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In this paper, we develop a macroscopic finite-difference scheme from the mesoscopic regularized lattice
Boltzmann (RLB) method to solve the Navier-Stokes equations (NSEs) and convection-diffusion equa-
tion (CDE). Unlike the commonly used RLB method based on the evolution of a set of distribution functions,
this macroscopic finite-difference scheme is constructed based on the hydrodynamic variables of NSEs (density,
momentum, and strain rate tensor) or macroscopic variables of CDE (concentration and flux), and thus shares
low memory requirement and high computational efficiency. Based on an accuracy analysis, it is shown that,
the same as the mesoscopic RLB method, the macroscopic finite-difference scheme also has a second-order
accuracy in space. In addition, we would like to point out that compared with the RLB method and its equivalent
macroscopic numerical scheme, the present macroscopic finite-difference scheme is much simpler and more
efficient since it is only a two-level system with macroscopic variables. Finally, we perform some simulations
of several benchmark problems, and find that the numerical results are not only in agreement with analytical
solutions, but also consistent with the theoretical analysis.
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I. INTRODUCTION

In the past three decades, the lattice Boltzmann (LB)
method, as one of the mesoscopic numerical approaches based
on the kinetic models [1–6], has received increasing atten-
tion in study of the complex fluid flows, heat, and mass
transfer (e.g., the multiphase flows [7], the transport phenom-
ena in porous media [8,9]) governed by the Navier-Stokes
equations (NSEs) and convection-diffusion equation (CDE)
due to its simplicity in implementation, scalability on paral-
lel computers, extensibility in spatial dimensions, and easy
boundary treatment of complex geometries. However, there
are some critical problems on this method which are usually
mentioned in the published literature [1–6]. The first one is
that the LB method may suffer from numerical instability
when the relaxation time is close to 1/2, especially for the
popular single-relaxation-time LB (SRT-LB) method [10,11].
To solve this problem, some advanced LB methods are devel-
oped, for example, the general multiple-relaxation-time LB
(MRT-LB) method [12–14] and the regularized LB (RLB)
method [15–17]. In the MRT-LB method, a more general col-
lision term with some free relaxation parameters is introduced
such that the classic SRT-LB [10,11] and two-relaxation-time
LB (TRT-LB) [18,19] versions can be considered as its two
special cases, and the numerical stability can be improved
through adjusting these free relaxation parameters [20].

*Corresponding author: hustczh@hust.edu.cn

However, how to choose the free relaxation parameters in
the MRT-LB method is still an open problem needed to be
further considered. In the RLB method, a regularized pro-
cess is adopted to approximate the nonequilibrium part of
the distribution function so that the numerical stability of LB
method can be improved [15–17]. Although this approach
can be viewed as a special case of the MRT-LB method
[14], it is much simpler, and also has the lower memory
requirement and data access cost. The second one is that
the relation between the mesoscopic LB method and macro-
scopic partial differential equation based numerical scheme
(hereafter named as macroscopic numerical scheme) is still
unclear. It should be noted that this problem is not only of
great importance in understanding the LB method, but also
helpful in analyzing the accuracy and stability of the LB
method. For this reason, some works have been performed to
obtain the equivalent macroscopic finite-difference schemes
of LB methods for the diffusion equations [21–23], the CDEs
[24], the Burgers equation [25], and also the NSEs [26–29].
However, these macroscopic numerical schemes based on
the LB methods are multiple level in time [26,28], which
not only lead to the large memory requirements, but also
bring a problem in the implementation of initialization. Ac-
tually, there are some special cases that can give the two-level
macroscopic numerical schemes. The first case is the SRT-LB
method with the relaxation parameter being to unity [30,31],
which would lead to a fixed viscosity coefficient for the
given lattice spacing and time step. The second case is the
macroscopic numerical scheme of the RLB method (M-RLB
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TABLE I. The effect of the relaxation parameter τ f on numerical
results of the present, M-RLB, and RLB schemes for the four-roll
mill problem.

Present M-RLB RLB

τ f = 0.7 6.04 × 10−3 1.93 × 10−3 1.93 × 10−3

τ f = 0.8 4.02 × 10−3 2.09 × 10−3 2.09 × 10−3

τ f = 1.0 2.42 × 10−3 2.42 × 10−3 2.42 × 10−3

τ f = 1.2 1.73 × 10−3 2.74 × 10−3 2.74 × 10−3

τ f = 1.5 1.21 × 10−3 3.22 × 10−3 3.22 × 10−3

scheme) where a nonconservative variable (a second-order
moment of the distribution function for NSEs or a first-order
moment of the distribution function for CDE) is introduced
[17,32], while how to specify the initial and the boundary
conditions of the nonconservative variable is also a problem.
The third case is the simplified LB (SLB) method in which the
Chapman-Enskog expansion is adopted to give an approxima-
tion of the nonequilibrium distribution function [33,34], and
the main difference between the SLB method and M-RLB
scheme is that different approximations have been used to
express the nonequilibrium distribution functions. Last but
not least, the memory usage of the LB method also limits
its applications in practice; this is owing to the fact that
compared with the traditional numerical approaches, a set of
distribution functions in the LB method must be stored. To
overcome the problems mentioned above, in this work, we
will focus on the RLB method, and obtain a new two-level
macroscopic numerical scheme with a second-order accuracy
from the RLB method. This macroscopic finite-difference
scheme can enhance the computational performance of
the mesoscopic RLB scheme in entailing significant mem-
ory saving and computational efficiency for the large-scale
simulations.

The rest of the paper is organized as follows. We
first present the RLB method for the NSEs and CDE
in Sec. II, and followed by the RLB method based effi-
cient macroscopic finite-difference scheme in Sec. III. In
Sec. IV, we conduct a theoretical analysis on the macroscopic
finite-difference scheme, and in Sec. V we perform some
simulations to test the RLB method, M-RLB method and
macroscopic finite-difference scheme, and also give a compar-
ison among them. Finally, some conclusion are summarized in
Sec. VI.

TABLE III. The effect of the relaxation parameter τg on numeri-
cal results of the present, M-RLB, and RLB schemes for the isotropic
two-dimensional CDE.

Present M-RLB RLB

τg = 0.6 9.35 × 10−4 6.76 × 10−4 6.76 × 10−4

τg = 0.8 3.14 × 10−3 2.73 × 10−3 2.73 × 10−3

τg = 1.0 5.34 × 10−3 5.34 × 10−3 5.34 × 10−3

τg = 1.2 7.53 × 10−3 8.52 × 10−3 8.52 × 10−3

τg = 1.8 1.41 × 10−2 2.16 × 10−2 2.16 × 10−2

II. REGULARIZED LATTICE BOLTZMANN METHOD
FOR THE NAVIER-STOKES AND CONVECTION

DIFFUSION EQUATIONS

Generally speaking, the fluid flows, heat, and/or mass
transfer can be described by the following NSEs and CDE in
d-dimensional space:

∂tρ + ∇ · (ρu) = 0, (1a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · [ρν(∇u + ∇uT )] + F,

(1b)

∂tφ + ∇ · (φu) = ∇ · (D∇φ) + R, (2)

where ρ is the fluid density, u is the velocity, p is the pressure,
ν is the kinematic viscosity [35], and F is an external force. φ

is a scalar function related to the position x and time t , D is
the diffusion coefficient, and R is the source term.

In the SRT-LB method with the DdQq (q discrete veloc-
ities in d-dimensional space, d = 1 − 3) lattice model, the
semidiscrete evolution equations for Eqs. (1) and (2) can be
written as [14]

fi(x + ci�t, t + �t ) = fi(x, t ) − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
]

+�t

[
F̃i(x, t ) + Fi(x, t )

+�t

2
D̄iFi(x, t )

]
, (3a)

TABLE II. The comparisons of the memory usage and computational time among the present, M-RLB, and RLB schemes for the four-roll
mill problem [�̃ represents the right-hand side of Eq. (18) or (22), � = ρ, u or � f ].

Storage variables Memory usage Total time

Present ρ[NY ][NX ], u1[NY ][NX ], u2[NY ][NX ], F1[NY ][NX ] 34.78% 7.42s
ρ̃[NY ][NX ], ũ1[NY ][NX ], ũ2[NY ][NX ], F2[NY ][NX ]

M-RLB ρ[NY ][NX ], u1[NY ][NX ], u2[NY ][NX ], F1[NY ][NX ] 60.87% 7.63s
ρ̃[NY ][NX ], ũ1[NY ][NX ], ũ2[NY ][NX ], F2[NY ][NX ]

	 f ,xx[NY ][NX ], 	 f ,xy[NY ][NX ], 	 f ,yy[NY ][NX ]
	̃ f ,xx[NY ][NX ], 	̃ f ,xy[NY ][NX ], 	̃ f ,yy[NY ][NX ]

RLB g[NY ][NX ][Q], g̃[NY ][NX ][Q], ρ[NY ][NX ] 100% 8.33s
u1[NY ][NX ], u2[NY ][NX ], F1[NY ][NX ], F2[NY ][NX ]
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TABLE IV. The comparisons of the memory usage and computational time among the present, M-RLB, and RLB schemes for the isotropic
two-dimensional CDE at T = 100 [�̃ represents the right-hand side of Eq. (19) or (23), � = φ or �g].

Storage variables Memory usage Total time

Present φ[NY ][NX ], φ̃[NY ][NX ] 10.53% 11.18s
M-RLB φ[NY ][NX ], 	g,x[NY ][NX ], 	g,y[NY ][NX ] 31.58% 11.44s

φ̃[NY ][NX ], 	̃g,x[NY ][NX ], 	̃g,y[NY ][NX ]
RLB f [NY ][NX ][Q], f̃ [NY ][NX ][Q], φ[NY ][NX ] 100% 12.64s

gi(x + ci�t, t + �t ) = gi(x, t ) − 1

τg

[
gi(x, t ) − geq

i (x, t )
]

+�t

[
G̃i(x, t ) + Gi(x, t )

+�t

2
D̄iGi(x, t )

]
, (3b)

where fi(x, t ) and gi(x, t ) are the distribution functions at
position x and time t along the velocity ci, τ f and τg are
the relaxation times, and f eq

i (x, t ) and geq
i (x, t ) are the cor-

responding equilibrium distribution functions. Fi(x, t ) and
Gi(x, t ) are the discrete forces or source terms, and F̃i(x, t )
and G̃i(x, t ) are the auxiliary distribution functions that can
be used to eliminate the additional terms [14]. �t is the
time step, and D̄i = ∂t + γ ci · ∇ is a differential operator with
γ ∈ {0, 1}. Based on Eq. (3), the evolution processes can be
divided into two substeps generally, i.e., collision and propa-
gation,

Collison:

f̃i(x, t ) = fi(x, t ) − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
]

+�t

[
F̃i(x, t ) + Fi(x, t ) + �t

2
D̄iFi(x, t )

]
, (4a)

g̃i(x, t ) = gi(x, t ) − 1

τg

[
gi(x, t ) − geq

i (x, t )
]

+�t

[
G̃i(x, t ) + Gi(x, t ) + �t

2
D̄iGi(x, t )

]
;

(4b)

TABLE V. The effect of the relaxation parameter on numerical
results of the present, M-RLB, and RLB schemes for the thermal
Poiseuille flow with Pr = 0.25.

Present M-RLB RLB

τ f = 0.8 Err(u) 3.86 × 10−4 1.41 × 10−4 1.41 × 10−4

Err(T ) 3.22 × 10−6 3.28 × 10−6 3.28 × 10−6

τ f = 0.95 Err(u) 1.30 × 10−4 9.37 × 10−5 9.37 × 10−5

Err(T ) 4.30 × 10−6 5.35 × 10−6 5.35 × 10−6

τ f = 1.0 Err(u) 7.81 × 10−5 7.81 × 10−5 7.81 × 10−5

Err(T ) 4.51 × 10−6 6.03 × 10−6 6.03 × 10−6

τ f = 1.05 Err(u) 3.58 × 10−5 6.25 × 10−4 6.25 × 10−4

Err(T ) 4.68 × 10−6 6.72 × 10−6 6.72 × 10−6

τ f = 1.15 Err(u) 2.94 × 10−5 3.12 × 10−5 3.12 × 10−5

Err(T ) 4.94 × 10−6 8.10 × 10−6 8.10 × 10−6

Propagation:

fi(x + ci�t, t + �t ) = f̃i(x, t ), (5a)

gi(x + ci�t, t + �t ) = g̃i(x, t ), (5b)

where f̃i(x, t ) and g̃i(x, t ) are the postcollision distribution
functions.

It should be noted that at the diffusive scaling, i.e., �t ∝
�x2, there is no need to include the differential operator D̄i in
Eq. (3), and the evolution equations can be simplified by

fi(x + ci�t, t + �t ) = fi(x, t ) − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
]

+�tFi(x, t ), (6a)

gi(x + ci�t, t + �t ) = gi(x, t ) − 1

τg

[
gi(x, t ) − geq

i (x, t )
]

+�tGi(x, t ). (6b)

For the NSEs, the equilibrium distribution function f eq
i and

discrete force term Fi are given by

f eq
i (x, t ) = ωiρ

[
1 + ci · u

c2
s

+ uu :
(
cici − c2

s I
)

2c4
s

]
, (7a)

Fi(x, t ) = ωi
ci · F

c2
s

. (7b)

For the CDE, however, the equilibrium distribution function
geq

i and discrete source term Gi should be given by

geq
i (x, t ) = ωiφ

(
1 + ci · u

c2
s

)
, (8a)

Gi(x, t ) = ωiR. (8b)

To improve the numerical stability of the SRT-LB method
(6), we now consider the RLB method where a regulariza-
tion process is adopted to filter out the nonhydrodynamic
content of the nonequilibrium part of the distribution func-
tion [i.e., f neq

i (x, t ) = fi(x, t ) − f eq
i (x, t ) and gneq

i (x, t ) =
gi(x, t ) − geq

i (x, t )] with the Chapman-Enskog analysis [15],
and simultaneously, the second-order accuracy can be pre-
served [32]. For the NSEs, the evolution equation of the RLB
method can be written as [15]

fi(x + ci�t, t + �t )

= f eq
i (x, t ) +

(
1 − 1

τ f

)
ωi

(
cici − c2

s I
)

: �
neq
f

2c4
s

+ �tFi(x, t ), (9)
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where �
neq
f is the second-order moment tensor of nonequilib-

rium distribution function, and can be expressed as [36–38]

�
neq
f = � f − �

eq
f =

∑
i

cici fi −
∑

i

cici f eq
i

=
∑

i

cici
(

fi − f eq
i

)
. (10)

However, the evolution equation for the CDE should be writ-
ten as [17]

gi(x + ci�t, t + �t ) = geq
i (x, t ) +

(
1 − 1

τg

)
ωici · �

neq
g

c2
s

+ �tGi(x, t ), (11)

where �
neq
g is the first-order moment of nonequilibrium dis-

tribution function, and can be given by [39–41]

�neq
g = �g − �eq

g =
∑

i

cigi − cig
eq
i =

∑
i

ci
(
gi − geq

i

)
.

(12)
Through some asymptotic analysis methods [4,14], the NSEs
and CDE can be recovered from Eqs. (9) and (11) with a
second-order accuracy in space and the following relations:

ν =
(

τ f − 1

2

)
c2

s �t, D =
(

τg − 1

2

)
c2

s �t . (13)

III. MACROSCOPIC SCHEME BASED ON THE
REGULARIZED LATTICE BOLTZMANN METHOD

A. Macroscopic numerical scheme

We now focus on the macroscopic numerical scheme of the
RLB method, i.e., M-RLB scheme. First, the evolutions of the
RLB method for the NSEs and CDE can be rewritten as

fi(x + ci�t, t + �t )

= f eq
i (x, t ) +

(
1 − 1

τ f

)
ωi

(
cici − c2

s I
)

: (� f − �
eq
f )

2c4
s

+ �tFi(x, t ), (14)

gi(x + ci�t, t + �t )

= geq
i (x, t ) +

(
1 − 1

τg

)
ωici · (

�g − �
eq
g

)
c2

s

+ �tGi(x, t ), (15)

then one can obtain

fi(x, t + �t ) =
[

f eq
i +

(
1 − 1

τ f

)
ωi

(
cici − c2

s I
)

:
(
� f − �

eq
f

)
2c4

s

+ �tFi

]
(x − ci�t, t ), (16)

gi(x, t + �t ) =
[

geq
i +

(
1 − 1

τg

)
ωici · (

�g − �
eq
g

)
c2

s

+ �tGi

]
(x − ci�t, t ). (17)

Through the summations of fi, ci fi, and cici fi of Eq. (16) over i, one can derive the M-RLB method for the NSEs,

ρ(x, t + �t ) =
∑

i

{[
f eq
i +

(
1 − 1

τ f

)
ωi

(
cici − c2

s I
)

:
(
� f − �

eq
f

)
2c4

s

+ �tFi

]
(x − ci�t, t )

}
, (18a)

u(x, t + �t ) = 1

ρ(x, t + �t )

∑
i

{
ci

[
f eq
i +

(
1 − 1

τ f

)
ωi

(
cici − c2

s I
)

:
(
� f − �

eq
f

)
2c4

s

+ �tFi

]
(x − ci�t, t )

}
, (18b)

� f (x, t + �t ) =
∑

i

{
cici

[
f eq
i +

(
1 − 1

τ f

)
ωi

(
cici − c2

s I
)

:
(
� f − �

eq
f

)
2c4

s

+ �tFi

]
(x − ci�t, t )

}
, (18c)

where no distribution functions are included. Similarly, we can also give the M-RLB scheme for the CDE [17],

φ(x, t + �t ) =
∑

i

{[
geq

i +
(

1 − 1

τg

)
ωici · (�g − �

eq
g )

c2
s

+ �tGi

]
(x − ci�t, t )

}
, (19a)

�g(x, t + �t ) =
∑

i

{
ci

[
geq

i +
(

1 − 1

τg

)
ωici · (�g − �

eq
g )

c2
s

+ �tGi

]
(x − ci�t, t )

}
. (19b)

Here we would like to point out that, theoretically, the macro-
scopic numerical scheme (18) or (19) should be the same as
the RLB method for NSEs or CDE, while compared with the
RLB method with the DdQq lattice model, it shares a low
memory. For example, for the D2Q9 lattice model usually

adopted for two-dimensional fluid flow problems, there are at
least three macroscopic variables [the density ρ and velocity
u = (u1, u2)] and nine distribution functions needed to be
stored in the RLB method, while in the M-RLB scheme (18),
only three macroscopic variables [the density ρ and velocity
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u = (u1, u2)] and three elements of the symmetric second-
order tensor � f are needed to store. In addition, it should
be noted that there are some problems in the macroscopic
numerical scheme, for example, how to implement the initial-
ization and how to specify the boundary condition of � f ,g in
numerical simulations.

B. Macroscopic finite-differnce scheme

To overcome the above problems and reduce the number
of the variables stored in the above macroscopic numerical
scheme, we will propose a new macroscopic finite-difference

scheme based on the RLB method. Based on the previous
works [36–38], one can give an approximation to �

neq
f ,

�
neq
f =

∑
i

cici( fi − f eq
i ) ≈ −ρτ f c2

s �t (∇u + ∇uT ), (20)

and similarly, we can also obtain the following result [39–41]:

�neq
g =

∑
i

ci(gi − geq
i ) ≈ −τgc2

s �t∇φ. (21)

If we insert Eq. (20) into Eq. (18), one can obtain the semidis-
crete macroscopic numerical schemes for the density and
velocity governed by NSEs,

ρ(x, t + �t ) =
∑

i

{[
f eq
i + ρ(1 − τ f )�t

ωi
(
cici − c2

s I
)

:
(∇u + ∇uT

)
2c2

s

+ �tFi

]
(x − ci�t, t )

}
, (22a)

u(x, t + �t ) = 1

ρ(x, t + �t )

∑
i

{
ci

[
f eq
i + ρ(1 − τ f )�t

ωi
(
cici − c2

s I
)

: (∇u + ∇uT )

2c2
s

+ �tFi

]
(x − ci�t, t )

}
. (22b)

Following a similar way, from Eq. (21) we can also derive semidiscrete macroscopic numerical scheme for the variable φ in the
CDE,

φ(x, t + �t ) =
∑

i

{[
geq

i + (1 − τg)�tωici · ∇φ + �tGi
]
(x − ci�t, t )

}
. (23)

Then one can obtain the RLB method based macroscopic finite-difference schemes for the NSEs and CDE (see the details in the
following section) once the gradient terms in Eqs. (22) and (23) are discretized by the following second-order central scheme
[42–44],

∇θ =
2d∑

k=1

ω̄kckθ (x + ck�t, t )

c2
s �t

, (24)

where θ is an arbitrary scalar function, and ω̄k is the weigh coefficient corresponding to the DdQ2d or D2Q(2d + 1) lattice
model for simplicity. It should be noted that compared with the RLB and M-RLB methods, the new macroscopic finite-difference
scheme shares a much lower memory and there is no need to consider and implement the initialization and boundary condition
of 	 f ,g

.

IV. ACCURACY ANALYSIS OF THE REGULARIZED LATTICE BOLTZMANN METHOD BASED THE MACROSCOPIC
FINITE-DIFFERENCE SCHEME

In this section, we will conduct a detailed theoretical analysis on the accuracy of the RLB method based the macroscopic
finite-difference schemes (22) and (23) for the NSEs (1) and CDE (2), where the gradient terms in Eqs. (22) and (23) are
discretized by the second-order central scheme (24). To this end, the equilibrium distribution functions (7) and (8) for the NSEs
and CDE at the diffusive scaling can be rewritten as

f eq
i (x, t ) = f

eq
i + f̃ eq

i + ωiρ
uu :

(
cici − c2

s I
)

2c4
s︸ ︷︷ ︸

O(�x2 )

, (25a)

f
eq
i = ωiρ = O(1), f̃ eq

i = ωiρ
ci · u

c2
s

= O(�x), (25b)

and

geq
i (x, t ) = geq

i + g̃eq
i , (26a)

geq
i = ωiφ = O(1), g̃eq

i = ωiφ
ci · u

c2
s

= O(�x). (26b)
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Based on Eqs. (25) and (26), applying the Taylor expansion to Eqs. (22) and (23) at the position x and time t yields the following
results:

ρ + �t∂tρ =
∑

i

f eq
i − �t∇α

∑
i

ciα f eq
i + �t2

2
∇α∇β

∑
i

ciαciβ
(

f
eq
i + f̃ eq

i

)

−�t3

2
∇α∇β∇γ

∑
i

ciαciβciγ f
eq
i +

∑
i

ωi
(
ciαciβ − c2

s δαβ

)
(τ f − 1)	̃neq

f ,αβ

2c2
s

−�t∇η

∑
i

ciη

ωi
(
ciαciβ − c2

s δαβ

)
(τ f − 1)	̃neq

f ,αβ

2c2
s

+ �t
∑

i

Fi + O(�x4), (27a)

ρuη + �t∂t (ρuη ) =
∑

i

ciη f eq
i − �t∇α

∑
i

ciαciη f eq
i + �t2

2
∇α∇β

∑
i

ciαciβciη f eq
i

−�t3

6
∇α∇β∇γ

∑
i

ciαciβciγ ciη
(

f
eq
i + f̃ eq

i

) + �t4

24
∇α∇β∇γ ∇θ

∑
i

ciαciβciγ ciθ ciη f
eq
i

+
∑

i

ciη

ωi
(
ciαciβ − c2

s δαβ

)
(τ f − 1)	̃neq

f ,αβ

2c2
s

− �t∇γ

∑
i

ciγ ciη

ωi
(
ciαciβ − c2

s δαβ

)
(τ f − 1)	̃neq

f ,αβ

2c2
s

+�t2

2
∇γ ∇θ

∑
i

ciγ ciθ ciη

ωi
(
ciαciβ − c2

s δαβ

)
(τ f − 1)	̃neq

f ,αβ

2c2
s

+�t
∑

i

ciηFi − �t2∇α

∑
i

ciαciηFi + O(�x4), (27b)

and

φ + �t∂tφ =
∑

i

geq
i − �t∇α

∑
i

ciαgeq
i + �t2

2
∇α∇β

∑
i

ciαciβgeq
i − �t3

2
∇α∇β∇η

∑
i

ci,αciβci,ηgeq
i

+
∑

i

ωiciα

[
(τg − 1)	

neq
g,α − �t∇βciβ (τg − 1)	

neq
g,α + �t2

2
∇β∇ηciβciη(τg − 1)	

neq
g,α

]

+ �t
∑

i

Gi − �t2∇α

∑
i

ciαGi + O(�x4), (28)

where 	̃
neq
f = −�tρ(∇u + ∇uT ) and 	

neq
g = −�t∇φ.

According to the equilibrium distribution functions (7) and (8) for the NSEs and CDE, respectively, we can obtain the
following moment conditions:∑

i

f eq
i = ρ,

∑
i

ci f eq
i = ρu,

∑
i

cici f eq
i = ρuu + c2

s ρI,

∑
i

cicici f̃ eq
i = c2

s ρ� · u,
∑

i

cicicici f
eq
i = c4

s �ρ,
∑

i

Fi = 0,
∑

i

ciFi = F,
(29)

and ∑
i

geq
i = φ,

∑
i

cig
eq
i = φu,

∑
i

cicig
eq
i = c2

s φI,
∑

i

Gi = R. (30)

By using Eq. (29) above, one can rewrite Eq. (27) as

∂ρ

∂t
+ ∇α (ρuα ) = �t

2
∇α∇β

(
ρuαuβ + c2

s ρδαβ

) + O(�x2), (31a)

∂ (ρuη )

∂t
=−∇α (ρuαuη + c2

s ρδαη ) + �tc2
s

2
∇α∇β (ρuγ δαγ δβη + ρuγ δαηδβγ + ρuγ δαβδγ η )

+ �tc2
s ∇γ

(δαγ δβη + δαηδβγ )(τ f − 1)ρ(∇αuβ + ∇βuα )

2

− �t3

6
∇α∇β∇γ

(
c4

s �αβγηρ
) + Fη + O(�x2).

025301-6



MACROSCOPIC FINITE-DIFFERENCE SCHEME BASED ON … PHYSICAL REVIEW E 109, 025301 (2024)

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5 10-4

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5 10-4

(a) (b)

FIG. 1. The numerical and analytical solutions of velocity u = (u1, u2) at different positions [(a) u1 and (b) u2. Solid line denotes the
analytical solution, and symbol represents the numerical solution].

Based on the relations p = ρc2
s and ∇ρ = O(Ma2) = O(u2/c2) = O(�x2), we have

∂ρ

∂t
+ ∇α (ρuα ) = O(�x2), (32a)

∂ (ρuη )

∂t
+ ∇α (ρuαuη ) = − ∇η p + ∇β[μ(∇ηuβ + ∇βuη )] + Fη + �tc2

s

2
∇η∇β (ρuβ ) + O(�x2)

= − ∇η p + ∇β[μ(∇ηuβ + ∇βuη )] + Fη + O(�x2),

where �tc2
s

2 ∇η∇β (ρuβ ) = −�tc2
s

2 ∇η∂tρ + O(�x2) = O(�x2) has been used.
Similarly, with the help of Eq. (30), we can reformulate Eq. (28) as

∂φ

∂t
+ ∇α (φuα ) = ∇αD∇αφ + R + O(�x2). (33)

From above theoretical analysis, one can find that the two-level macroscopic finite-difference scheme has a second-order
accuracy.

V. NUMERICAL RESULTS AND DISCUSSION

For simplicity but without the loss of generality, we only
consider two-dimensional problems in this section, and three
benchmark tests, including the four-roll mill problem, the
isotropic CDE, and the thermal Poiseuille flow, are used to
investigate the present macroscopic finite-difference schemes
[(22) and (23)] in terms of the accuracy, memory usage, and
computational performance. Additionally, some comparisons
with the mesoscopic RLB schemes [(14) and (15)] and M-
RLB schemes [(18) and (19)] are also performed. Unless
otherwise stated, the D2Q9 lattice model is adopted, and all
tests are carried out on the NVIDIA Tesla A100 Tensor Core
equipped with 80 GB of GPU memory.

A. Four-roll mill problem

The first problem we consider is the four-roll mill problem,
which has an analytical solution of the velocity u, and is also a
good benchmark to test the accuracy of the present scheme. In
this problem, the physical domain is fixed in [0, 2π ] × [0, 2π ]
with the periodic boundary condition imposed on all bound-

aries. To drive the fluid flow, the body force F = (F1, F2) with
the following expressions are adopted:

F1 = U 2
0 sin(x) cos(x) + 2νU0 sin(x) cos(y),

F2 = U 2
0 sin(y) cos(y) − 2νU0 sin(y) cos(x).

(34)

Then the analytical solution of the velocity u = (u1, u2) can
be obtained as

u1 = U0 sin(x) cos(y), u2 = −U0 cos(x) sin(y). (35)

We carry out some numerical simulations with a lattice size
of 64 × 64, U0 = 0.0001, ν = 0.01, and �t = 0.2. Figure 1
shows the numerical results with corresponding analytical
solutions at different locations, and a good agreement between
them can be observed. In addition, it is also known that the
relaxation parameter τ f in the LB method is a key physical
parameter, and has a significant influence on the numerical
stability and accuracy of the LB method. Here we give a
quantitative test on the effect of relaxation time τ f , and some
simulations with the same physical parameters except for the
time step �t . To evaluate the difference between the numer-
ical and analytical solutions, the following relative error is
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FIG. 2. A comparison of the convergence rate among the present,
M-RLB, and RLB schemes for the four-roll mill problem.

adopted:

Err =
∑ |un − ua|∑ |ua| , (36)

where the subscripts n and a represent the numerical and
analytical data. The results in Table I show that when τ f < 1,
the present macroscopic finite-difference scheme produces
larger numerical errors than RLB and M-RLB schemes, while
it gives smaller numerical errors when τ f > 1. Additionally,
it is also worth noting that when τ f = 1, the relative errors of
them are equal to each other since these three schemes reduce
to the same one.

Theoretically, the present finite-difference scheme has a
second-order convergence rate in space. To confirm this re-
sult, we now test the convergence rate numerically through
changing the lattice size, and conduct a comparison with the
RLB and M-RLB schemes in Fig. 2. From this figure, one can
find that all three schemes have a second-order convergence
rate in space, which coincide with the theoretical analysis.
Besides, we also test the performance of three schemes with
the lattice size 256 × 256, and the simulations are suspended
at the fixed iteration steps (1.5 × 105). The results in Table II
indicate that, compared with the mesoscopic RLB scheme, not
only the computational efficiency can be improved, but also
the memory usage is less than 35%, which is highly appealing
for the large-scale simulations.

B. Isotropic CDE

In this section, we adopt a simple two-dimensional
isotropic CDE with a constant velocity u = (u1, u2) to test the
present scheme, and the equation can be expressed as

∂tφ + u1∂xφ + u2∂yφ = D(∂xxφ + ∂yyφ) + R, (37)

where u1 = u2, D is a diffusion coefficient defined by the
Péclet number Pe = Lu1/D (L is the characteristic length and
u1 is the characteristic velocity). R is the source term, and is
given by

R = exp[(1 − 2Dπ2)t]{sin[π (x + y)]

+ π (u1 + u2) cos[π (x + y)]}. (38)

0 0.5 1 1.5 2
-50

0

50

FIG. 3. The numerical and analytical solutions of φ at different
times [solid line denotes the analytical solution, and symbol repre-
sents the numerical solution].

Under the initial condition φ(x, y, t = 0) = sin[π (x + y)] and
the periodic boundary condition applied on the boundaries, we
can get the analytical solution as

φ(x, y, t ) = exp[(1 − 2Dπ2)t] sin[π (x + y)]. (39)

In the following simulations, the lattice size is 200 × 200,
L = 2, Pe = 100, u1 = 0.1, and �t = 0.005. As seen from
Fig. 3, the numerical results obtained by the present scheme
at different times agree well with the analytical solutions. In
addition, this problem is also used to test the effect of the
relaxation time τg. From Table III, one can obtain some sim-
ilar conclusions as those shown previously. Furthermore, we
focus on the convergence rate of the present finite-difference
scheme. For this purpose, some simulations are performed
with the lattice spacing changing from 2.0/50 to 2.0/400,
and the results in Fig. 4 show that all three schemes have a
second-order convergence rate in space, which are consistent
with the theoretical analysis. Besides, we also conduct a com-
parison of the computational performance among different
schemes with the lattice size 400 × 400 in Table IV, and one

10-3 10-2 10-1
10-4

10-3

10-2

10-1

100

FIG. 4. A comparison of the convergence rate among the present,
M-RLB, and RLB schemes for the isotropic two-dimensional CDE.
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FIG. 5. The numerical and analytical solutions of (a) the velocity component u1 and (b) the temperature field T [solid line denotes the
analytical solution, and symbol represents the numerical solution].

can find that compared with the M-RLB and RLB schemes,
the present scheme is not only more efficient but also has a
great advantage in reducing memory occupancy.

C. Thermal Poiseuille flow

The last benchmark problem we consider is the thermal
Poiseuille flow with constant wall temperature T0, which can
be described by the following coupled equations:

∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρuu) = −∇P + ∇ · [ρv(∇u + (∇u)T)] + F,

∂t T + ∇ · (T u) = ∇ · (D∇T ) + R, (40)

where R = 2vSαβSαβ and Sαβ = (∂αuβ + ∂βuα )/2. In this
problem, the nonslip boundary condition is applied on both
bottom and top walls, and the inflow and outflow are treated
by the periodic boundary condition. With the Reynolds num-
ber Re = U0H/ν and the Prandtl number Pr = ν/D, the
analytical solutions of the flow and temperature fields can be

given as [45]

uexact
1 = 4Reν

H

(
y

H
− y2

H2

)
,

T exact = T0 + Pr U 2
0

3

[
1 −

(
2y

H
− 1

)4
]
,

(41)

where U0 = 0.1 is the maximum velocity and H is the height
of the channel. In our simulations H = 1, T0 = 0.1, Re =
0.01, and F = (Fx, 0) with Fx = 8ρνU0/H2, �x = 1/80, and
�t = 2.0 × 10−6. Figure 5 presents the comparisons of the
numerical and analytical results of temperature and velocity
distributions. From this figure, one can see that numerical re-
sults of both fields given by present scheme are well consistent
with the analytical solutions. Moreover, we test the effect of
τ f ,g on velocity and temperature with Pr = 0.25 in Table V.
As seen from this table, the relative error of the velocity
obtained from the present scheme is larger than those from
M-RLB and RLB schemes when τ f < 1, but for all tests, the
present scheme shows a better performance on the temper-
ature. In addition, we also present the convergence rates of
three schemes for velocity and temperature in Fig. 6, and it is
clear that all of them have a second-order convergence rate.

10-3 10-2 10-1
10-6

10-5

10-4

10-3

10-2

10-3 10-2 10-1
10-7

10-6

10-5

10-4
(a) (b)

FIG. 6. A comparison of the convergence rate among the present, M-RLB, and RLB schemes for the thermal Poiseuille flow with Pr = 0.25
[(a) the velocity component u1 and (b) the temperature field T ].

025301-9



LIU, CHEN, CHAI, AND SHI PHYSICAL REVIEW E 109, 025301 (2024)

TABLE VI. The comparisons of the memory usage and computational time among the present, M-RLB, and RLB schemes for the thermal
Poiseuille flow with Pr = 0.25.

Storage variables Memory usage Total time

Present ρ[NY ][NX ], u1[NY ][NX ], u2[NY ][NX ], Fx[NY ][NX ], T [NY ][NX ] 21.95% 10.48s
ρ̃[NY ][NX ], ũ1[NY ][NX ], ũ2[NY ][NX ], T̃ [NY ][NX ]

M-RLB ρ[NY ][NX ], u1[NY ][NX ], u2[NY ][NX ], Fx[NY ][NX ], T [NY ][NX ] 46.34% 12.07s
ρ̃[NY ][NX ], ũ1[NY ][NX ], ũ2[NY ][NX ], T̃ [NY ][NX ]

	 f ,xx[NY ][NX ], 	 f ,xy[NY ][NX ], 	 f ,yy[NY ][NX ]
	̃ f ,xx[NY ][NX ], 	̃ f ,xy[NY ][NX ], 	̃ f ,yy[NY ][NX ]

	g,x[NY ][NX ], 	g,y[NY ][NX ], 	̃g,x[NY ][NX ], 	̃g,y[NY ][NX ]
RLB g[NY ][NX ][Q], g̃[NY ][NX ][Q], f [NY ][NX ][Q], f̃ [NY ][NX ][Q] 100% 17.35s

ρ[NY ][NX ], u1[NY ][NX ], u2[NY ][NX ], Fx[NY ][NX ], T [NY ][NX ]

Finally, we set �x = 1/320 and present some results on the
computational performance at a fixed number of iteration step
(2.0 × 106) in Table VI, and from this figure, one can find that
compared with RLB scheme, the present scheme grants nearly
78% reduction in memory usage and achieves a significant
improvement in efficiency.

VI. CONCLUSION

In this paper, we developed an efficient macroscopic finite-
difference scheme from the mesoscopic RLB method for
NSEs and CDE. From the theoretical analysis, one can find
that the same as the RLB method: this two-level macroscopic
finite-difference scheme also has a second-order accuracy in
space. Through simulating three benchmark problems, includ-
ing the four-roll mill problem, the isotropic CDE, and the
thermal Poiseuille flow, one can show that compared to the

RLB and M-RLB schemes, the present macroscopic finite-
difference scheme not only has a second-order accuracy, but
also shares the lowest memory requirement and highest com-
putational efficiency. Considering the numerical accuracy and
computational efficiency, in a future work we will extend the
present scheme to study more complex problems, e.g., the
multiphase flows and multicomponent mixtures [46–48].
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