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In this paper, a lattice Boltzmann for quasi-incompressible two-phase flows is proposed based on the Cahn-
Hilliard phase-field theory, which can be viewed as an improved model of a previous one [Yang and Guo, Phys.
Rev. E 93, 043303 (2016)]. The model is composed of two LBE’s, one for the Cahn-Hilliard equation (CHE) with
a singular mobility, and the other for the quasi-incompressible Navier-Stokes equations (qINSE). Particularly,
the LBE for the CHE uses an equilibrium distribution function containing a free parameter associated with the
gradient of chemical potential, such that the variable (and even zero) mobility can be handled. In addition, the
LBE for the qINSE uses an equilibrium distribution function containing another free parameter associated with
the local shear rate, such that the large viscosity ratio problems can be handled. Several tests are first carried out
to test the capability of the proposed LBE for the CHE in capturing phase interface, and the results demonstrate
that the proposed model outperforms the original LBE model in terms of accuracy and stability. Furthermore,
by coupling the hydrodynamic equations, the tests of double-stationary droplets and droplets falling problems
indicate that the proposed model can reduce numerical dissipation and produce physically acceptable results at
large time scales. The results of droplets falling and phase separation of binary fluid problems show that the
present model can handle two-phase flows with large viscosity ratio up to the magnitude of 104.
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I. INTRODUCTION

It is still a challenging task in modeling and simulating
two-phase flows due to the complex interfacial dynamics that
occur across large time and spatial scales, although numer-
ous numerical methods [1–6] have been developed. In recent
years, mesoscopic methods based on kinetic theory have been
developed as a highly promising tool for simulating two-phase
flows. Such methods provide a bridge between microscopic
intermolecular interactions and macroscopic two-phase dy-
namics. In particular, the lattice Boltzmann equation (LBE)
method, which mimics intermolecular interactions in a con-
cise and direct way at the mesoscopic scale, has achieved
significant advances in modeling two-phase flows [7,8].

A number of two-phase LBE models have been devel-
oped from different treatments of the microscopic interactions
among fluids at the mesoscopic scale [9–15]. For the color-
gradient model [9,10], the different phases were represented
by the red and blue particle distribution functions, and the
interaction between different phases was realized by the color
gradient. For the pseudopotential model [11,12], a pseu-
dopotential function was used to model the nonlocal forces
between fluid particles, allowing for the simulation of surface
tension and wettability effects. The free-energy model [13,14]
used a free-energy density function to account for fluid-fluid
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and fluid-solid interactions. The phase-field model [15,16] can
be considered as a variant of the free energy model, employ-
ing the Ginzburg-Landau free-energy model [17] to describe
the interfacial interaction forces between fluids. Particularly,
the LBE models based on phase-field theory [16,18–20]
have attracted much attention in recent years due to the
solid reliable thermodynamic basis. In phase-field theory, a
diffusive interface with finite thickness is assumed between
different bulk phases such that physical variables (e.g., den-
sity and viscosity) vary smoothly across the interface. The
flow dynamics can be described by the Navier-Stokes equa-
tions coupled with an equation for a phase-field variable
(order parameter). There are two widely used models for
the field variable, namely, the Cahn-Hilliard equation (CHE)
[21,22] and Allen-Cahn equation (ACE) [23,24]. A phase-
field LBE model requires two LBE’s, solving the phase-field
equation and the Navier-Stokes equations, respectively. It is
worth noting that addressing the CHE with the LBE method
is not trivial where the diffusion term contains a fourth-order
gradient term of the order parameter. In order to overcome
this defect, some hybrid methods [25–28] coupling CHE
and Navier-Stokes equations have been rapidly developed,
which integrate LBM for fluid flow and the finite-difference
method (FDM) or finite-volume method (FVM) for interface
dynamics. For model consistency and to simplify coupling,
numerous LBE models have been developed to correctly re-
cover the CHE and accurately describe the motion of phase
interface.
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The first phase-field LBE model for two-phase flows was
developed by He et al. [15]. Zheng et al. [29] introduced a
spatial difference term in the LBE for the phase-field variable
such that the CHE can be recovered. Inspired by this idea,
Zu et al. [19] absorbed the spatial difference term into the
equilibrium distribution function to further improve numerical
stability. Liang et al. [16] also proposed a multiple-relaxation-
time LBE model for CHE where a source term with time
derivative was integrated into the evolution equation. In recent
work, Zhang et al. [30] proposed a high-order LBE model
for the CHE through a fourth-order Chapman-Enskog expan-
sion to improve the accuracy and stability in capturing phase
interface. It is noted that most of the available phase-field
LBE models assume the fluid is incompressible everywhere
in the flow domain, which is inconsistent with mass conser-
vation [31]. In order to overcome this defect, Yang et al. [32]
developed a LBE model based on the quasi-incompressible
phase-field theory [31] in which the mass was conserved lo-
cally.

In the standard Cahn-Hilliard model, the interfacial dy-
namics are driven by a force proportional to the gradient of
the chemical potential with a constant mobility [21,22,33].
On the other hand, a modified Cahn-Hilliard model with a
variable mobility derived from the friction dynamics [33–35]
is believed to be more physical, and this leads to the singular
CHE. The discrepancies between the standard and singular
CHE’s were investigated in Ref. [36], and the results showed
that numerical dissipation of the singular CHE can be much
reduced. Through simulating spinodal decomposition prob-
lem, Langer et al. [37] showed that variable mobility was
important for late-stage spinodal decomposition at low tem-
peratures. The simulation results of spinodal decomposition
were in agreement with the experimental results due to the
suppression of bulk mobility by using variable mobility [38].
The tests of bubble rising in multicomponent fluids indicated
that singular CHE could effectively reduce dissolutions of
bubble to surrounding fluid [39]. Furthermore, by simulating
two nonidentical stationary droplets immersed in another fluid
[33], it is revealed that the singular CHE can provide better
numerical prediction than the standard one.

Although numerous LBE models have been developed to
solve the standard CHE, no LBE models have been designed
for the singular CHE. The difficulty lies in the fact that the
variable mobility may be quite small and even zero in the
bulk phases, such that the corresponding standard LBE will
be unstable. Moreover, most LBE models suffer from nu-
merical instability in simulating two-phase flows with large
viscosity ratios [28,40]. The difficulty is that the relaxation
time in LBE is limited by the viscosity. When the viscos-
ity ratio of a two-phase system is large, there is bound to
be a larger and smaller value of relaxation time. Smaller
relaxation time can cause numerical instability, while larger
relaxation times can cause the continuity assumption to fail
[41]. Inspired by the lattice kinetic scheme [42], in this
work we will propose a LBE model for two-phase flows
based on the coupled quasi-incompressible Navier-Stokes and
singular Cahn-Hilliard equations. Particularly, in the LBE
for the singular CHE, a free parameter associated with the
gradient of chemical potential is incorporated into the equilib-
rium distribution function, which can be adjusted according

to the variation of mobility. Moreover, in the LBE for the
quasi-incompressible Navier-Stokes equations (qINSE), a free
parameter associated with the shear stress tensor is introduced
into the equilibrium distribution function, such that the large
viscosity ratio problems can be handled. Consequently, the
relaxation time can be chosen to ensure numerical stability.

The rest of the paper is organized as follows. In Sec. II,
the singular Cahn-Hilliard model for two-phase flows is
introduced, and the improved phase-field LBE model is con-
structed in Sec. III. In Sec. IV, a series of numerical tests
are conducted to validate the accuracy of the proposed model.
Finally, a brief summary is given in Sec. V.

II. SINGULAR CAHN-HILLIARD MODEL
FOR TWO-PHASE FLOWS

In the phase-field theory, the free energy of a two-phase
isothermal fluid system can be given as

F (φ) =
∫

�

[
ψ (φ) + κ

2
|∇φ|2

]
d�, (1)

where φ is the phase variable (order parameter), ψ (φ) is
the bulk free-energy density, κ|∇φ|2/2 is the interfacial free-
energy density with κ being a constant related to the surface
tension, and � is the control volume. A widely used free-
energy density model is the double-well one [43,44]

ψ (φ) = β(φ − φl )
2(φ − φg)2, (2)

where φl and φg represent the order parameters of liquid and
gas, and in the present work wet set φl = 1 and φg = 0. κ

and β are the functions of surface tension σ and interfacial
thickness W

κ = 3σW

2|φl − φg|2 , β = 12σ

W |φl − φg|4 . (3)

With the free energy of the system, the chemical potential μφ

can be obtained [43,44]:

μφ = δF

δφ
= ∂ψ

∂φ
− κ∇2φ

= 4β(φ − φl )(φ − φg)

(
φ − φl + φg

2

)
− κ∇2φ. (4)

The evolution of the phase variable can be described by
the CHE

∂tφ + ∇ · (φu) = ∇ · (Mφ∇μφ ), (5)

where u is the fluid velocity, Mφ is the mobility, which takes a
constant value M0 in the standard CHE. In the singular CHE,
Mφ depends on the order parameter [45]

Mφ = 4

(φl − φg)2
M0|φ − φl ||φ − φg|. (6)

It is noted that Mφ only works in the interfacial region. The
expression of Mφ ensures that its maximum value is identical
to M0, which is necessary for a fair comparison. In other
words, the effective Peclet number is identical.
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To describe the hydrodynamics of the two-phase system,
here we adopt the quasi-incompressible phase-field theory
[31], in which the flow is governed by the qINSE:

∇ · u = −γ∇ · (Mφ∇μφ ), (7a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · [ρν(∇u + ∇uT )] + F,

(7b)

with

γ = ρl − ρg

φlρg − φgρl
, (8)

where p is the fluid pressure, ν is the kinetic viscosity, F =
−φ∇μφ + G is the total force with G being the body force,
and ρl and ρg are the density of liquid and gas, respectively.
ρ = (φ − φg)(ρl − ρg)/(φl − φg) + ρg is the fluid density.

It is noted that the mass conservation equation ∂tρ + ∇ ·
(ρu) = 0 simplifies to ∇ · u = 0 in the incompressible phase-
field model. However, based on Eq. (5) and the relationship
between density and phase variable, the mass conservation
equation in the phase field model is actually represented by
Eq. (7a). It is obvious that the term ∇ · (Mφ∇μφ ) is nonzero
in interfacial region. Therefore, the equation ∇ · u = 0 cannot
be satisfied as long as ρl �= ρg. In other words, the mass
is not locally conserved in the incompressible phase-field
model. However, the mass is conserved locally in quasi-
incompressible phase-field model based on Eq. (7a), and the
fluid is compressible in the mixing zone of two incompressible
fluids.

III. LATTICE BOLTZMANN MODEL

In this section, we design a double-population LBE model
consisting of two LBE’s, one for the singular CHE and the
other for the qINSE. In order to overcome the drawback that
the original LBE model proposed in Ref. [32] (denoted by
YG-LBE) cannot handle variable mobility and large viscosity
ratio problem, the equilibrium distribution functions for the
phase field and flow field are redesigned by introducing the
free parameters associated with the chemical-potential gradi-
ent and the local shear rate, respectively, so that the two-phase
flows with variable mobility and large viscosity ratio can be
handled.

A. LBE for the singular CHE

We will first introduce the LBE model for singular CHE
which can be written as

gi(x + ciδt , t + δt ) − gi(x, t )

= − 1

τg

[
gi(x, t ) − geq

i (x, t )
] +

(
1 − 1

2τg

)
δt Ri(x, t ), (9)

where gi(x, t ) and geq
i (x, t ) are the particle distribution func-

tion and its equilibrium distribution function at position x
and time t , respectively, c′

is are the discrete velocities in the
direction i, δt represents the time step and τg is the relaxation
time related to mobility. The equilibrium distribution function
is modified by introducing a free parameter associated with

the gradient of chemical potential

geq
i = Hi + ωiφsi(u) + ωiAδtαci · ∇μφ , (10)

where ω′
is are the weight coefficients, A is a free parameter

dependent on the variation of mobility, the expressions of Hi

and si(u) are given by

Hi =
{
φ − (1 − ω0)αμφ, i = 0,

ωiαμφ, i �= 0,
(11a)

si(u) =
(

ci · u
c2

s

+ uu :
(
cici − c2

s I
)

2c4
s

)
, (11b)

where cs is the lattice sound speed, and the parameter α in
Eq. (11a) is set to be 1 in the present model, Ri is the forcing
term which can be written as

Ri = − φ

c2
s ρ

(ci − u) · (∇p − F )ωiTi(u), (12)

where Ti(u) = 1 + si(u). The order parameter can be
obtained by

φ =
∑

i

gi. (13)

It should be noted that modifications to the equilibrium dis-
tribution can also be incorporated into the forcing term with
R′

i = Ri + 2
(2τg−1)δt

ωiAδtαci · ∇μφ ; essentially, they are equiv-
alent.

In the present work, we only consider two-dimensional
problems, and the two-dimensional nine-velocity (D2Q9)
model is employed, in which the discrete velocities are given
by c0 = (0, 0), ci=1−4 = c{cos[(i − 1)π/2], sin[(i − 1)π/2]},
ci=5−8 = √

2c{cos[(2i − 1)π/4], sin[(2i − 1)π/4]}, and the
corresponding weight coefficients are ω0 = 4/9, ω1−4 =
1/9, ω5−8 = 1/36. The lattice sound speed is defined by
cs = c/

√
3, where c = δx/δt with δx being the lattice space.

For simplicity, the lattice units are used, i.e., δx = δt = 1.
The gradient and Laplace operators are discretized using the
second-order isotropic schemes [16,46,47]

∇φ(x, t ) =
∑

i

ωiciφ(x + ciδt , t )

c2
s δt

, (14a)

∇2φ(x, t ) =
∑

i

2ωi[φ(x + ciδt , t ) − φ(x, t )]

c2
s δ

2
t

. (14b)

The target CHE can be correctly recovered via Chapman-
Enskog analysis of Eq. (9) (see details in Appendix), and the
mobility can be obtained:

Mφ = c2
s αδt

(
τg − 1

2 − A
)
. (15)

Moreover, the gradient of chemical potential can also be
obtained by considering the first-order moment of the
nonequilibrium part of distribution function

∇μ =
∑

i ci
(
gi − ge(0)

i

) − 1
2δt

φ

ρ
∇p(

A − τg
)
δt c2

s + 1
2δt

φ2

ρ

, (16)

where ge(0)
i = Hi + ωiφsi(u). It can be shown that the pro-

posed LBE composed of Eqs. (9), (10), and (12) can recover
exactly the singular CHE (Appendix).
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B. LBE for the qINSE

The LBE with a BGK collision operator for the Navier-
Stokes equations is given by [32]

fi(x + ciδt , t + δt ) − fi(x, t )

= − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
] +

(
1 − 1

2τ f

)
δt Fi(x, t ),

(17)

where fi(x, t ) is the distribution function for particles at posi-
tion x and time t , τ f is the relaxation time related to the fluid
viscosity. The equilibrium distribution function is redefined
by introducing a free parameter associated with the local shear
rate

f eq
i = ωi

[
p + c2

s ρsi(u)
] + 1

2ρωiBδt S :
(
cici − c2

s I
)
, (18)

where B is a free parameter related to the kinetic viscosity,
S = ∇u + (∇u)T is the shear stress tensor, I is the identity
tensor. The discrete forcing term in Eq. (17) is given by [32]

Fi = (ci − u) · [
ωiF�i(u) + ωisi(u)c2

s ∇ρ
]

− ωic
2
s ργ∇ · (Mφ∇μ). (19)

The pressure and velocity of fluid can be obtained by taking
the zero-order and first-order moments of the distribution

function

p =
∑

i

fi(x, t ) + 0.5δt c
2
s [u · ∇ρ − γ ρ∇ · (Mφ∇μ)],

(20a)

ρc2
s u =

∑
i

ci fi(x, t ) + 0.5δt c
2
s F. (20b)

Through the Chapman-Enskog analysis, it can be shown
that the qINSE [Eq. (7)] can be recovered from the LBE
[Eq. (17)], with the kinetic viscosity given by

ν = c2
s δt (τ f − 0.5 − B). (21)

Moreover, the term of shear stress tensor can be calculated
from nonequilibrium part of the distribution function

S =
∑

i cici
(

fi − f e(0)
i

) + δt
2

[
c4

s u · ∇ρI + c2
s (F0u + uF0)

]
ρc4

s δt (A − τ f )
,

(22)
where f e(0)

i = ωi[p + c2
s ρsi(u)], and F0 = F + c2

s ∇ρ.
Remark I: The proposed model reduces to the YG-LBE by

setting A = B = 0. Note that the relaxation time is coupled
with the mobility. In other words, the mobility cannot be too
small or zero in the YG-LBE model. If the idea of singular
CHE is introduced into YG-LBE model, where the mobility
varies continuously (and even zero), numerical instability will
be encountered. In addition, the relaxation time for the flow
field in the YG-LBE model is constrained by the viscosity,
making it difficult to simulate two-phase flows with large

FIG. 1. Comparison of the interface shape after one period and ten periods with the initial shape at Pe = 2000 for the droplet diagonal
translation test. From left to right, the results predicted by the YG-LBE, SCH-YG-LBE, and the present models. The black solid line denotes
t = 0, the red dashed line denotes t = nT . (a) n = 1, (b) n = 10.
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viscosity ratios. However, by introducing the free parameters,
the relaxation time of the proposed model overcomes the limi-
tations of the mobility and fluid viscosity, making it capable of
handling two-phase flows with varying mobility and/or large
viscosity ratio.

Remark II: In order to avoid the YG-LBE model handling
with zero mobility when the so-called singular CHE is intro-
duced, an alternative approach (denoted by SCH-YG-LBE) is
to choose a very small mobility (Mφ = 1.0 × 10−6) for the
bulk region, while the mobility in the interfacial region is still
obtained by Eq. (6). Due to ∇μφ in Eq. (5) being zero in
the bulk region, choosing a small value also ensures that the
right-hand side of Eq. (5) remains close to 0, thus the diffusion
in the bulk phase can be suppressed. However, as described
in Remark I, the small mobility implies that the relaxation
time is close to 0.5, leading to numerical instability in the
LBE model. In the following simulation, we will prove that
the SCH-YG-LBE model is numerically unstable.

IV. NUMERICAL TESTS

In this section, several tests are conducted to validate the
accuracy and stability of the proposed LBE model. Firstly,
several two-dimensional benchmark problems, including the
diagonal translation of a circular interface, the Zalesak’s disk
rotation, and the single vortex are employed to test the ca-
pability of the LBE for the singular CHE in capturing phase
interface. A comparison between the proposed model and
the YG-LBE will also be made. Then, two-dimensional (2D)
dynamic problems, namely, the stationary liquid droplet im-
mersed in gas phase, a droplet falling in a channel and phase
separation of binary fluid, are simulated by the present LBE
model to examine its performance in simulating two-phase
flows. Periodic boundary conditions are applied to the four
boundaries in the simulations unless otherwise specified. The
dimensionless Peclet number Pe = (U0W )/(M0β ) is adopted,
which ensures that the effective Peclet is identical for both
standard and singular CHE models. To quantitatively compare
the accuracy of interface capture between the proposed model
and the YG-LBE model, the L2-norm and maximum relative
errors are used [30]:

‖E (φ)‖2 =
√∑

x |φ(x, nT ) − φ(x, 0)|2∑
x |φ(x, 0)|2 , (23a)

‖E (φ)‖max = max |φ(x, nT ) − φ(x, 0)|
|φl − φg| . (23b)

A. Diagonal translation of a circular interface

Firstly, the motion of a circular droplet in a constant ve-
locity field u = (U0,U0) is studied. Initially, a droplet of
radius R = L0/5 is placed at the center of the computa-
tional domain L0 × L0. After one period T = L0/U0, the
droplet returns to its initial position. In the simulations,
we set: Pe = 2000, α = 1, σ = 0.01,U0 = 0.02, ρl = ρg =
1, L0 = 200,W = 0.02L0. In addition, we take τg = 0.8 in the
present model, and the value of parameter A can be obtained
by Eq. (15).

Figure 1 shows the comparison of the interface shape
predicted by the YG-LBE, SCH-YG-LBE, and the present

FIG. 2. The absolute error between the theoretical and numerical
values of the center of mass.

models after one period and ten periods with the initial shape
at Pe = 2000. After one period, a slight discrepancy can be
observed between the interface predicted by the YG-LBE
model and the initial one, which becomes more significant af-
ter ten periods. As shown in Fig. 1(b), similar results can also
be observed in the SCH-YG-LBE model, which indicates that
this approach leads to numerical instability. On the other hand,
the results obtained by the present model after one and ten
periods are in good agreement with the initial interface. It is
noted that the nonalignment of the enforced velocity with the
lattice directions does not significantly impact the results due
to the sufficient accuracy of the D2Q9 discrete velocity model
in simulating two-dimensional fluid flows. Figure 2 further
presents the absolute errors between the theoretical and nu-
merical positions of the center of mass at Pe = 2000. It can be
seen that for the YG-LBE model the absolute error increases
gradually with the increase of period, and after ten periods
the difference between the numerical results and theoretical
values exceeds one interface thickness. This clearly indicates
that the YG-LBE model yields incorrect interfacial proper-
ties; Similar results have been observed in the SCH-YG-LBE
model. However, it exhibits larger errors compared to the
YG-LBE model. Consequently, the SCH-YG-LBE model will
not be included in further comparisons in this study; while
for the present model, the numerical results are close to the
theoretical value even after ten periods. We also investigate
the relative errors of the two models at different Pe numbers.

TABLE I. Relative errors of the interface after one period with
different Pe numbers for the droplet diagonal translation problem.

‖E (φ)‖2 ‖E (φ)‖max

Pe YG-LBE model Present model YG-LBE model Present model

20 0.0377 0.0064 0.2022 0.0378
200 0.0833 0.0089 0.3715 0.0444
2000 0.1320 0.0096 0.3354 0.0457
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TABLE II. Relative errors of the interface after ten periods with
different Pe numbers for the droplet diagonal translation problem.

‖E (φ)‖2 ‖E (φ)‖max

Pe YG-LBE model Present model YG-LBE model Present model

20 0.1477 0.0132 0.6790 0.0842
200 0.2541 0.0237 0.7523 0.0855
2000 0.3535 0.0275 0.6149 0.0840

The relative errors of the phase interface after one and ten
periods for the droplet diagonal translation problem with dif-
ferent Pe numbers are given in Tables I and II, respectively.
It is clear that both L2-norm and maximum relative errors are
large after one period for the YG-LBE model, and these errors
far exceed the acceptable error range after ten periods. On the
other hand, the present model gives satisfactory results after
one and ten periods, particularly at high Pe number.

To investigate the effect of Mach number (Ma = U0/cs)
on the numerical results, Fig. 3 shows the interface shapes
predicted by the two models after ten periods at different
Mach numbers. It can be seen from Fig. 3(a) that with the
increase of Mach number, the interface predicted by the YG-
LBE model suffers from severe deformation and numerical
instability occurs, further increasing Mach number to 0.139
the procedure diverges. However, as shown in Fig. 3(b) for
the present model, the predicted interface shape agrees well
with the initial shape, with only slight difference at high Mach
number. Figure 4 gives the variation of relative error of L2-
norm with Mach number after ten periods. It can be seen that
as the Mach number increases, the relative errors obtained by
both models increase, but the error of the present model is
much smaller than that of the YG-LBE model. The results
for the diagonal translation of circular interface confirm that
the present model has the capability of tracking the phase
interface with improved accuracy and numerical stability.

B. Zalesak’s disk rotation

The Zalesak’s disk rotation [19,48] is widely used to test
the capability of numerical methods in capturing phase in-
terface. Initially, a circular disk with a slot is placed at the
center of computational domain with a lattice size of L0 × L0.

(a) (b)

FIG. 3. Interface shapes after ten periods at different Ma number
predicted by (a) the YG-LBE model, (b) the present model.

FIG. 4. Relative error of L2-norm for the diagonal translation
problem at different Ma number after ten periods.

In this problem, the radius of disk and the width of slot are set
as 0.4L0 and 0.08L0, respectively. The rotation of the disk is
driven by a flow field with given rotational velocity

u = −U0π

(
y

L0
− 0.5

)
, v = U0π

(
x

L0
− 0.5

)
; (24)

with the above settings, the disk will start to rotate and retains
its shape during the whole simulation process, and finally
returning to its initial position after one period T = 2L0/U0.
In the simulations, we set: L0 = 200,U0 = 0.02, ρl = ρg =
1, σ = 0.01, α = 1,W = 0.02L0. In addition, we take τg =
0.8 in the present model, and the value of parameter A can
be obtained by Eq. (15).

Figure 5 presents the comparison of interface shape with
the initial one at different Pe numbers for t = (2L0)/U0 and
t = (10L0)/U0. It is obvious that the interface predicted by the
YG-LBE model produces distinct deformation in the vicinity
of the slot after one period, and the deformation is even
more significant at t = (10L0)/U0. On the other hand, the
present model still accurately captures the interface at t =
(10L0)/U0, with slight difference at the corners of the slot.
This is due to the corners of the slot being initialized as a
sharp interface. The L2-norm relative errors at t = (2L0)/U0

and t = (10L0)/U0 for different Pe numbers are shown in
Table III. Compared with the results of YG-LBE model, the
present model exhibits smaller errors for each Pe number. To
further demonstrate the ability of the present model to cap-
ture the interface, the absolute errors between the theoretical

TABLE III. The L2-norm relative errors of the interface at t =
(2L0)/U0 and t = (10L0)/U0 with different Pe numbers for Zalesak’s
disk rotation problem.

t = (2L0)/U0 t = (10L0)/U0

Pe YG-LBE model Present model YG-LBE model Present model

20 0.0217 0.0159 0.0537 0.0222
200 0.0239 0.0159 0.0529 0.0222
2000 0.0310 0.0159 0.0566 0.0222
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FIG. 5. Comparison of the interface shape at t = (2L0)/U0 and
t = (10L0)/U0 with initial shape for Zalesak’s disk problem at (a)
Pe = 20 and (b) Pe = 2000. From left to right, the results predicted
by the YG-LBE model and the present model.

and numerical rotation angles are shown in Table IV. Once
again, the present model yields minimal absolute errors for
various Pe numbers and periods. Furthermore, the influence
of Mach number on the simulation results for the Zalesak’s
disk rotation problem is analogous to the effect observed in
the problem of diagonal translation of a circular interface. Fig-
ure 6 shows the distribution of interface shape obtained from
the two models with different Mach number at t = (10L0)/U0.
It can be seen from Fig. 6(a) that with the increase of Mach
number, the interface predicted by the YG-LBE model suffers
from severe numerical instability, and the procedure diverges
with increasing Mach number to 0.139; While for the present
model [as shown in Fig. 6(b)], the predicted interface shape
agrees well with the initial shape for different Mach numbers.
The results of the Zalesak’s disk rotation confirm again that
the present model can capture the interface with improved
accuracy.

TABLE IV. The absolute errors between the measured and ana-
lytical rotation angles for Zalesak’s disk rotation problem.

t = (2L0)/U0 t = (10L0 )/U0

Pe YG-LBE model Present model YG-LBE model Present model

20 2.59◦ 0.34◦ 11.74◦ 1.77◦

200 2.06◦ 0.30◦ 7.21◦ 1.49◦

2000 0.98◦ 0.29◦ 5.19◦ 1.46◦

FIG. 6. Interface shapes for different Ma number predicted by
(a) the YG-LBE model, (b) the present model at t = (10L0)/U0.

C. Single vortex

It is worth noting that the aforementioned two tests do
not involve interfacial topology changes. In order to further
validate the ability of the present model to handle complex
interfacial deformation, the single-vortex test is used for the
following simulation, where the velocity field is time depen-
dent and stronger nonlinear,

u = U0 sin2 πx

L0
sin

2πy

L0
cos

πt

T
,

v = −U0 sin
2πx

L0
sin2 πy

L0
cos

πt

T
, (25)

where T = nL0/U0 is the period with n being a positive inte-
ger. In this problem, a circular interface of radius R = L0/5
is placed at (0.5L0, 0.75L0) of the computational domain,
which has a lattice size of L0 × L0. The given velocity field
drives the deformation of the circular interface, causing its
stretch and then reaches its maximum deformation at t = T/2.
Subsequently, the interface returns to its initial shape after one
period. In the simulations, we set: L0 = 200,U0 = 0.04, ρl =
ρg = 1, σ = 0.001, α = 1,W = 0.01L0. In addition, we take
τg = 0.8 in the present model, and the value of parameter A
can be obtained by Eq. (15).

Figure 7 presents the interface shapes predicted by both
the YG-LBE and the present models at different time with
Pe = 500 and n = 6. It is obvious that the results predicted by
the YG-LBE model produce some undesired diffusion in the
vicinity of the interface, while the present model captures the
interface with improved stability. To further test the capability
of the present model at high Pe number, the interface predicted
by the present model for different n values at Pe = 5000 is
shown in Fig. 8. The numerical predictions are similar to
the initial shape for different n values. Table V shows the
L2-norm and area conservation relative errors predicted by the

TABLE V. Relative errors obtained by the present model for
different n values at Pe = 5000.

n ‖E (φ)‖2 E (φ)T/2
area E (φ)T

area

2 0.0290 0.0034 0.0020
4 0.0549 0.0006 0.0024
6 0.0820 0.0054 0.0020
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(a)

(b)

FIG. 7. Results of single-vortex problem at Pe = 500 and n = 6 for (a) the YG-LBE model (b) the present model. From left to right
T/4, T/2, 3T/4, T .

present model at Pe = 5000. As shown in Table V, the results
of relative error for different n values indicate that the good
conservation property of the present model can be maintained:

E (φ)T
area =

∑
φ(x,T )>0.5 1 − ∑

φ(x,0)>0.5 1∑
φ(x,0)>0.5 1

. (26)

D. Two stationary droplets immersed in the gas phase

To further investigate the capacity of the proposed model
in simulating two-phase flows, the dynamic behaviors of
large and small droplets immersed in the gas phase are
investigated using both the YG-LBE and the present models.
Initially, two stationary droplets with radius R1 and R2

are placed at (13L0/30, L0/2) and (7L0/10, L0/2) of a

computational domain with the size of L0 × L0, respectively.
In the simulations, we set: ρl = 5.0, ρg = 1.0, νl = 0.1,

νg = 0.05, σ = 0.001, L0 = 300, R1 = L0/6, R2 = L0/30,W =
0.01L0, M0 = 0.08, τg = 0.75, and B = 0. In addition, the
value of parameter A in the present model can be obtained
by Eq. (15). The time is dimensionless by the viscous
time Tν = (μgR1)/σ , i.e., Tr = t/Tν . Figure 9 plots a few
snapshots of phase variable at different time predicted by
the YG-LBE model. It can be seen that with the increase of
time, the volume of small droplet gradually decreases until
it disappears completely at Tr = 3200. It is noted that the
distance between the two droplets is much further than that
at which coalescence occurs. This unphysical phenomenon
has also been mentioned in previous simulations using the
CHE model [33,49]. This result arises from the high-order

FIG. 8. Interface shapes predicted by the present model at Pe = 5000. (a) n = 2, (b) n = 4, (c) n = 6.
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FIG. 9. The snapshots of two static droplets at different time obtained by the YG-LBE model. (a) Tr = 0, (b) Tr = 2000, (c) Tr = 2800,
(d) Tr = 3200.

dissipation of the diffusion term in the numerical treatment of
the CHE. On the other hand, the snapshots of double droplets
predicted by the present model at Tr = 2000 and Tr = 3200
under the same parameter settings are shown in Fig. 10. It is
clear that the unphysical phenomenon of the small droplet
disappearing is effectively suppressed and the two droplets
still maintain their initial positions and sizes. In order to
explain the disappearance of small droplet, we compare
the distribution of the phase variable and transport flux
(Jx = Mφ∂xμ) across the droplets center obtained by the two
models at Tr = 2800, and the comparison results are shown in
Fig. 11. It can be seen from Fig. 11(a) that the phase-variable
profile from the present model agrees well with the initial
profile; While for the YG-LBE model, the phase variable of
the small droplet deviates from the initial one greatly. This
deviation results from the numerical dissipation of small
droplet whose mass diffuses into the surrounding gas phase,
increasing the mass of the surrounding fluid. Figure 11(b)
reveals that the transport flux induced by the chemical
potential gradient obtained by the present model is close to
a constant value with the magnitude of 10−9; While for the

YG-LBE model, the transport flux fluctuates significantly in
the region between the two droplets.

The time history of the mass ratio between the small and
large droplets is shown in Fig. 12. It is clear that with the
increase of time, the mass ratio predicted by the YG-LBE
model decreases until it reaches zero. On the other hand,
the mass ratio predicted by the present model decreases at
the initial stage and then remains constant during the whole
simulation process. The above results show that the present
model provides lower numerical dissipation and better nu-
merical resolution in simulating immiscible droplets than the
YG-LBE model does.

E. Falling droplets

The process of two droplets falling under gravity is
simulated in this section. The computational domain is
[0, L0] × [0, 3L0]. Initially, the smaller droplet of radius
R1 is placed at the location of (L0/2, 3L0 − 2R1), and
the bigger droplet of radius R2 is placed at the location
of (L0/2, 3L0 − 14R1). The no-slip boundary condition is

FIG. 10. The snapshots of two static droplets at different time obtained by the present model. (a) Tr = 2000, (b) Tr = 3200.
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FIG. 11. The phase variable (a) and transport flux (b) profiles across the droplet center at Tr = 2800.

applied to the top and bottom walls, and period boundary
condition is used for vertical boundaries. The dimensionless
Eötvös number is defined as Eo = 4g(ρl − ρg)R2

2/σ . In
the simulations, we set: Eo = 10, ρl = 3, ρg = 1, μl =
0.075, μg = 0.025, σ = 5 × 10−4, M0 = 1, τg = 0.8, L0 = 160,

R1 = 8, R2 = 40, B = 0.
Figure 13 presents the interfacial evolution of the falling

droplets under gravity. It can be seen that the shapes and
positions of the large droplet predicted by the two models
are almost identical. However, the size of the small droplet
predicted by the YG-LBE model gradually decreases with
the evolution of time, while the present model still maintains
the size of small droplet well during the falling process. To
confirm this point, we further increase the radius of the small
droplet to 24 and simulate the same case in Fig. 13. Figure 14
presents the interfacial evolution of the falling droplets at

FIG. 12. Time history of the mass ratio of the small droplet to the
large droplet.

R2/R1 = 5/3. It can be observed that both shapes and posi-
tions of the droplets predicted by the two models have little
difference. The falling droplets tests demonstrate the capacity
of the present model to reduce the numerical dissipation of
small droplet and to accurately describe the dynamic behavior
of small droplet.

In order to demonstrate the effect of the free parameter
B on improving the proposed model’s ability to handle a
large viscosity ratio problem, the process of droplets falling
at different viscosity ratio (μr = μl/μg) is investigated.
In the simulations, we set: Eo = 10, ρl = 3, ρg = 1, μg =
0.005, σ = 5 × 10−4, M0 = 0.2, τg = 0.8, L0 = 160, R1 = 24,

R2 = 40. Firstly, the performances of the present model for
B = 0 and B �= 0 are compared. For B �= 0, we take τ f = 0.9,
and the value of parameter B can be calculated by Eq. (17).
The velocity and pressure structure along x direction at
μr = 10 and t = 100 are shown in Fig 15. It can be seen
that for B = 0 the velocity and pressure fields oscillate
dramatically, and the model becomes unstable. While for
B �= 0, both the velocity and pressure fields vary smoothly,
which indicates that the presence of parameter B improves
the numerical stability of the model. Figure 16 further shows
the interfacial evolution of the falling droplets obtained from
the present model (B �= 0) for different viscosity ratios. It
can be seen that at small viscosity ratio, the topological
structure of the droplets changes dramatically. However, with
the increase of the viscosity ratio the droplet remains almost
circular during the falling process until contact occurs, and
the time for the droplets to begin contacting becomes longer.
The above results confirm the capability of the present model
in handling two-phase flows with large viscosity ratio.

F. Phase separation of binary fluid

To further verify the performance of the present model
in handling two-phase flows, the phase separation of bi-
nary fluid [18,50] was investigated. The initial phase-variable
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FIG. 13. Interfacial evolution of falling droplets at R2/R1 = 5. The solid and dashed lines are the results obtained by the present and
YG-LBE models, respectively. (a) t = 0, (b) t = 4.0 × 104, (c) t = 1.0 × 105, (d) t = 1.5 × 105, (e) t = 2.0 × 105.

distribution with small fluctuations can be given by

φ(x, y) = φ0 + rand(x, y), (27)

where rand(x, y) is a random function with a maximum am-
plitude of 0.01. φ0 is the initial mean phase variable, and
we take φ0 = 1/3 where the spinodal decomposition occurs.
Then the initial compositional fluctuations will be imposed
on a homogeneous mixture. The computational domain is
set to Lx × Ly = 200 × 200 with periodic boundary condi-

tions applied to all boundaries. The numerical parameters are
fixed as ρl = 2, ρg = 1, μl = 0.2, μg = 0.0001,W = 4, σ =
0.002, M0 = 0.1. In the present model, we fix τ f = τg = 0.8,
and the values of parameters A, B can be obtained by Eqs. (15)
and (21).

Figure 17 shows the distribution of velocity obtained from
the two models at t/tν=750 with tν = μlW/σ being the
viscous time of liquid phase. It can be seen that for the
YG-LBE model the velocity field generates high-frequency

FIG. 14. Interfacial evolution of falling droplets at R2/R1 = 5/3. The solid and dashed lines are the results obtained by the present and
YG-LBE models, respectively. (a) t = 0, (b) t = 4.0 × 104, (c) t = 1.0 × 105, (d) t = 1.5 × 105, (e) t = 2.0 × 105.
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(a) (b)

FIG. 15. The disrtibution of velocity (a) and pressure (b) for different B values at μr = 10 and t = 100.

oscillations and numerical instability occurs, resulting in
subsequent procedure divergence; However, for the present
model the high-frequency oscillations in the velocity field are
significantly suppressed. Figure 18 shows the time evolution
of the phase-variable distribution during the phase separating
process obtained from the present model. It can be found that
the fluctuation of the initial phase variable leads to an inho-
mogeneous spatial distribution, followed by the generation
of a series of small droplets. These small droplets gradually
become larger under the action of flow and surface tension,
and eventually lead to phase separation. Further increasing
the viscosity ratio to 104, the present model still accurately

describes the phase separation process. The phase separation
of binary fluid problem indicates that the present model can
improve the numerical stability at large viscosity ratio.

V. CONCLUSION

In this paper, we proposed an improved LBE model for
quasi-incompressible two-phase flows, which overcomes the
difficulty that the original LBE model cannot handle variable
mobility in the singular CHE. The Chapman-Enskog analysis
indicated that the proposed model could recover the CHE
correctly. A series of numerical tests were conducted to verify

(a) (b) (c) (d)

FIG. 16. Interfacial evolution of falling droplets obtained from the present model for different viscosity ratio. (a) μr = 10, (b) μr = 102,
(c) μr = 103, (d) μr = 104.
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FIG. 17. The distribution of velocity along y/Ly = 0.5 for the
phase separation problem at t/tν = 750.

the accuracy of the proposed model to capture the phase
interface.

In the interface-tracking tests, the results of benchmark
tests showed that the proposed model could capture the phase
interface with improved accuracy and stability compared
with the YG-LBE model, in particular at high Peclet number.
In the two-phase flow tests, the proposed model was coupled
with LBE model for the hydrodynamic equations, the unde-
sired phenomenon of spontaneous droplet disappearance in
phase-field simulations was effectively suppressed. The tests
of double-stationary droplets and droplets falling indicated
that the proposed LBE model tended to maintain the size
and position of the small droplet better and showed lower
numerical dissipation than the original LBE model. Moreover,
the results of droplets falling and phase separation of binary
fluid problems indicated that the present model is capable of
handling two-phase flows with large viscosity ratio up to the
magnitude of 104.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS OF THE LBE MODEL FOR THE SINGULAR CHE

The macroscopic governing equation can be obtained by applying the Chapman-Enskog analysis to LBE [Eq. (9)]. Specifi-
cally, we introduce the following multiscale expansions:

gi = g(0)
i + εg(1)

i + ε2g(2)
i + · · · , Ri = εR(0)

i , ∂t = ε∂t0 + ε2∂t1 , ∇ = ε∇0, geq
i = ge(0)

i + εge(1)
i , (A1)

where

ge(0)
i = Hi + ωiφsi(u), ge(1)

i = ωiAδtαci · ∇μφ . (A2)

The order moments of the equilibrium distribution function and the forcing term are given by∑
i

ge(0)
i = φ,

∑
i

cig
e(0)
i = φu,

∑
i

cicig
e(0)
i = φuu + c2

s μ,
∑

i

ge(1)
i = 0, (A3a)

∑
i

cig
e(1)
i = Aδtαc2

s ∇0μ,
∑

i

Ri = 0,
∑

i

ciRi = φ

ρ
G, (A3b)

where G = εG0 = −∇p + F. With the help of Eqs. (A1) and (A3), the following equations can be obtained:∑
i

g(k)
i = 0, (k � 1),

∑
i

R(0)
i = 0,

∑
i

ciR
(0)
i = φ

ρ
G0. (A4)

Applying Taylor expansion for Eq. (9), one can obtain

Digi + δt

2
D2

i gi = − 1

τgδt

[
gi(x, t ) − geq

i (x, t )
] +

(
1 − 1

2τg

)
Ri(x, t ). (A5)

Substituting Eq. (A1) into Eq. (A5), the multiscale equations can be obtained:

ε0 : g(0)
i = ge(0)

i , (A6a)

ε1 : D0ig
(0)
i = − 1

τgδt

(
g(1)

i − ge(1)
i

) +
(

1 − 1

2τg

)
R(0)

i , (A6b)

ε2 : ∂t1 g(0)
i + D0i

(
1 − 1

2τg

)
g(1)

i + δt

2
D0i

(
1 − 1

2τg

)
R(0)

i + D0i
1

2τg
ge(1)

i = − 1

δtτg
g(2)

i . (A6c)
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FIG. 18. Time evolution of the phase-variable distribution during the phase separating process. (a) tν = 0, (b) tν = 125, (c) tν = 250,
(d) tν = 500, (e) tν = 750, (f)tν = 1000.

Taking the zero-order moment of Eqs. (A6b) and (A6c), respectively, we can obtain

∂t0φ + ∇0 · (φu) = 0, (A7)

∂t1φ +
(

1 − 1

2τg

)
∇0 ·

(∑
i

cig
(1)
i

)
+ δt

2

(
1 − 1

2τg

)
∇0 ·

(
φ

ρ
G(0)

)
+ 1

2τg
∇0 · (

Aδtαc2
s ∇0μ

) = 0. (A8)

The term of
∑

i cig
(1)
i in Eq. (A8) can be obtained from Eq. (A6b):∑

i

cig
(1)
i = − δtτg∂t0(φu) − δtτg∇0 · (

φuu + c2
s μ

) +
(

τg − 1

2

)
δt

φ

ρ
G(0) + Aδtαc2

s ∇0μ

= (A − τg)δtαc2
s ∇0μ − 1

2
δt

φ

ρ
G(0).

(A9)

Substituting Eq. (A9) into Eq. (A8), Eq. (A8) can be rewritten as

∂t1φ = ∇0 · (
Mφ∇0μφ

)
, (A10)

where Mφ = c2
s δtα(τg − 1

2 − A) is the mobility. Combining Eqs. (A7) and (A10), the CHE can be correctly recovered by the
present model

∂tφ + ∇ · (φu) = ∇ · (Mφ∇μφ ). (A11)

Considering εg(1)
i = gi − ge(0)

i , multiplying ε on both sides of Eq. (A9), we can obtain

∇μ =
∑

i ci
(
gi − ge(0)

i

) − 1
2δt

φ

ρ
∇p

(A − τg)δtαc2
s + 1

2δt
φ2

ρ

. (A12)
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