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Topology plays a fundamental role in our understanding of many-body physics, from vortices and solitons
in classical field theory to phases and excitations in quantum matter. Topological phenomena are intimately
connected to the distribution of information content that, differently from ordinary matter, is now governed
by nonlocal degrees of freedom. However, a precise characterization of how topological effects govern the
complexity of a many-body state, i.e., its partition function, is presently unclear. In this paper, we show how
topology and complexity are directly intertwined concepts in the context of classical statistical mechanics. We
concretely present a theory that shows how the Kolmogorov complexity of a classical partition function sampling
carries unique, distinctive features depending on the presence of topological excitations in the system. We
confront two-dimensional Ising, Heisenberg, and XY models on several topologies and study the corresponding
samplings as high-dimensional manifolds in configuration space, quantifying their complexity via the intrinsic
dimension. While for the Ising and Heisenberg models the intrinsic dimension is independent of the real-space
topology, for the XY model it depends crucially on temperature: across the Berezkinskii-Kosterlitz-Thouless
(BKT) transition, complexity becomes topology dependent. In the BKT phase, it displays a characteristic
dependence on the homology of the real-space manifold, and, for g-torii, it follows a scaling that is solely
genus dependent. We argue that this behavior is intimately connected to the emergence of an order parameter
in data space, the conditional connectivity, which displays scaling behavior. Our approach paves the way for
an understanding of topological phenomena emergent from many-body interactions from the perspective of
Kolmogorov complexity.
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Complexity and topology are two cornerstones in our inter-
pretation and understanding of phenomena and mechanisms
in diverse fields of science [1]. One particular domain where
the two are at play is many-body physics: there, one is inter-
ested in how collective behavior emerges from the interplay of
a large number of microscopic components, thus enabling ef-
fective descriptions that only use a finite number of variables.
At the information-theoretic level, this implies a huge reduc-
tion of the Kolmogorov complexity corresponding to a given
description of the physical system: a handful of parameters
are sufficient to capture essential features of the corresponding
physical phenomenon [2]. The prototypical example of such
reduction of complexity is critical behavior, where correlation
functions are precisely determined by a few parameters: the
critical exponents [3].

Recently, thanks to dramatic advances in the field of
nonparametric unsupervised learning methods [4–6], it has
become possible to make quantitative statements about the
complexity of many-body processes in the context of molec-
ular science and, broadly speaking, quantum chemistry and
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physics [7–9]. In those domains, estimating complexity is
particularly important to understand the interplay between the
multitude of degrees of freedom, and, eventually, to help iden-
tify those that are most relevant for a physical phenomenon to
occur. This is intimately related to feature selection [10–13]
or dimensional reduction [14,15], i.e., discarding features that
appear irrelevant or redundant or finding a representation of
the data with few variables seen as complicated functions
of the original ones. The same tools have been recently
applied to critical phenomena [16–18], where they have been
shown to lead to qualitative insights on how complexity is tied
to critical behavior [19]. Instead, very little is known about
how complexity is dictated by topological phenomena: Given
a partition function, is it possible to infer that nonlocal degrees
of freedom are at play by solely looking at its complexity?
Beyond theoretical interest, addressing such a question can
also be of experimental relevance to a variety of systems,
including cold atom gases [20], arrays of Josephson junc-
tions [21], and quantum annealing architectures [22], where
topological phenomena have been recently demonstrated and
where single-site resolution is often possible.

Here we show that, in classical statistical mechanics, the
topological origin of the Berezinskii-Kosterlitz-Thouless [23]
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FIG. 1. Guideline to connect complexity of classical partition functions to topological phenomena. (a) Collected snapshots of the physical
system—either Monte Carlo configurations or data from experiments. (b) Mapped configurations to a D-dimensional (embedding dimension)
data space. (c) Extracted features of the data set, e.g., intrinsic dimension (Id ), conditional connectivity (Fw). (d) Findings connected to the
manifolds the system lives in. Here we represent a torus (T), a 2-torus (T2), and a Klein bottle (K).

mechanism is tied to the emergence of a topological con-
tribution to the Kolmogorov complexity characterizing the
partition function. This relation is uniquely determined by the
nature of the manifold upon which the statistical mechanics
problem is defined, and is in sharp contrast to what happens
for models governed by local order parameters, whose com-
plexity is unrelated to the manifold topology.

First, we provide a theoretical framework that argues how
complexity decreases as the dimension of the homology group
of the real-space manifold increases: this reflects the fact
that, the more complex the real-space manifold, the more
constrained low-energy excitations of the system are. We then
analyze the partition function of XY, Ising, and Heisenberg
models on an array of two-dimensional manifolds—orientable
as well as nonorientable. For each manifold, we estimate
the Kolmogorov complexity utilizing the intrinsic dimension,
a measure of the minimal number of degrees of freedom
required to describe a data structure. We then define as topo-
logical Kolmogorov complexity of a manifold the difference
between the complexity of the partition function on that man-
ifold, and the one on the 1-torus (T 1).

In the BKT phase of the XY model, we observe that the
complexity is strongly dependent on the manifold the model
is defined on. In agreement with our theory, such complexity
is dictated by the first homology group and satisfies a phe-
nomenological finite-size scaling. Our results indicate that,
while information is nonlocally encoded in real space (i.e., in
winding numbers corresponding to vortex excitations), it is re-
markably local in data space: this is shown by the emergence
of a local order parameter—in data space—that we dub con-
ditional connectivity and that displays scaling behavior across
the BKT transition. The identification of such order parame-
ters provides a key, intuitive connection between homology
and complexity. In contrast, for the case of the Ising and
Heisenberg model, we find no relation between complexity
and real-space topology, again in agreement with our theory.

Our findings demonstrate a direct link between topology
and complexity of a many-body description that parallels

recent efforts in both classical [24,25] and quantum [26–29]
statistical mechanics in terms of entropy content. Based on
the impact of complexity in other disciplines, this connection
opens the door towards a transfer of concepts and methods
between different fields.

I. KOLMOGOROV COMPLEXITY OF PARTITION
FUNCTION SAMPLES

Kolmogorov complexity is the fundamental measure of al-
gorithmic complexity and has found widespread applications
in diverse fields of science (for an overview, see Ref. [2]). It
corresponds to the length of the shortest computer program
that produces a given output, that, in our case, corresponds
to the data set built with the configurations sampled along
the MC simulations. From an alternative viewpoint, it char-
acterizes the capability of the output (the data set) to be
compressed. In the following, our goal is to connect this
information-theoretic viewpoint to topological phenomena.
To establish the relation between topological features and
complexity, we formulate a four-step procedure (summa-
rized in Fig. 1) that encompasses (a) data acquisition, (b)
proper representation, (c) data mining analysis in configu-
ration space, and (d) repeated over different manifolds to
single-out topological features.

(a) Data structures of partition functions. The first element
of our discussion concerns the identification of the data set we
target to describe a physical phenomenon. For an equilibrium
classical statistical mechanics model, the starting point is very
natural: the partition function. While the latter cannot be mea-
sured experimentally (nor, in many cases, directly computed),
we focus on its sampling. In particular, labeling as Xi an
element of the configuration space, our target data set is a
collection of Nr such elements,

X = {X1, X2, . . . , XNr }, (1)

with Nr � DC , where DC is the total dimension of the con-
figuration space (e.g., 2N for a collection of N Ising spins).
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We will discuss the case Xi �= Xj , which, as we argue below,
is typical of large many-body systems. The data space X con-
tains information about arbitrary rank correlation functions,
so it is expected to provide a full characterization of physical
properties. Importantly, it is immediately available both in
numerical (e.g., Monte Carlo) and real experiments.

(b) Intrinsic dimension and complexity. Once the data space
is defined, it is important to find a suitable measure of in-
formation compression that serves as an estimator for the
Kolmogorov complexity, K (X ). Commonly, data points in a
data set are represented as points in a space whose dimension
is the number of features needed to describe each sample,
which is called the embedding dimension. The correlation
between the data points determines the manifold in which the
data lie, inducing a structure whose dimension is typically
much smaller than the embedding one. This is known as
intrinsic dimension and denoted by Id . For data sets whose
local density is approximately constant at the scale of nearest
neighbors, the Id corresponds roughly to the minimum num-
ber of variables needed to describe a data set, and is thus a
direct estimator of Kolmogorov complexity. This connection
has been shown in graph theory using one of the possible
estimators of the Id : the Hausdorff dimension [30,31].

The relation between intrinsic dimension and complexity
has found applications in various fields. In molecular science,
Id is used to analyze the complexity of large data sets of
molecular structures, such as protein structures, to gain in-
sights into the underlying structural motifs that govern the
molecule functions [32,33]. In computer vision, it is used to
analyze images and videos, identifying the most important
features and patterns relevant for tasks such as image clas-
sification or object detection [34,35]. In physics, Id is used
to characterize both quantum and classical systems [19,36–
38], estimating the number of degrees of freedom required to
describe a given physical system across phase transitions, and
its universality has been numerically proved.

(c) Estimators for the intrinsic dimension. Different ap-
proaches have been proposed to estimate Id [14,39–42]. The
technique used here, the TWO-NN method [43], relies on
the statistics of distances between nearest-neighbors elements
in the data set. The assumption of such approaches is that
nearest-neighbor points can be considered as uniformly drawn
from Id -dimensional hyperspheres. Hence, it is possible to
set relations between the Id and the statistics of neighboring
distances and is particularly suitable for nonlinear manifolds.
In the TWO-NN, one calculates the ratio μi = r (2)

i /r (1)
i for

each point Xi in the data set, where r (1)
i and r (2)

i are the
nearest-neighbor and the next-nearest-neighbor distances, re-
spectively. Under the assumption above, it can be proved that
μi is distributed according to

f (μ) = Idμ
−Id −1. (2)

Therefore, Id can be estimated from the cumulative distribu-
tion function P(μ) as

Id = − ln [1 − P(μ)]

ln μ
. (3)

An example is shown in Fig. 7 for three cases: the estimation
of Id corresponds to the slope of the straight lines. It is worth
mentioning that Id is a scale-dependent quantity. In particular,

changing the value of Nr , the number of configurations in
the data set, amounts to changing the value of Id but not
its functional dependence. Also, as mentioned above, Id has
been utilized to investigate classical and quantum phase tran-
sitions because it shows a singular behavior in the vicinity
of phase transition due to the change of correlation between
the points in the data set. In essence, certain phases (e.g., the
ferromagnetic phase in the Ising model or the BKT phase
in the XY model [19]) are characterized by configurations
that are strongly correlated, as they display the same physical
properties. Conversely, outside these ordered phases, the data
become lesser correlated the further we move away from the
critical point (from a network theory viewpoint, they can be
drawn from an Erdös-Renyi network). These effects reflect on
the behavior of Id in parameter space.

Finally, it is worth commenting on the definition of dis-
tance to be used in the TWO-NN method. The choice of a
proper metric is guided by the fact that it is non-negative,
equal to zero only for identical configurations, symmetric, and
satisfying the triangular inequality. In this paper, we will use
the Euclidean metric to estimate the distance between points
as the most natural one to impose a geometry in data space.
Other suitable distances may be utilized equivalently in the
present case.

(d) Topological Kolmogorov complexity. We now need a
criterion to determine whether complexity and topology talk
to each other—that is, whether the complexity of a partition
function can reveal the fact that information is carried by
topological excitations or not. Inspired by similar reasoning at
the basis of topological field theory, we use the following ap-
proach: Given a model, we input in two distinct (in a way we
specify below) topologies and ask ourselves whether and how
the complexity of partition function sampling has changed.

For simplicity, we consider a BKT phase (our arguments
are immediately extended to cases with different topological
defects, such as, e.g., liquid crystals [44]). Our starting point
is the partition function of an XY model on a manifold with 1-
torus topology, whose sampling and Kolmogorov complexity
we denote as X 0 and K (X 0), respectively. We then compare
the latter with the one obtained from the sampling X of the
partition function of the same model but on a manifold with a
different topology.

The rationale behind this is the following [45]. When
topological degrees of freedom carry the information in the
system, i.e., at low temperatures in the XY model, a new set
of constraints appears, such as the winding numbers (w) of
these topological excitations. The paths on which indepen-
dent winding numbers can be calculated, which also represent
different and independent constraints on the partition func-
tion, are strictly related to the particular manifold taken into
account. These paths are shown in Fig. 1(d), where different
windings are represented on three manifolds: a 1-torus (T 1),
a 2-torus (T 2), and a Klein bottle. The presence of different
constraints must affect the complexity of the sampling of
the partition function. Therefore, this effect is expected to be
visible by studying its Id .

To identify topology-related information content, we then
posit the 1-torus as a reference manifold, and we identify as
K (M)

topo the topological Kolmogorov complexity of the problem
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defined on a manifold M as the difference of the intrinsic
dimension computed from the partition function obtained on
M, and that on the 1-torus:

K (M)
topo = K (M) − K (T ). (4)

In the following, we show numerically that this quantity strik-
ingly distinguishes phenomena which do have a topological
origin, from those that do not. Most importantly, the former
displays a universal scaling behavior for g-torii and a char-
acteristic connection to the first homology groups for more
complicated closed manifolds, demonstrating an unambigu-
ous connection between topology and complexity.

II. MODELS

To illustrate our ideas above, we utilize three models of
classical statistical mechanics: the Ising, Heisenberg, and XY
models, as anticipated before. The 2D XY model displays
a (BKT) topological phase transition associated with the
emergence of topological defects as vortices, at temperature
TBKT � 0.8933 [46–48]. The physical degrees of freedom are
represented by rotors on the plane and the energy of the
system can be written as follows:

E (�θ ) = −
∑
〈i, j〉

�Si �S j, (5)

where �Si = (cos θi, sin θi ) and θ ∈ [0, 2π ]. The configurations
are represented by

�θ = {cos θ1, sin θ1, . . . , cos θN , sin θN }, (6)

where N is the total size of the system.
To compare the topological character of excitations of the

XY model with a case where such phenomenology is absent,
we investigated the classical Ising model and the classical
Heisenberg model in two dimensions.

The Ising model is described by

E (�s) = −
∑
〈i, j〉

sis j, (7)

where the degrees of freedom are spins si = ±1 and the sum
runs on the nearest-neighboring bonds of a lattice. The con-
figuration states are defined as

�s = {s1, . . . , sN }, (8)

where N is the number of spins in the lattice. This model
exhibits a second-order phase transition characterized by the
breaking of Z2 symmetry at the critical temperature Tc =
2/ ln(1 + √

2).
The Heisenberg model is described by

E (�s) = −
∑
〈i, j〉

�Si �S j, (9)

where the sum runs on the nearest neighbors and Si =
(sin θi cos φi, sin θi sin φi, cos θi ) is a three-component spin,
with θ ∈ [0, π ] and φ ∈ [0, 2π ]. This statistical mechanics
model displays no phase transition in temperature.

We utilize the Ising and Heisenberg models as a bench-
mark: since they do not display a topological phase transition,

they can be exploited to verify that the behavior of the Kol-
mogorov complexity in the 2D XY model is due to the
particular topological features of the latter, and not by some
other, unwanted (e.g., finite volume) effect.

III. COMPLEXITY AND HOMOLOGY

A. Theory: Winding numbers and information compression

Before embarking on a quantitative determination of the
intrinsic dimension in spin models, it is instructive to present
a heuristic argument that anticipates the connection between
topology and complexity.

Let us consider the data set X introduced in Eq. (1). The
complexity of the data set X , i.e., K (X ), points out the infor-
mation stored in the data, and hence how much information
content can be encoded by the system. When constraints on
the manifold are enforced, we expect it to be reflected in a
decrease of complexity as one can attach to the snapshots
nontrivial labels, that we denote with Wj , j = 1, . . . , Nr . In
formulas, K (X ) can be written as the difference between the
complexity of the bare data set X 0 and the contribution due to
the presence of labels Wj associated with each Xj :

K (X ) = K (X 0) − K (W |X 0). (10)

This observation is intimately related to the topology of the
manifold the data set lives in. Let us first illustrate this con-
sideration with a simple example. We consider a set of spin
variables describing a strongly ordered Ising-ferromagnetic
state on a square lattice defined on a 1-torus. The config-
urations of the spins will be everywhere analogous to the
one obtained by a lattice with open boundary conditions,
with the exception of the constraints at the boundaries of the
plane. This implies that the additional condition of periodic
boundary conditions will reduce the complexity of the data
set (physically, this is a geometrical effect, related to the
fact that the open boundary conditions make magnetic order
weaker in a finite region of space [49]). However, when closed
manifolds are considered, we do not expect any difference in
the thermodynamic limit: the samples obtained from an Ising
ferromagnet will have the same complexity regardless of the
underlying manifold.

The situation is expected to be drastically different if the
magnetic state has a BKT origin. There, low-energy exci-
tations are vortices: those cannot be distinguished by local
operators and are instead labeled by winding numbers. This
implies that, at low temperatures, the space of configurations
that is spanned by the partition function is strongly con-
strained by the fact that vortices must have specific windings.
This is in strong contrast with what happens at higher tem-
peratures, where vortices are unbound and free to propagate
(and the concept of winding ultimately loses its significance
as configurations with very strong local spin fluctuations start
being present).

1. Low-temperature expansion

In the low temperature phase, it is possible to make
concrete, quantitative predictions on the above mentioned pic-
ture. Let us consider the data set obtained by sampling the
XY partition function for T � Tc, with Nr 
 1, and on a
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closed manifold with homology group G = ⊕k
j=1 Zα j . In this

regime, a large amount of configurations will have all spins
aligned in a given direction—all of them in the extreme case
T = 0. Such a cluster has intrinsic dimension ∼1, and the av-
erage distance between states is ∝ √

N/Nr [50]. This cluster,
that we refer to as T = 0 cluster, has constant curvature: in
fact, it can be (locally) thought of as a straight line in data
space, due to the fact that all spins are described by a single
angle θ .

Importantly, these are not the only configurations that are
sampled. A finite fraction of them, representing low-energy
excitations, is also present. They can be divided into two
classes: (i) configurations that host local spin excitations, at
energy difference δε of order 1 (and, thus, vanishing energy
density above the lowest energy states), and (ii) topological
excitations, also at finite energy difference above the lowest
energy state, and with a defined set of winding numbers. Note
that the fact that topological excitations, despite having wildly
different spin configurations with respect to the fixed direc-
tion case, still have vanishing energy density is particularly
relevant here.

The overall data structure, and its complexity, are drasti-
cally affected by the sampling of excitations. We scrutinize
them analyzing the various length scales at play in data space.
To do that, let us first focus on excitations where only local
changes of configurations are considered [case (i)]. Given that
those only involve the change of a handful of spins, they
describe a local modification of the one-dimensional manifold
found at T = 0. The intrinsic dimension of the corresponding
data set has been estimated following a maximum likelihood
reasoning in Ref. [19], and scales as Id ∝ Nr√

(N )
. The data set

does not feature clustering and can be thought of as a (highly
anisotropic) multidimensional cylinder of length ∝ √

N (sim-
ply given by the T = 0 cluster length). We thus refer to the
data set as the cylinder cluster. The width of the cylinder
can be computed as follows. Given two configurations �θ0 and
�θ1, the first representing a fully polarized state with θ0

k = θ0

and the second a state with thermal excitations on top of that
polarized state, one gets

d (�θ0, �θ1) =
√√√√2

N∑
k−1

(
1 − cos(θ0) cos

(
θ1

k

) − sin(θ0) sin
(
θ1

k

))

=
{

2

[
N − cos(θ0)

∑
k

cos
(
θ1

k

)

− sin(θ0)
∑

k

sin
(
θ1

k

)]}1/2

(11)

Given that �θ1 only differ by �θ0 for few spins that are sur-
rounded by spins that are aligned along θ0, one can rewrite
the expression above as

d (�θ0, �θ1) =
√

2
∑

k

(
E0 − E1

k

)
, (12)

where E0 is the average energy of �θ0, and Ek is the en-
ergy associated to the k vertex in �θ1. The formula above is

providing a direct link between energy of excitations and av-
erage distance within the cylinder cluster, that is dcyl � δε =
O(1).

In the absence of topological excitations, the above de-
scription will be sufficient to characterize the full data
structure. Topological excitations change this situation rather
drastically [case (ii)]. As we show below, analyzing the av-
erage distance between configurations, they generate clusters
that are geometrically disconnected from the cylinder one, and
whose number is given by the dimension of the homology
group of the manifold the system is defined on. Such data
structure leads to a characterization of the topology depen-
dence of the intrinsic dimension, which we comment upon at
the end of the section.

The key observation is that the average distance dtopo

between the cylinder cluster and topological excitations at
vanishing energy density is much larger than the estimated
dcyl. This is due to the fact that one cannot go from Eq. (12) to
Eq. (13) as done previously; namely, in the case of topologi-
cal excitations, each spin configuration varies smoothly with
position, so it is not possible to assume that most neighbors
have fixed magnetization. Instead, in this case, one gets, from
Eq. (12), that

dtopo �
√

2
∑

k

[1 − cos(θk ) − sin(θk )] �
√

N (13)

due to the fact that the averages of cos(θk ) and sin(θk ) are
negligible with respect to the constant term. From a different
perspective, this can be understood as a consequence of the
lack of long-range order: the latter fixes the average value of
cos(θk ) to vanish at finite temperature. While this is, of course,
not strictly true for arbitrary low-energy states, it gives us a
rough estimate of the mismatch in scaling in Eq. (14).

The arguments above indicate that topological excitations
lead to topological clusters in data space that are distinct
from the main cylinder cluster. The number of such additional
clusters is also important: in particular, this number scales, in
general, with the number of possible low-energy excitations
in the theory (due to the fact that the distance among these
clusters is also typically of order L). For closed manifolds,
such a number is the dimension of the first homology group
of the manifold.

The effect of topological clusters on the intrinsic dimension
of the manifold can be understood as follows. The intrinsic di-
mension estimation is still dominated by the cluster cylinder,
since the latter contains most of the data points and, at the
same time, the nearest-neighbor distance between points in
that cluster is smaller than that in the topological ones [51].

Summarizing, the predictions of our theory are the follow-
ing: (i) complexity is topology independent in the absence
of topological excitations; (ii) in the presence of topological
excitations, complexity decreases proportionally to the dimen-
sion of the first homology group of the real-space manifold;
and (iii) the decrease is associated to clustering and to a dif-
ferent distribution of nearest-neighbor distances in the sample.

Let us anticipate some concrete expectations based on
these predictions. For the case of g-torii, one expects the
complexity K (X ) to decrease proportionally to 2g. We note
that similar scalings also apply to topological phases in
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FIG. 2. Plot of Id for g-torii. We consider the XY model on a square lattice. (a) Diagram of the construction of the 2-torus (T2), edge
with same color and arrows must be connected with periodic boundary conditions. (b) Id of the two-dimensional XY model as a function of
temperature T , for different increasing value of the genus g (top to bottom); (c) scaling of Id as a function of the genus g, the lines correspond
to Eq. (15), for increasing temperature going from bottom to top. In both panels, we consider a square lattice with linear dimension L = 72.
We average our results over ten simulations with Nr = 5000 different configurations. The error bars are estimated as the standard deviation of
the mean. The dashed vertical line marks the critical point.

quantum statistical mechanics (e.g., two-dimensional lat-
tice gauge theories [26]). For the case of closed mani-
folds, we instead expect a dependence on the number of
possible loops—that is, the dimension of the abelianization of
the first homotopy group (not its Betti’s number). For instance,
we expect the same complexity for Klein bottles and 1-torii,
despite the fact that their genus is different.

In conclusion, there are aspects of our theory that, at
present, we do not know how to address. The first relevant one
is, up to which temperatures such a picture holds. The second
nontrivial aspect is the role of Nr : here, the main challenge
is that maximum likelihood arguments (at the basis of the
cylinder cluster scaling) are known to not always be accurate
in terms of capturing the role played by the data set size. To
clarify these points, and to corroborate our full theory picture,
we rely on numerical experiments.

B. Numerical experiments

We now provide numerical simulations to support our
theory. We consider a two-dimensional square lattice whose
boundary conditions are controlled such that topologically
different manifolds are realized. In Fig. 2(a), we illustrate
how to build a 2-torus (T 2) with appropriate constraints on
the boundaries of two square lattices. Equivalently, one could
start from an octagon and apply periodic boundary conditions
on opposite sides. The extension to generic g-torii is straight-
forward starting from regular polygons with 4g sides or using
g square lattices. In practice, we start from a square lattice
and divide it in vertical stripes instead of considering g square
lattices. In Appendix C, we show numerical evidence of the
equivalence of the two approaches. Nonorientable manifolds
like the Klein bottle, the Moebius strip, and the real projective
plane (RPP) can be realized with the appropriate boundary
conditions on a single square lattice [see Fig. 3(a)].

To sample the configurations according to the partition
function, we use Wolff’s algorithm [52]. The data sets are
defined as a collection of Nr points, such as in Eq. (1), each
corresponding to a given configuration of spins as specified
in the previous section. We take particular care of generating
decorrelated configurations to avoid any possible bias of the
sampling. To do so, we choose a suitable interval between

configurations that are saved during the Monte Carlo steps.
We note that, to the best of our knowledge, for some of these
manifolds, numerical simulations were not reported before, so
we verified that autocorrelations are not significantly changed
by the manifold topology.

1. Orientable closed manifolds

The first step of our analysis is the comparison of different
g-torii. The number of nontrivial loops of a genus g torus (Tg)
is 2g, since its first-homotopy group is π1(Tg) = ⊕2g

1=1 Z.
We expect, in a phase with no topological features, that the
complexity should not show any dependence on g. Conversely,
in the BKT phase, we expect it to be dependent on the partic-
ular manifold taken into account. Our theory predicts that the
complexity K (X, g) of the data set X as a function of the genus
g decreases with g monotonically, up to finite volume effects.
To cope with the latter, we utilize a phenomenological finite
volume ansatz as

K (X, g) = K0 − a0 · ge−a1
√

g, (14)

which smooths out contributions at large g, since those are
more sensitive to finite volume effects scaling roughly as V �
g2 [53]. On the right-hand side, we include a topologically
independent term K0 and a topologically dependent term, that
will capture the TKC.

In Fig. 2, we show the estimated value of the intrinsic
dimension Id as a function of temperature for different values
of the genus g (b) and as a function of the genus g for different
values of the temperature (c). The system taken into account is
a square lattice with linear dimension L = 72 and the number
of configurations of the data set is Nr = 5000. We observe that
the curve are monotonically increasing with temperature as
expected. The presence of the phase transition is not detected
by the intrinsic dimension, differently from Ref. [19], because
the number of configurations considered is lower; however,
this fact is irrelevant to our analysis as we show below.

The most striking signal in Fig. 2(b) is that, below T/J �
1.2/kB, the intrinsic dimension decreases as a function of the
genus, and the distance among the curve remains constant,
at least deep in the topological phase, where our reasoning
applies. We scrutinize such genus dependence in Fig. 2(c).
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FIG. 3. Comparison between RPP, Klein, torus, cylinder, and Möbius topologies. We consider the XY model on a square lattice.
(a) Diagram of the construction of torus (T), Klein bottle (K), real projective plane (RP), and Möbius strip (M). Edges with the same arrows
must be connected with periodic boundary conditions. Edges with arrows in opposite directions denote antiperiodic boundary conditions.
Dashed lines stand for open boundary conditions. (b) Results of Id as a function of temperature across the BKT phase transition on a square
lattice with linear dimension L; from top to bottom, we have results for RPP, Klein ∼ torus, Möbius strip, cylinder. We average our results over
ten simulations with Nr = 5000. The error bars are estimated as the standard deviation of the mean. The dashed vertical line marks the critical
point. (c) |Id − Id (torus)| at KbT/J = 0.1 as function of Nr for a square lattice with linear dimension L = 48. The dashed lines correspond to
the average of Id over Nr for the given manifold. Their error bars are represented by the shaded regions of the same colors. From top to bottom,
we have results for cylinder, Möbius strip, RPP, Klein ∼ torus.

The agreement between the points and the ansatz [curves
obtained via a best fit based on Eq. (15)] is excellent for
low temperatures. Oppositely, it worsens with increasing T
and cannot describe Id above the phase transition where the
topological properties are not relevant any longer. We argue
that in the thermodynamic limit, the curves for different values
of the genus should overlap for all temperatures above the
critical one T > TBKT. To check this assumption, we calculate
Id for T = 1.4 > TBKT and observe that the values of the
different curves are compatible within the error bars, as shown
in Fig. 2(b).

2. Nonorientable and open manifolds

While for orientable manifolds we gave our predictions
based on the number of independent nontrivial loops, in the
case of nonorientable ones we need to properly extend our
diagnostic. This can be done by looking at the first homol-
ogy group of the manifold, i.e., the Abelianization of their
first homotopy group. We expect that (i) data sets defined
on spaces with the same dimension of the homology group
will be characterized by the same Kolmogorov complexity
irrespectively of their genus and their orientability; (ii) the
complexity may be strongly affected by the number of open
boundaries in finite-size settings; and (iii) in the phase with no
topological properties, the complexity shall show no scaling
with the topological features of the manifolds.

Homology and complexity.. In Fig. 3(b), we plot Id of the
XY model, on a square lattice with linear dimension L =
72, calculated from Nr = 5000 configurations of spins as in
Eq. (1). We consider the cases of spins arranged on a RPP,
cylinder, torus, Klein bottle, and Möbius strip [schematically
depicted in Fig. 3(a)]. The corresponding homology groups
are written in Table I.

This choice of topologies allows us to consider the
influence of homotopy groups and boundaries separately. Ac-
cording to our definition of TKC, we utilize the 1-torus as
a reference: the cylinder allows us to investigate the role

of boundaries in the estimation of Id , while the others are
nonorientable, closed manifolds which are the main focus of
the present section.

From Fig. 3(b), few qualitative features are appreciable.
First, the presence of boundaries in the manifold decreases
the value of Id consistently. This is clear from the result of the
Möbius strip (one boundary) and cylinder (two boundaries)
that have the same homology group. This can be explained
as due to the constraint enforced by the presence of an edge
that amounts to adding more labels (Wj) to the data. Second,
we see that the torus and Klein bottle have compatible Id for
the whole temperature range investigated, in agreement with
our reasoning in the previous section (Sec. III A). To quantify
such a connection, in Fig. 3(c), we plot the absolute value of
the topological Kolmogorov complexity as a function of Nr for
a square lattice with L = 48 at low temperature kbT/J = 0.1.
For each topology, we also estimate an average value of the
TKC across our range of Nr : this is indicated by dashed lines,
and the corresponding estimated error is indicated by a shaded
area.

Two main observations are in order. The first is about the
relative behavior of the closed manifolds: There is a sharp
difference between the RPP and 1-torus. In particular, their
TKC difference is compatible with 1 regardless of the sam-
pling. This is remarkable as, e.g., for Nr = 50 000, the overall
intrinsic dimension exceeds 100. Oppositely, the difference
between the Klein bottle and 1-torus is always small and is
compatible with 0 for three values of the sampling. Thus, we
can state that the TKC of a partition function supporting topo-
logical excitations depends on the homology of the manifold

TABLE I. Homology groups of the topologies considered.

Closed manifolds Open manifolds

RPP Torus Klein bottle Cylinder Möbius strip

Z Z ⊕ Z Z ⊕ Z2 Z Z
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FIG. 4. Plot of Id for the Heisenberg model. We consider a square
lattice with linear dimension L = 72. We consider Nr = 5000, and
Id is estimated as average over ten simulations. The error bars are
estimated as the standard deviation of the mean. The absence of any
topological features is evident. In the inset, we show the difference of
Id of all the topologies with respect to the reference case of the torus.
We observe the values are compatible within one standard deviation
of the mean.

(and, e.g., not only on its genus). The second observation is
that, as expected, the presence of edges is strongly affecting
the TKC. This is evident from the fact that the Möbius strip,
cylinder, and RPP have very distinct TKCs, despite their ho-
mology groups having the same dimension or being exactly
the same.

We now contrast the XY results with what we observe
for the case of the Heisenberg model, depicted in Fig. 4.
In that case, it is known that no transition is present as a
function of temperature. We observe that the values of Id

are compatible for any topology. We attribute this to the fact
that the model is topologically trivial and shows a clearly
different behavior with respect to the XY model. In the
inset of Fig. 4, we plot |Id − Id (torus)| for a few values
of temperature to highlight that the curves are compatible
within error bars. In Appendix A, we also show the re-
sults for the Ising model. The conclusions we can draw are
similar. There is not a clear trend in the value of the in-
trinsic dimension with respect to topology. Indeed, all the
values—for different topologies—are compatible within error
bars since both phases of the Ising model are topologically
trivial.

3. Conditional connectivity: A local order parameter in data space

To validate the argument above, we need to identify
testable predictions that connect topological excitations in real
space with the data structure and that can be independently
verified when investigating partition function samples. In-
formed by our analysis above, we focus on the role of winding
numbers in the data structure.

The winding number w� is a key quantity for studying
topological systems. In a spin system, it is an estimate of the
number of times the spins wind following a given path � along
the manifold. In the case of the XY model, where the ith spin

is represented by a single angle θi, it can be written as follows:

w� = 1

2π

L�∑
i=1

	θi,i+1, (15)

where � is comprised of L� sites, and 	θi,i+1 = θi+1 − θi is
rescaled into the range (−π, π ]. As shown in Fig. 1(d), the
possible independent paths on which winding numbers can
be calculated depend on the manifolds themselves. We define
as w = {w�1 , . . . ,w�k } the collection of w′

�s calculated on
the paths �1, . . . , �k . For instance, in the case of a torus (T )
and a 2-torus (T 2), one has w(T ) = {wa,wb} and w(T 2) =
{wa1 ,wb1 ,wa2 ,wb2}, respectively [see Fig 1(d)]. Remarkably,
w is a key metric for understanding the clustering structure
of configurations in phase space because winding numbers
capture the topological nature of excitations, namely, above
the BKT transition, vortex-antivortex pairs are unbounded,
resulting in a wide range of different w values among sam-
pled configurations. However, in the quasi-long-range-order
regime (below TBKT), the majority of configurations have the
same w, i.e., for a torus topology w = (0, 0).

According to the rationale above, the physical properties
of the BKT phase transition strongly affect the connectivity
between neighboring configurations. In particular, the fraction
of points whose first and second neighbors have the same w,
that we dub conditional connectivity Fw = Nw/Nr , must be
informative of the transition. Here Nr is the total number of
configurations sampled and Nw is the number of configura-
tions whose first two neighbors have the same w. Evidently,
Fw is close to zero above the BKT transition (where config-
urations exhibit a wide range of w) but is equal to 1 in the
topological phase (where the values of w are constrained due
to the topological nature of the excitations and the configura-
tions appear as clusters in data space).

In Fig. 5(a), we show Fw in the case where only two
paths on the lattice are taken into account for each mani-
fold, which is to be compared with Fig. 5(b) where all the
possible nontrivial paths are considered. We observe that the
two figures display the same qualitative behavior, showing a
transition near the critical temperature, but they are quantita-
tively different. This is expected since the larger the number
of possible independent windings, the more constrained the
system in the BKT phase. In Fig. 5(c), we show Fw for the
case discussed in Fig. 5(a) but for different system sizes. In
the inset, we perform a collapse of the curve with estimated
parameters c = 0.72(1) and a = 1.76(7). To do so, we use a
suitable mesh for the parameters, fixing the critical temper-
ature kBTc/J = 0.8933 [48]. Then we calculate the scaling
variables

x = ln L − at−1/2, y = Fw ln(L/c) (16)

and choose a parametric function hypothesis f (x, a, c) to
be compared with y. Here t = (T − Tc)/Tc. We use the
Levenberg-Marquardt algorithm to compute the best fit for
each choice of a, c, and f , where f is considered to be a
polynomial with varying degree k = 5, 6, 7, 8. Our estimates
for a and c are calculated as the average of all the best fits
and their errors are the standard deviation of the latter. We
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FIG. 5. Fraction of points in data space whose first two nearest
neighbors have the same winding number Fw. In (a), we consider only
two nontrivial loops. In (b), we consider every possible nontrivial
loop on the manifold. The crossover point moves (from right to left)
depending on the topology according to the legend. The square lattice
has linear dimension L = 72. In (c), we consider Fw for the 1-torus at
different system sizes L2, going from L = 32 (top curve) to L = 128
(bottom curve). These results indicate how, below the critical temper-
ature (labeled by the dashed vertical lines), the local (connectivity)
properties of the data set become severely constrained by global
properties (winding numbers) of the configurations sampled. This is
a local order parameter in data space that has a universal behavior
at the transition, as shown in the inset. Here t = Kb(T − Tc )/J ,
with Tc value set at KbTc/J = 0.8933, and a = 1.767 ± 0.003 and
c = 0.721 ± 0.003, estimated through a data collapse.

observe that the conditional connectivity Fw displays a uni-
versal behavior. It can be considered an order parameter in
the data space and, as argued before, is closely related to the
fact that the Kolmogorov complexity displays a topological
contribution in the BKT phase. In fact, the local connectivity
(as estimated by Id ) is strongly constrained by the global
properties of the manifold, which are expressed by the be-
havior of Fw. This discussion allowed us to make two clear
statements that we want to summarize here: (i) The connec-
tivity between neighboring configurations is strongly related
to the physical properties of the BKT transition. Remarkably,
nearest-neighbor configurations have identical physical prop-
erties (winding numbers) when the system is in the ordered
(topological) phase. Conversely, in the disordered phase, the
first and second neighbors’ physical properties are entirely
random as witnessed by Fw approaching zero. (ii) Changing
the number of w′s calculated and compared, the transition
point (Fw going to 1) moves as more constraints are ap-
plied on the configurations. Hence, it should be expected
to have different behaviors for the Kolmogorov complex-
ity K (X ) on different manifolds, as has clearlybeen shown
before.

IV. DISCUSSION AND CONCLUSIONS

We have proposed a theory that connects topological prop-
erties of classical statistical mechanics to the Kolmogorov
complexity of the corresponding statistical sampling of the
many-body state according to the problem partition function.
The original approach we proposed is inspired by topological
field theory: take a manifold, sample the partition function on
the model defined on the manifold itself, and get an invariant.
By gauging such a procedure on a 1-torus, we have defined
a topological Kolmogorov complexity associated to a given
problem, on a given manifold. Based on the connection, we
establish between topological properties in real space and data
structures in configuration space, the overall conclusion of our
theory is that the more constrained a many-body system is by
topological effects, the lower the Kolmogorov complexity of
its sampling will be.

We have then addressed our theory in the framework of
classical statistical mechanics models: Ising, Heisenberg, and
XY defined on square lattices. In the Berezinskii-Kosterlitz-
Thouless phase of the XY model, the complexity of the
partition function strongly depends on the homology of the
target manifold, demonstrating a strong, qualitative connec-
tion between topology and complexity. Most importantly, the
topological Kolmogorov complexity attains universal (in the
sense of sampling-independent) values in the BKT phase that
are suggestive of its direct link to the winding of spins in the
manifold. While some of these values appear compatible with
integer TKC, we believe a more extended study is required
here, that should address larger data sets from the ones we
consider here. This will require the development of unique
methods for intrinsic dimension estimation, in particular, with
respect to errors. In our numerical experiments, we have also
observed a strong dependence on complexity with respect to
boundaries. Finally, at high temperatures, and in the Ising
and Heisenberg models, we observe no connection between
topology and complexity, as expected.

Within the XY model, our theory allows us to track the
origin of the relation between complexity and topology by
analyzing the interplay between metric distances and winding
numbers. In particular, we identify an order parameter—
conditional connectivity—that, while fully local in data space,
correctly predicts the topological transition taking place in
real space. The order parameter satisfied phenomenologi-
cal scaling relations, further proof of its relation with the
BKT transition. This interpretation might be useful in un-
derstanding how learning methods such as dynamical maps
and persistent homology have found very convincing appli-
cations on the XY model [54–57] by specifically exploiting
information about winding numbers. In fact, these methods
might have indirectly detected the simple order parameters
we proposed. It is worth commenting on the fact that, while
exotic topologies might seem hard to realize, in general, they
are an experimental reality in quantum simulators. In fact,
those can be achieved in a variety of manners, including
synthetic dimensions [58,59], atom configurations, and atom
rearrangements in optical tweezers, the latter already being
experimentally demonstrated [60].

Summing up, our theory and numerical experiments sup-
port the fact that real-space topological information becomes
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local in data space. This last conceptual insight can serve
as a starting point for the exploration of the interplay of
complexity and topology beyond equilibrium classical statis-
tical mechanics. One clear avenue is off-equilibrium physics,
where the same toolbox we used here shall be, in principle,
directly applicable. Another horizon is quantum equilibrium
systems. In that context, the connection between information
and topology has found profound applications in topologi-
cal matter, e.g., the formulation of topological entanglement
entropy [26]. However, such quantities are typically not
amenable to experimental tests at large scale, as they require
the knowledge of the full system wave function. A statistical
approach like the one pursued here could reveal signatures
of topological order and/or topological effects even in the
presence of limited, but statistically significant, sampling, as
long as experiments are able to dynamically tune topology
(as demonstrated, e.g., in Refs. [61,62]). It is, however, im-
portant to stress that, while our paper provides basic tools in
this direction (for instance, the partition functions we study
can be thought of as path integrals of one-dimensional fluids
with fractionalized excitations), attacking the quantum regime
necessarily requires a more convoluted approach. This is not
only due to the fact that topology has different incarnations
in that setting (e.g., topological order, band structures, and
critical phenomena) but, most importantly, to the fact that
quantum systems provide data sets in multiple basis. It is
an open question to determine how a clever combination
of those, possibly together with randomized sampling [63],
would lead to a direct connection between topology and
complexity.
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APPENDIX A: ISING MODEL RESULTS

We here contrast the XY results with what we observe
for the case of the Ising model. In particular, we show Id as
a function of the temperature for Torii of different genus g
[Fig. 6(a)], and other topologies [Fig. 6(b)]. We consider the
Ising model on a square lattice with L = 72. We take Nr = 104

FIG. 6. Plot of Id for the Ising model. We consider a square
lattice with linear dimension L = 72. We consider Nr = 104 and Id

is estimated as average over ten simulations. Value of Id for differ-
ent topologies. For both (a) and (b), we observe all the values are
compatible within the error bars as both phases of the Ising model
are topologically trivial. The critical point is denoted with a dashed
vertical line.

snapshots and Id is estimated as an average over ten simu-
lations. We observe that Id clearly shows a local minimum
near the critical temperature as expected but does not show
dependence on the topology of the manifold the systems lie
on. We observe all the values are compatible within the error

FIG. 7. Check of the Pareto distribution. Here we consider a
square lattice with L = 72 and Nr = 2500. Here t = kbT/J .
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FIG. 8. Comparison between the different procedures for getting
a 4-torus. Comparison between four squares lattices with L = 24 and
rectangular lattices with linear dimensions 48 and 12; and between
square lattices with L = 32 and rectangular lattices with linear di-
mensions 72 and 18.

bars as both phases of the Ising model are topologically trivial.
Moreover, finite-size effects here play a strong role at the
transition point, where most configurations differ in a way that
is distinct from the XY case. Here, the complexity of Klein
and torus—that are within error bars for the XY case given
their homotopy groups—widely differ.

APPENDIX B: PARETO DISTRIBUTION CHECK

The starting assumption of the TWO-NN method is that the
ratio μi = r (2)

i /r (1)
i , of the next-nearest and nearest neighbors

is Pareto distributed, namely, that f (μ) = Idμ
−Id −1. Here we

check this assumption for a few cases of the XY model; we
fix temperature kbT/J = 0.1, kbT/J = 0.8, and kbT/J = 1.2,
and compute Id . Then we compare the cumulative distribution
corresponding to the estimated Id and the one computed from
the distribution of distances in the data set. We obtain the
plots in Fig. 7. Perfect agreement between the curve (exact
cumulative distribution function) and the points (cumula-
tive distribution obtained from the samples configurations) is
evident.

APPENDIX C: STRINGS VS SQUARES

In the main text, we described the method we use for com-
puting Id . In a nutshell, we sample configurations via Wolff’s
algorithm and realize the different manifolds appropriately
tuning the boundary conditions.

We observe that in the case of the g-torii, the easiest way to
do so, from a computational point of view, is to consider a sin-
gle square lattice, divide it in g stripes, and apply the necessary
periodic boundary conditions, instead of considering g square
lattices. This allows us to easily consider the same number of
lattice sites, i.e., the same lattice volume, for each genus g and
to also realize odd-g torii. In this section, we present the com-
parison, for g = 4, between Id calculated using four square
lattices or a single square lattice divided into four stripes. In
the upper panel of Fig. 8, we present the comparison between
482 sites and 722 sites for the two different geometries for the
XY model. We observe that even though they differ around the
critical temperature (which is shifted towards kbT/J = 1 due
to finite size corrections), increasing the system size entails
that the agreement between the two geometries grows. This is
due to the fact that the correlation length grows at the transi-
tion point such that finite-size effects are much more relevant.
However, we observe that these effects at the transition do
not matter in view of the purpose of the main text since our
understanding applies at the topological phase. In the lower
panel of Fig. 8, we show explicitly the difference in Id of the
two approaches 	Id . We observe 	Id starting to grow later
in the case of larger system sizes, testifying that 	Id > 0 is a
finite-size effect.
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