R(θ, t ) ≡ 〈r(θ, t )〉, (7)

where the average is taken over all noise realizations. Note
that this IAS need not coincide, in general, with the scaled
version of the limit shape, R(θ, t ) 
= t v(θ ). In fact, we can
define a scaled IAS,

ρ(θ, t ) ≡ R(θ, t )

R(t )
, (8)

that will approach the limit shape asymptotically,

lim
t→∞ ρ(θ, t ) = C v(θ ), (9)

where C is a constant.

B. Characterization of the instantaneous average shape

We have evaluated the IAS R(θ, t ) for different times and
disorder distributions for the link times. For each noise re-
alization and time, we obtain a discretized interface whose
angular resolution 	θ decreases with time because the aver-
age radius grows with time. Indeed, we have determined our
angular resolution dynamically by imposing that the number
of points in each interval 	θ must remain between one and
two throughout the simulation.

Figure 2 shows the scaled IAS, ρ(θ, t ), for different times
and disorder distributions as a function of the angle θ . Fig-
ure 2(a) shows the time evolution of the scaled IAS for the
uniform link-time distributions using CV = 0.57 and CV =
0.11. Note that the scaled IAS converges very fast to a
limit shape, as expected in Eq. (9). Figure 2(b) shows the
limit shape obtained numerically for a variety of uniform
and Weibull distributions. As a reference, we also show the

FIG. 2. (a) Time evolution of the scaled IAS, ρ(θ, t ), for two
uniform link-time distributions, using CV = 0.57 and CV = 0.11.
(b) Limit shapes for different link-time distributions, all of them with
expected value μ = 5. The dashed line represents the circumference,
and the perfect diamond shape, given by Eq. (4), is shown with a red
continuous line with the maximal amplitude.

circumference, given by the horizontal dashed line, and the
diamond, Eq. (4), shown as a red continuous line. We should
stress that the mean value of the link-time distribution μ does
not affect the limit shape.

We can express the scaled IAS at time t , ρ(θ, t ), as a
Fourier series:

ρ(θ, t ) = a0 +
∞∑

n=1

[an(t ) cos (nθ ) + bn(t ) sin (nθ )]. (10)

Let us stress that a0 = 1 in all cases for all times, and bn(t ) =
0 for all n due to reflection symmetry around each axis.
Furthermore, π/2 rotational symmetry dictates that the only
nonzero values for an(t ) are those with n = 4k and k ∈ N.
Figure 3 shows the Fourier components for the limit shape, an,
obtained for the uniform and Weibull link-time distributions
using both CV = 0.57 (a) and CV = 0.11 (b). Note that for
CV = 0.57 only a few an take nonzero values, while for CV =
0.11 we observe a behavior similar to the diamond shape,
which is also shown for comparison. Figure 3 (insets) shows
the time evolution of different Fourier components, an(t ),
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FIG. 3. Fourier decomposition of the limit shape, an, for the
uniform and Weibull link-time distributions, with μ = 5, employing
CV = 0.57 in (a) and CV = 0.11 in (b). Insets: Time evolution of
some selected Fourier coefficients of the scaled IAS, an(t ), using
both CV = 0.57 and CV = 0.11 for the uniform and Weibull link-
time distributions.

obtained for the uniform and Weibull link-time distribution
using CV = 0.57 and CV = 0.11, where we can observe their
fast convergence towards their limit shape values, that we will
denote as an.

IV. ROUGHNESS AND CORRELATION LENGTH

A. Roughness

Let us now consider the roughness and the correlation
lengths for the isochrones. In naive terms, we may define the
isochrone roughness corresponding to time t as the deviation
of all values r(θ, t ) around their average value, R(t ) [9],

σ 2
r (t ) ≡ 〈(r(θ, t ) − R(t ))2〉, (11)

Indeed, this definition is not appropriate because the average
shape is not circular. Thus, the roughness should be measured
with respect to a suitable average shape. In fact, Fig. 4 shows
the time evolution of this global roughness (solid lines), which
grows with time as tβ with β = 1, very different from the
expected β = 1/3 KPZ value [17]. The reason for this growth

FIG. 4. Deviation of the interfacial radii of the isochrones, σr

(symbols) and of the IAS radii, σR (solid lines) for several uniform
distributions. The dashed line shows a power law behavior with
exponent β = 1.

is that most of the radial deviation can be associated to the
deviations of the IAS with respect to the mean circumference.
Indeed, Fig. 4 shows also the deviation of the IAS radii,
given by

σ 2
R (t ) ≡ 〈(R(θ, t ) − R(t ))2〉, (12)

which presents a similar scaling for small CV. Even for higher
values of CV, we can observe that both deviations approach
asymptotically for long times. Therefore, we can explain the
β = 1 scaling: we are counting as roughness what is simply
the form of the average isochrone, which is due to the lattice.

Let us provide the correct definition of the interface rough-
ness, which is the root-mean-square deviation between the
radii of the interfaces and the IAS:

W 2(t ) ≡ 〈(r(θ, t ) − R(θ, t ))2〉. (13)

Figure 5 shows the time evolution of this roughness W (t )
for different noise distributions. As expected, this magnitude
presents a scaling behavior associated to the KPZ universality
class, W (t ) ∼ tβ with β = 1/3 in all cases. We should remark
that for higher values of CV, the exponent 1/3 is rapidly
attained, whereas the preasymptotic regime becomes longer
for lower values of CV, as expected from previous works [17].

FIG. 5. Time evolution of the roughness W (t ), defined with re-
spect to the IAS, as shown in Eq. (13), for uniform distributions.
Dashed lines indicate power-law behavior with exponent 1/3.
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FIG. 6. Angular-resolved roughness, W (θ, t ), for time tmax, using
different uniform link-time distributions. Higher values of W (θ, T )
correspond to higher values of CV.

B. Angular-resolved roughness

Our definition of the roughness, given in Eq. (13), can be
considered as an angular average of a certain angular-resolved
roughness, which can be defined as

W 2(θ, t ) ≡ 〈(r(θ, t ) − R(θ, t ))2〉, (14)

such that

W (t ) = W (θ, t ). (15)

Indeed, in Fig. 6 we can observe the angular-resolved rough-
ness W (θ, t ) obtained at time tmax using several uniform
link-time distributions. We note that this roughness presents a
strong anisotropy for small values of CV, as expected. Indeed,
the roughness is always larger near the lattice axes.

C. Correlation length

On the other hand, the scaling of the correlation length
with time allows us to obtain the dynamic exponent z from the
evolution of the correlation length, ξ ∼ t1/z. We will estimate
its value using the technique developed in Ref. [6], which
is based on the notion of patches. A patch is defined as a
section of the isochrone such that all its points are either above
or below the IAS. The patch length is then defined as the
projection of this subset of the isochrone onto the average
circumference. Let n be the number of patches of a given
isochrone, whose lengths are given by {�i}n

i=1. To estimate
the correlation length, we randomly choose a point over the
average shape and find the expected value of the length of
its associated patch. In other words, we select patch i with
probability �i/

∑
i �i, and we can estimate

ξ ≡
〈∑

i �
2
i∑

i �i

〉
, (16)

which is expected to grow as ξ (t ) ∼ t1/z.
We have evaluated the behavior of ξ (t ) for all the con-

sidered distributions of disorder, and the results for several
uniform distributions are displayed in Fig. 7. We obtain, in all
cases, a power law with an exponent very close to 2/3. These
results are in agreement with a value for the dynamic exponent
of z = 3/2, associated to the KPZ universality class.

FIG. 7. Growth of the correlation length for several uni-
form distributions. Dashed lines show a power-law behavior with
exponent 2/3.

V. RADIAL FLUCTUATIONS

As discussed in the Introduction, the height fluctuations
in 1+1D KPZ systems follow the TW probability distribu-
tion [14], which somehow plays a similar role to that of
the Gaussian distribution in the central limit theorem. The
TW distribution comes in different flavors and the Gaussian
orthogonal ensemble (TW-GOE) is typically associated to flat
interfaces, while the Gaussian unitary ensemble (TW-GUE) is
typically connected to circular interfaces.

In a model with rotational symmetry, we can consider all
the radii of the different interfaces, labeled by their time,
{ri(t )}. Then, we fit the average radius as a function of time to
a form 〈ri(t )〉 ≈ r0 + vt , choosing the best possible values of
r0 and v. Then we fit the time dependence of their deviations
to a form σ [ri(t )] ≈ �tβ . Finally, we define a random variable
χi implicitly through the expression

ri = r0 + vt + �tβχi. (17)

If the interface follows KPZ scaling, we expect the random
variable χ to present a stationary probability distribution that
will approach the TW-GUE distribution, rescaled to have zero
average and unit deviation [5,6].

The same TW-GUE distribution has been found in FPP
models, for example, in the times of arrival along the axis
and diagonal directions [17]. Yet, KPZ scaling suggests that it
should also determine the radial fluctuations of the isochrones,
and in this section we will show that this is indeed the
case, provided that these radial fluctuations are appropriately
scaled.

Let us choose a point xi = (ri, θi ) along the interface and
let R(θ, t ) be the radius of the IAS along the same direction
for that time. Then, we can define

r = R(θ, t ) + �(θ )t1/3χ, (18)

where χ should be a stationary random variable following the
(rescaled) TW-GUE distribution and �(θ ) is chosen so the
angular-resolved roughness, defined in Eq. (14), behaves as

W (θ, t ) ≈ �(θ )tβ. (19)

Thus, in our case, we must employ two labels for the radial
data, i.e., the time and the angle θ .

Numerically, we proceed as follows. We select a certain
angular width 	θ ≈ 10−3 and bin our radial data according
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FIG. 8. Histograms for the rescaled radial fluctuations, following
Eq. (18) for several uniform distributions.

to time and angle. For each bin, we subtract the expected
average, which corresponds to the radius of the IAS, and
divide by their deviation, which corresponds to the associated
angular-resolved roughness:

χi = ri − R(θ, t )

W (θ, t )
. (20)

We then obtain the histograms for these values in Fig. 8, which
corresponds to the TW-GUE distribution as expected. The
histograms are computed using all available times for which
the condition W (t ) ∼ tβ holds.

Figure 9 shows the histograms for the radial fluctuations,
r(θ, T ) − R(θ, T ), without rescaling with the corresponding
deviation, along the axis and diagonal directions for different
values of CV. The measurement time is tmax, and to obtain
enough data we employ angular windows of width � = 1/3
radians along both directions. Figure 9(a) shows the his-
tograms for CV = 0.57, and we can see that the distributions
for both directions are rather similar, both corresponding to
the TW-GUE distribution as expected. The inset panel shows
how they coincide when the fluctuations are rescaled to have
unit variance. Figure 9(b), on the other hand, shows the
histograms for CV = 0.11, where we can observe that the
fluctuations along the axis and the diagonal directions are
very different, while they coincide when correctly rescaled,
as shown in the inset. A naive averaging of the fluctuations
along different directions, without proper rescaling with the
appropriate deviations, would lead to an average histogram
which departs enormously from the TW-GUE distribution,
showing indeed a large value for the kurtosis.

VI. MORPHOLOGICAL ANALYSIS

Let us consider the roughness exponent, α, which char-
acterizes the stationary regime attained when the correlation
length reaches the system size L. According to the Family-
Vicsek dynamic scaling ansatz [9], we have

W (L, t ) = tβ g(L/t1/z ), (21)

where the scaling function g(u) has the general form

g(u) =
{

const. if u � 1

uα if u  1.
(22)

FIG. 9. Histogram of the radial fluctuations, r(θ, t ) − R(θ, t ),
without proper rescaling with the deviation, performed for the axial
and diagonal directions with an angular window of � = 1/3 radians,
using (a) U (CV = 0.57) and (b) U (CV = 0.11) for time tmax. Insets:
Histograms of the rescaled radial fluctuations for the same directions.

This expression cannot be applied to radially growing systems
in which the system size increases linearly with time because
in those cases the stationary regime is never attained [31–33].
Yet, the power-law behaviors of the roughness W (t ) ∼ tβ and
the correlation length ξ (t ) ∼ t1/z, along with the Galilean
scaling relation for KPZ, α + z = 2, all suggest α = 1/2 for
our system, but we should check this value independently.

To characterize the morphological properties of the
isochrones, we define the scale-resolved roughness, w(l, t ),
as the average roughness for windows of size l measured on
the average circumference of radius R(t ) [34,35],

w2(l, t ) ≡ 〈[(r(θ, t ) − R(t ))2]l〉, (23)

where [· · · ]l denotes the average over linear windows of size
l , whose location does not depend on θ . We expect the follow-
ing scaling ansatz, similar to Eq. (22):

w(l, t ) = tβgloc(l/t1/z ), (24)

where now gloc(u) behaves as uαl if u  1 and as a constant
for u � 1, where αl is termed the local roughness exponent.
Thus, for a fixed value l we expect the local roughness to
grow as tβ up to a saturation time, when the correlation length
reaches l . From this moment on, the window roughness satu-
rates at a value that scales as lαl .
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FIG. 10. Scale-resolved roughness, subtracting the intrinsic
roughness, w(l, t ) − w0, as a function of l for disorder distributions
U (CV = 0.57) (a) and U (CV = 0.11) (b).

We should adapt our measurements of the local roughness,
Eq. (23), to our anisotropic case:

w(l, t ) = 〈[(r(θ, t ) − R(θ, t ))2]l〉. (25)

The results of our numerical simulations are shown in Fig. 10,
where the scale-resolved roughness is plotted for different
times, using uniform link distributions with CV = 0.57 and
CV = 0.11. The proper small-length scaling is obtained as-
suming that the system presents certain intrinsic roughness,

w(l, t ) ≈ w0 + Alα, (26)

where α = 1/2 in all cases, w0 ≈ 0.17 for CV = 0.57, and
w0 ≈ 0.2 for CV = 0.11. This intrinsic roughness can mask
the correct scaling if it is not properly taken into account. We
conjecture that its physical origin is related to the uncertainty
in the measurement of the IAS.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we have characterized the statistical proper-
ties of the isochrones of the FPP problem on a square lattice,
showing that they correspond to the KPZ universality class.
The main difficulty lies in the fact that the average isochrone
deviates substantially from the circumference when the CV is
small, due to the strong anisotropy of the system. To reveal the
hidden KPZ scaling, we have defined the IAS for each noise

level and time, and characterized them using their Fourier
representation. Indeed, for CV ≈ 1 they approach a circum-
ference, while for CV  1 they approach a diamond. We
also define an angular-resolved roughness, which depends on
the direction of growth, showing a similar behavior. Indeed,
the fluctuations are always higher along the axis than along the
diagonal, with the anisotropy again growing for lower values
of CV.

Once the radial fluctuations are measured with respect
to the IAS and their deviations are scaled with an angular-
dependent factor, all the hallmarks of the 1+1D KPZ class
appear clearly: the roughness grows as W (t ) ∼ tβ with the
growth exponent β = 1/3, and the correlation length grows
as ξ (t ) ∼ t1/z with the dynamic exponent z = 3/2. Moreover,
if the radial fluctuations are scaled with an angular-dependent
factor, they are shown to follow the expected TW-GUE distri-
bution. The local roughness can be shown to scale as w(l ) ∼
lαl for l  ξ (t ), with αl = 1/2, if we subtract previously an
intrinsic roughness w0 which depends weakly on the link-time
distribution, and which is probably related to the uncertainty
in our estimation of the IAS.

Our procedure to subtract the IAS will be of interest to
analyze other systems, both continuous or discrete, which
present noncircular characteristic shapes around which the
fluctuations should be measured. The first such application
should be to growing interfaces defined on a lattice, when
the lattice effects are suspected to spoil the scaling analysis
and the characterization of the universality class [24,25,36].
Physically, lattice effects may be induced by, e.g., crystallo-
graphic directions, as in epitaxial growth of thin solid films
[22,23]. Furthermore, the subtraction of the average shape
can be useful in cases of morhopological instabilities, where
a nontrivial average shape can be established at short times,
which may, in turn, have an effect in the determination of the
universal properties of the fluctuations [37,38].
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