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Dynamics of quantum coherence and nonlocality of a two-spin system in the chemical compass
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In this paper a system consisting of two electron spins has been prepared initially in a singlet state using the
chemical compass model is considered. It is assumed that each electron spin interacts symmetrically and/or
asymmetrically with its respective private nuclear environment in the presence of an external magnetic field. We
discussed the effect of the interaction parameters and the external magnetic field on some quantifiers of quantum
correlations as entanglement, coherence, Bell inequality, as well as the steerability inequality. It is shown that
within a certain range of external magnetic fields, the quantum coherence and entanglement behave similarly.
The Bell and the steerable inequalities predicted a similar behavior for symmetric and asymmetric interactions.
Moreover, as one increases the external magnetic field, the lower bounds of both inequalities have improved.
The usefulness of using the spin state as quantum channel to teleport a two-qubit system has examined where
the Bell inequality could be above its classical bounds by controlling the interaction parameters. It is shown that
by tuning the coupling parameters the fidelity of the teleported state exceeds the classical bounds, as well as the
long-lived stationary fidelity could be achieved during the interaction time.
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I. INTRODUCTION

Over the years, a significant amount of experimental
evidence has consistently demonstrated the influence of mag-
netic fields on chemical reactions [1–3], constructing the
foundations of radical pair mechanism development. This
mechanism, which originated in the 1970s, sheds light on
how external magnetic fields can affect chemical reactions
induced by light. As a result, spin chemists have invested ma-
jor resources in studying these reactions in molecular systems
[4,5], with particular emphasis on their sensitivity to both light
and magnetic fields. Furthermore, some aspects of the radical
pair mechanism share commonalities with components found
in quantum computing methods and quantum communica-
tion protocols. For example, after photoexcitation and charge
transfer, the initial state of the radical pair assumes a spin sin-
glet configuration, which is a maximally entangled Bell state.
This configuration serves as a valuable resource for various
quantum information tasks, including dense coding capacity
[6,7], quantum state teleportation [8–11], and quantum key
distribution [12,13]. Through the presence of the external
magnetic field and that of the nuclear spins, the spin state
of the radical pair changes. The observed similarities raise
the question of whether magnetic field sensing based on the
radical pair mechanism can be understood as a fundamental
form of quantum information processing.

Correlations resulting from local measurements on en-
tangled quantum systems may exhibit nonlocal correlations
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[14]. Significantly, the local hidden variable model imposes
restrictions on the measurement statistics for a sufficiently
large collection of quantum systems [8]. Nonlocality, as an
important concept, has its origins in the EPR paradox, which
is at the heart of nonlocality [15]. This paradox challenges
the idea that quantum mechanics can allow what is com-
monly known as spooky action at a distance. Subsequently,
Schrödinger explained this phenomenon by suggesting that
local measurements could influence distant quantum subsys-
tems without direct access, a concept referred to as quantum
steering, often called EPR steering [16]. In general, quantum
steering serves as a quantification of the quantum correlations
that exemplified the EPR paradox. Particularly, it is recog-
nized in modern quantum information theory as a measure
of the quantum correlations between quantum entanglement
and Bell nonlocality. Moreover, steerable states are considered
to be a subset of entangled states [17]. Recently, quantum
steering has gained considerable attention in both theoretical
and experimental research [18–23].

The aim of our research is to examine the radical pair
mechanism and the chemical compass model, using several
techniques and methods from quantum information. An ex-
tensively studied example of spin chemistry is a solution
containing pyrene (Py) and dimethylaniline (DMA), where
DMA serves as a donor and Py as an acceptor [24]. Magnetic
field-dependent effects have been extensively studied for this
pair of molecules, including studies of isotope effects [4,25].
This study focuses on a quantum system consisting of two
unpaired electrons in a spin-correlated electronic singlet state
within a radical pair, with each electron interacting with its
respective private environment. First, we investigate quantum
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FIG. 1. (a) Schematic of the radical-pair mechanism. After light-induced electron transfer, donor (D), and acceptor (A) molecules form
a correlated spin radical pair. The magnetic field causes the spin character of the radical spins to interconversion between singlet and triplet
states. (b) The diagram shows two electron spins, e1 and e2. Both electron spins interact with their respective nuclear environments through
hyperfine interactions. In addition, the pair of electrons is affected by the Zeeman effect caused by an external magnetic field.

coherence against entanglement by means of concurrence.
Our results show that by manipulating the hyperfine couplings
between the electrons and their corresponding environments,
as well as an external magnetic field, coherence and con-
currence exhibit similar behavior. In particular, the external
magnetic field provides an opportunity to enhance and control
the lifetime of entanglement, showing that it promotes the
growth of entanglement and quantum coherence without caus-
ing their destruction. Next, we will explore the nonlocality in
this model, including quantum steering and Bell nonlocality,
and examine the delicate dependence between these different
measures of nonlocality. Finally, we will study quantum tele-
portation in the model, taking into account the violation of
Bell nonlocality, to establish the relationship between quan-
tum teleportation and the violation of Bell nonlocality.

The paper is organized as follows. The considered two-
electron-spin physical model is presented in Sec. II. Defini-
tions and mathematical formulas for concurrence, coherence,
Bell nonlocality, and quantum steering, along with their dy-
namical behavior and discussion, are presented in Secs. III
and IV, respectively. Quantum teleportation is discussed in
Sec. V. The paper is finished with a conclusion of the current
investigation in Sec. VI.

II. DESCRIPTION OF THE MODEL

Let us consider a spin-correlated radical pairs consisting
of a donor (D) and an acceptor (A), as illustrated in Fig. 1.
Initially, the two unpaired electrons have their spins in a
singlet state. The behavior of the radical pair spins over time
is determined by the intensity of the external magnetic field
and the interaction with the nuclear spins in the molecule,
which are assumed to be isotropic. In this context, we can
describe the spin Hamiltonian for a radical pair, including both
hyperfine and Zeeman interactions. The total Hamiltonian of
the system can be presented in a general form as below [26]

H = μB(g1B. S1 + g2B. S2)

+
N1N2∑
j=1

μB(g1S1. λ1, j . I1, j + g1S2. λ2, j . I2, j ), (1)

where the first term in the right-hand side of Eq. (1) is the
Hamiltonian of Zeeman interaction. It refers to the interaction

of electron spins with an external magnetic field B. However,
the second term represents the hyperfine Hamiltonian, which
describes the interaction between the electrons and the nuclei
of the molecule. However, μB indicates the Bohr magneton,
g1 = g2 = 2 denotes the effective g factor of electrons e1 and
e2, and S signifies the dimensionless electron spin operators,
defined as σ/2 with σ being the vector of Pauli matrices.
Additionally, λ1, j and I1, j represent the hyperfine coupling
tensor and nuclear spin of the jth nucleus. For simplicity, we
assume that each electron is coupled to one proton.

The assumption that each electron spin interacts solely
with its respective environmental nuclei allows us to sepa-
rate the temporal evolution of the system into the separate
evolution of the two radicals [see Fig. 1(b)]. The only factor
linking these two radicals, and necessitating their simultane-
ous treatment, is their initial correlated state. The dynamics of
the electron spin states are governed according to Eq. (1) as

ρ(t ) = Trnuc

[
U (t )

(
ρ(0) ⊗ 1

dnuc

)
U†(t )

]
, (2)

where the nuclear spin environment is traced from the initial
evolved state of the whole system, where dnuc is the Hilbert
space dimension of the nuclear spins and U (t ) = Exp( −
iHt/h̄). However, when the spins of two electrons, labeled
by Se1 and Se2 , combine, they result in a total spin, labeled
by ST , with a quantum number of either S = 1 or S = 0. In
the latter case, it is referred to as a singlet state, with ms = 0,
while in the former case, it is referred to as a triplet state, with
ms = 0,±1

|S〉 = (|↑↓〉 − |↓↑〉)/
√

2,

|T0〉 = (|↑↓〉 + |↓↑〉)/
√

2,

|T+〉 = |↑↑〉 , |T−〉 = |↓↓〉 . (3)

We employ the standard assumption and consider a singlet
state denoted by ρ(0) = |S〉 〈S| as the initial state for the
electron spins.

Figure 2 illustrates how the hyperfine interaction caused
by the nuclei begins to mix the spin properties of the electron
spins, alongside the transformation driven by the external
magnetic field. Specifically, as shown in Fig. 2(a), when the
external magnetic field is zero, the singlet fidelity is initially
maximized. As the interaction is switched on, it decreases, and
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FIG. 2. An illustration of the singlet-triplet (T0) fidelities and von Neumann entropy (E) for fixed hyperfine coupling, i.e., λ1,1 = 0.5 and
λ2,1 = 0.6. (a) singlet- (red line) and triplet-zero fidelity (blue dashed line) in the absence of the external magnetic field B = 0. (b) same as
Fig. 2(a) but in the presence of the external magnetic field B = 10. Finally, (c) reflects von Neumann entropy, where B = 0 and B = 10 hold
for the red line and blue dashed line, respectively.

in the meantime, the triplet fidelity increases until it reaches its
maximum value, which is 0.25. At the same time, the singlet
state reaches its minimum value, which is also 0.25. As time
progresses, the triplet fidelity oscillates between 0 and the
minimum value of the singlet fidelity. However, this is not the
case in the presence of the external magnetic field, namely
B = 10. As shown in Fig. 2(b) the system is no longer in the
singlet state, indicating an interconversion between the singlet
and triplet states. More specifically, at t = 0, the system is in
a singlet state, but due to the effect of the magnetic field, at
t = 31.35, the system transitions into a triplet state.

The rise in von Neumann entropy, which results from the
mixing induced by the decohering environment of nuclei and
the associated loss (and recovery) of singlet coherence, is
visually depicted in Fig. 2(c). Initially, the entropy is at zero,
signifying that the system is well defined, i.e., in a pure state,
as indicated in Fig. 2(a), that is singlet state. On the one hand,
in the absence of an external magnetic field [as shown in the
red behavior in Fig. 2(c)], the maximal entropy value is 2,
which indicates that the quantum state is a completely mixed
state. Furthermore, when we compare von Neumann entropy
and singlet fidelity behaviors, it is remarkable that a decrease
in singlet fidelity corresponds to an increase in von Neumann
entropy, meaning that the degree of uncertainty increases, and
vice versa. On the other hand, the presence of an external
magnetic field reduces the mixture in the quantum system,
as evidenced by the von Neumann entropy in Fig. 2(c). This
can be explained as the interconversion of singlet-triplet states
caused by the external magnetic field. However, from Figs. 2

and 3 it is evident that the increase in the numbers of hyperfine
coupling is resulting in an increase in the oscillations in both
singlet-triplet fidelities and von Neumann entropy.

III. QUANTUM CORRELATIONS: PRELIMINARIES

In this section, we will recall the main definitions and
mathematical framework of the quantum correlation measures
that will be used in this study. These quantifiers include coher-
ence, concurrence, Bell nonlocality, and quantum steering.

A. Coherence versus entanglement

Quantum coherence, which arises from quantum superpo-
sition, plays a crucial role in quantum mechanics. It serves as
a fundamental property for both entanglement and other forms
of quantum correlations. In addition, it is a crucial resource in
the fields of quantum computation and quantum information
processing. A variety of methods are available to quantify
quantum coherence, with the �1 norm of coherence being a
widely used approach in quantum physics. This measure is
expressed as [27]

Cl =
∑
i �= j

|ρi j |. (4)

To characterize the quantum entanglement in the reduced
density matrix ρ(t ), we use the commonly employed measure
known as concurrence C for a two-spin system. This measure
was originally introduced by Wootters [28]. A value of C = 0

FIG. 3. The same as Fig. 2 but the hyperfine couplings are λ1,1 = 0.1 and λ2,1 = 0.2.
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indicates that the state of the system is separable, while a value
of C = 1 indicates that the system is maximally entangled.
An explicit definition of concurrence can be formulated as
follows:

C = max{0,
√

δ1 −
√

δ2 −
√

δ3 −
√

δ4}, (5)

where δi(i = 1, 2, 3, 4) represent the eigenvalues of the matrix
R = ρ(t )(σy ⊗ σy)ρ∗(t )(σy ⊗ σy) in decreasing order, while
ρ∗(t ) is the complex conjugated of ρ(t ).

B. Bell nonlocality

To achieve a better understanding of quantum correlations,
it is crucial to establish the Bell–Clauser-Horne-Shimony-
Holt (Bell-CHSH) inequality in a simplistic form. In order to
study nonlocality within the CHSH framework, we can use
the Bell operator, as described in Ref. [29]. Consequently, the
definition of the Bell-CHSH inequality is as follows [30]:

BCHSH = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ, (6)

where a, a′, b, b′ are unit vectors, and σ = (σx, σy, σz ) is
the vector of Pauli matrices. The CHSH inequality can be
formulated for any bipartite mixed state using the following
expression:

|Tr{ρ(t )BCHSH}| � 2. (7)

The CHSH inequality is satisfied for any state that can be
explained by a local hidden variable model. If the inequality
is violated, it means the Bell nonlocality of the underlying
state. The maximum violation of Bell’s inequality can also be
expressed as follows [31]:

B = 2
√

ti + t j, (8)

where ti and t j are the two biggest eigenvalues of the matrix
T †T , where T is the correlation matrix with elements tkl =
Tr[ρ(t )σk ⊗ σl ] with {k, l} = {1, 2, 3}.

C. Quantum steering

The basic concept of the steering phenomenon stems from
the mysterious features of quantum mechanics explored by
Einstein-Podolsky-Rosen and Schrödinger. Nevertheless, the
steering phenomenon in two-qubit states can be quantified
by steering inequalities, using the Cavalcanti-Jones-Wiseman-
Reid (CJWR) inequality [32,33]. Taking into account three
measurements, the CJWR inequality can be defined as:

FCJWR(ρ(t ), r) = 1√
3

∣∣∣∑3

i=1
〈Ai ⊗ Bi〉

∣∣∣ � 1, (9)

where Ai = rA
i .σ and Bi = rB

i .σ indicate the projections cor-
respond to the measurements carried out on Alice and Bob,
respectively. The set r = rA

i , rB
i denotes the measurement di-

rections. If we take into account the maximum values of
FCJWR(ρ(t ), r), denoted by F (ρ(t )), then Eq. (9) can be re-
formulated as follows [34]:

QS = F (ρ(t )) =
√

t2
1 (ρ(t )) + t2

2 (ρ(t )) + t2
3 (ρ(t )) � 1,

(10)

where t1(ρ(t )), t2(ρ(t )), t3(ρ(t )) are the eigenvalues of the
correlation matrix T (more details are given in Sec. III B).

IV. RESULTS AND DISCUSSION

A. Coherence versus entanglement

In this section, we will investigate the effect of the external
magnetic field B and the influence of hyperfine coupling in the
proposed system, namely two electrons where each electron
is interacting with its own environment (we assume that each
electron is coupled to one proton) on coherence and entangle-
ment. It is obvious that in the absence of an external magnetic
field [as shown in Fig. 4(a)] that the existence of coherence
in the quantum system does not guarantee the presence of
entanglement. More specifically, one can see that as the coher-
ence takes different values in the ranges of [0,0.33], the spin
system is separable, where the concurrence remains zero, but
as the values of coherence cross the threshold, i.e., Cl ≈ 0.33
there is a corresponding increase in the values of entangle-
ment, and eventually both coherence and entanglement reach
their maximum values. This is because the system is initially
prepared in a singlet state. However, as the external magnetic
field is switched on [as shown in Figs. 4(b) and 4(c)] there is
an enhancement in the entanglement, specifically, in the case
where B = 0.05 there is a sudden increase in the entanglement
in a value of coherence, namely Cl ≈ 0.29 but they (Cl and C)
can not reach their maximum due to the effect of decoherence
imposed by the nuclei environment. Moreover, in the case
when the two-hyperfine coupling imposed by each proton
on its respective electron is almost equal (symmetric), i.e.,
λ1,1 = 0.2 ≈ λ2,1 (as illustrated in the small plot in Fig. 4(b)],
there is a marked increase of oscillation and their magnitude
in the behavior of Cl and C. However, Fig. 4(c) displays the
same quantities and parameters as in Fig. 4(b), but for B = 0.1
as before, we observe a sudden rise of entanglement in a
situation where Cl ≈ 0.18. Moreover, when the values of λ1,1

and λ2,1 are approximately identical (symmetry interaction),
i.e., λ2,1 ≈ λ1,1 = 0.2 there is an enhancement of oscillation
and their magnitude [see the small plot in Fig. 4(c)]. In a
scenario where B = 10 in Fig. 4(d), it is evident to say that
the existence of an external magnetic field with large values
results in an improvement of entanglement between two elec-
tron spins. Furthermore, in this case, the coherence implies
the existence of entanglement. From Fig. 5 it is obvious that
the presence of the external magnetic field improves quantum
correlations in the two electron spins. Moreover, the existence
of coherence does not necessarily ensure that entanglement
can be obtained.

B. Quantum steering and Bell nonlocality

In this section, we investigate the sensitivity of quantum
steering and Bell nonlocality in Figs. 6 and 7, respectively.
These measures allow us to quantify quantum correlations
between the two electron spins in the radical pair. We also
discuss the effect of the absence and presence of the external
magnetic field and the hyperfine couplings on the behavior
of these quantities during the interaction. However, Fig. 6(a),
where we consider a symmetry interaction, i.e., λ1,1 ≈ λ2,1 =
0.2 and Fig. 6(b), where an asymmetry interaction is taken
into account, i.e., λ1,1 = 0.2, λ2,1 = 0.1 display the effect of
the external magnetic field on quantum steering. Moreover, it
is obvious that the behavior of the latter is initially maximized
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(c) (d)

(a) (b)

FIG. 4. Parametric plot of coherence (Cl ) versus concurrence (C) for fixed λ1,1 = 0.2, λ2,1 = 0.1, (a) in the absence of external magnetic
field B = 0, (b) for B = 0.05, (c) for B = 0.1 and (d) for B = 10. The small subfigures in (b) and (c) for symmetry interaction are λ1,1 = 0.2 ≈
λ2,1.

due to the fact that the system is initially prepared in a singlet
state. Furthermore, as the interaction is switched on, specif-
ically in the interval t ∈]0, 7.5], quantum steering decreases
as time interaction increases; moreover, as the external mag-
netic field takes the values 0, 0.05, and 0.1 quantum steering
decreases rapidly, eventually falling below its classical limits,
which is one. However, this is not the case when B = 10,
quantum steering decreases in a manner quite slower and
eventually becomes steady at a value identical to the classical
limits. However, in the interval t ∈]7.5, 23.5] there is a sud-
den rise of quantum steering, specifically, on one hand when
the hyperfine couplings take values, namely λ1,1 = 0.2 and
λ2,1 = 0.1 as depicted in Fig. 6(b), there is a small increase in
quantum steering when B = 10 and for other values, quantum
steering remains below its classical limit.

On the other hand, when λ1,1 and λ2,1 are nearly identical,
the behavior shows a periodical increasing as time interac-
tion increases, and this can be interpreted as follows: the
simplified model, with only two nuclear spins, illustrates the

reemergence of the initial state after a certain time, determined
by the two identical hyperfine couplings and the external mag-
netic field, as shown in Figs. 2 and 3. A two-nucleus serves as
a very limited environment, resulting in a decay rate smaller
compared to the one found in the paper [35].

In other words, the environment has a limited information
capacity. Consequently, the dynamics of the system quickly
returns it to its initial state, facilitated by the small environ-
ment, which effectively feeds back the information lost from
the system to the environment as a result of decoherence. Fur-
thermore, Figs. 6(c) and 6(d) illustrate the effect of hyperfine
couplings on quantum steering in the absence and presence of
an external magnetic field, respectively. However, in the ab-
sence of B quantum steering is at its maximum and decreases
rapidly as λ2,1 takes a large value, i.e., 0.5, whereas for the
small values, quantum steering slowly decreases. Moreover,
the sudden death or birth phenomena of quantum steering are
caused by its sensitivity to the decoherence phenomenon. Fur-
thermore, from Fig. 6(d), the maximum and minimum bounds
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(a) (b)

FIG. 5. Parametric plot of coherence (Cl ) versus concurrence (C), where B ∈ [0, 10]. Moreover, (a) for λ1,1 = 0.2 ≈ λ2,1 and (b) for λ1,1 =
0.2, λ2,1 = 0.1.

of quantum steering are determined by appropriate values of
the external magnetic field and hyperfine coupling.

We have illustrated in Fig. 7 the time variation of the Bell
nonlocality, B, in the absence and presence of an external
magnetic field for the symmetry and asymmetry interaction

between the electrons and their corresponding environment.
However, the general behavior of Bell nonlocality is similar to
that shown for the inequality of the quantum steering. The two
quantities initially decrease from the maximum value at t = 0,
where the singlet state is maximally steerable with perfect

FIG. 6. Quantum steering (a) for a symmetric interaction, i.e., λ1,1 = 0.2 ≈ λ2,1, where B = 0, 0.05, 0.1, and B = 10 stand for green
dotted-dashed, black dotted, red dashed, blue solid lines, respectively, (b) same as Fig. 6(a) but λ1,1 = 0.2, λ2,1 = 0.1, (c) for λ2,1 = 0.2 and
B = 0, where λ1,1 = 0.01, 0.05, 0.1, and λ1,1 = 0.5 stand for green dotted-dashed, black dotted, red dashed, blue solid lines, respectively,
(d) same as Fig. 6(c) but B = 10.
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FIG. 7. Bell nonlocality with same parameters as in Fig. 6, where the horizontal line represents the classical limits.

steering and the Bell nonlocality has its maximum violation,
where we have a maximally entangled state. Afterwards, the
quantum steering decreases as the interaction time increases.
The long-lived behavior of Bell nonlocality increases as one
increases the external magnetic field. However, in the situation
where B takes the values 0, 0.05, 0.1, the Bell nonlocality
disappears before the quantum steering, specifically for sym-
metry interaction (asymmetry interaction) Bell nonlocality
and quantum steering destroyed at t = 2.1 (t = 2.6) and t =
2.56 (t = 3.23), respectively, showing that for some ranges of
the external magnetic field, the singlet state is steerable and
cannot violate the CHSH inequality. On the other hand, when
B = 10 for symmetry interaction (asymmetry interaction), the
Bell nonlocality and quantum steering disappeared at t = 6.6
(t = 7.5), meaning that the singlet state is steerable and satis-
fies Bell nonlocality. Therefore, by increasing B all steerable
states violate the Bell-CHSH inequality.

V. APPLICATION: TELEPORTATION

An entangled mixed state is a valuable resource for ex-
ploring the protocol of quantum teleportation [36]. In this
study, we aim to investigate how an external magnetic field
influences the potential for quantum teleportation within the
chosen model. The investigation assumes that the initial input
state is

|ψin〉 = cos(θ/2) |↓↑〉 + eiϕ sin(θ/2) |↑↓〉 ,

∀0 � θ � π, ∀0 � ϕ � 2π. (11)

Quantum teleportation involves the transformation of an ini-
tial input state, denoted ρin = |ψin〉 〈ψin|, into an output state,
denoted ρout, through the action of a mixed channel described
by the symbol ρchl. From the mathematical perspective of
quantum theory, we can claim that this mixed channel ρchl

is a completely positive map. By using joint measurements
and local unitary operations on the input state ρin, we can
successfully derive the output state ρout of the following form:

ρout =
3∑

i, j=0

pi j (σi ⊗ σ j )ρin(σi ⊗ σ j ), (12)

where σ1,2,3 are the Pauli matrices, σ0 is the identity matrix
and pi j = pi p j = Tr[Eiρchl]Tr[E jρchl], the projective mea-
surements Ei are given by means of the four maximally
entangled Bell’s states as:

E0 = |�−〉 〈�−| , E1 = |�−〉 〈�−| ,
E2 = |�+〉 〈�+| , E3 = |�+〉 〈�+| . (13)

We assume that the quantum channel ρchl corresponds to the
reduced density matrix ρ as described in Eq. (2). However,
the fidelity between the initial input state, ρin, and the output
state, ρout, can be considered a measure of the quality of the
quantum teleportation process. The fidelity is defined as next
[37,38]

F = (Tr[
√√

ρinρout
√

ρin ])2. (14)
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FIG. 8. The average fidelity for fixed external magnetic field B = 10 and λ2,1 = 0.2, where (a) for λ1,1 = 0.01, (b) for λ1,1 = 0.05, (c) for
λ1,1 = 0.1, and (d) for λ1,1 = 0.5. The horizontal line represents the classical limit, namely F = 2/3.

Therefore, the average fidelity derived from the fidelity is
defined as:

FA = 1

4π

∫ 2π

0
dϕ

∫ π

0
F sin(θ )dθ. (15)

To illustrate how the primary model parameters affect the
dynamic behavior of quantum teleportation in a system of two
electron spins, each coupled to a proton, we have illustrated
the average teleportation fidelity using Eq. (15) in Fig. 8.
However, if the average fidelity (FA) exceeds 2/3, it indi-
cates that the transmission of the quantum state through the
quantum protocol is more advantageous compared to classical
protocols. The figure shows the variation of the teleportation
fidelity for different values of the hyperfine coupling between
the first electron and its corresponding proton over the interac-
tion time t . We set λ1,2 = 0.2 and the external magnetic field
values to B = 10 in order to specifically explore the relation-
ship between the violation of Bell nonlocality and quantum
teleportation. However, initially it is obvious that average
fidelity is at its maximum, namely one, as the interaction is
switched on FA progressively decreased. However, for the
situation where λ1,1 = 0.01 (λ1,1 −→ 0), the FA decreases
and eventually becomes identical with the classical limits at
t = 7.8.

As time progresses, there is a periodic, sudden increase in
average fidelity accompanied by oscillations, the magnitude
of which gradually diminishes. This phenomenon is attributed
to the condition λ2,1 � λ1,1, indicating a strong hyperfine
coupling between the second electron and its proton. In other
words, the system rapidly loses coherence to the proton, which
represents the environment of electron 2 and has a limited
capacity to store it. As a result, the system quickly recovers
its coherence. The degradation in the magnitude of oscillation
is a consequence of the weak coupling between electron 1 and
its corresponding proton, meaning the effect of decoherence
is slower in this case. Furthermore, in Figs. 8(b) and 8(c), it is
obvious that by increasing the values of λ1,1 the magnitude of
oscillations decreases as compared to the last case. Moreover,
as λ1,1 takes a large value, namely 0.5 it is remarkable that os-
cillation’s magnitude cannot reach the maximum value of the
FA as reached initially. This is because of the strong hyperfine
couplings imposed by both protons on their corresponding
electrons. In other words, there is always a discrepancy in
the feedback of information from the environment; therefore,
the dynamics of the system may take a long time to return to
its initial state. However, in this section, we have considered
the values of the external magnetic field that violate the Bell
inequality, which is B = 10, therefore, it is remarkable that the
general behavior of the average fidelity is oscillating between
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its maximum, namely, one, and the classical limits, which
are 2/3. By comparing Figs. 7 and 8, one can say that Bell
nonlocality, if it is greater than 2, represents a criterion of
quantum teleportation.

VI. CONCLUSION

In this paper, we have examined the coherence and quan-
tum correlations within a system composed of two electron
spins in a radical pair, where it is assumed that each electron
interacts with a corresponding proton. The effect of symmet-
ric and asymmetric configuration and the external magnetic
field on the behavior of the quantum correlation quantifiers
has been investigated. Moreover, the efficiency of using the
generated entangled state between the two spins as a quantum
channel to perform quantum teleportation is discussed. The
fidelity of the teleported state is quantified at different values
of the interaction parameters.

However, our results show that quantum coherence in the
absence of the external magnetic field does not ensure the
existence of entanglement in the compass system until it ex-
ceeds a threshold, namely Cl ≈ 0.33. On the other hand, as the
value of the external magnetic field increases, it leads to an
enhancement of entanglement. In particular, as B takes a large
value, namely 10, we find that entanglement precisely follows
the behavior of quantum coherence; that is, the existence of
the latter in the compass system ensures the existence of
entanglement. In the absence of an external magnetic field,
our results revealed that the singlet state, characterized by Bell
nonlocality, can indeed violate the quantum steering inequal-
ity. Notably, the opposite scenario does not hold. Furthermore,
when the parameter B is set to 10, we observe that every

singlet state not only exhibits quantum steering but also obeys
the principles of Bell nonlocality.

On the other hand, we also examined the effect of sym-
metric and asymmetric interactions between electrons and
their corresponding private environments on the quantumness
measures. However, in the case of symmetric interaction, we
have found that coherence and nonlocality exhibit a periodic
dynamic of sudden death or birth that does depend on the
values of the external magnetic field. In contrast, we have
shown that the asymmetric interaction between electrons and
their environments has a significant effect on the degradation
of quantum correlations. We found that the degradation of
quantum correlations can be reduced as one increases the
strength of the magnetic field.

It is shown that Bell and steerable inequalities behave
similarly where the decay, increasing, and the stationary be-
haviors are predicted on the same interactions. Moreover, the
possibility of using the spin state to teleport two-qubit system
is examined, where we show that by tuning the coupling
parameters, the Bell inequality exceeds its classical bounds,
and consequently one can use the spin state for teleportation
purposes. However, by controlling the interaction parameters,
the fidelity of the teleported state could be above the classical
bounds, as well as a long-lived fidelity has been observed at
different interaction time.
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