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Dynamic stabilization of ablative Rayleigh-Taylor instability in the presence
of a temporally modulated laser pulse
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This paper presents a numeric study of the dynamic stabilization of the ablative Rayleigh-Taylor instability
(ARTI) in the presence of a temporally modulated laser pulse. The results show that the specially modulated laser
produces a dynamically stabilized configuration near the ablation front. The physical features of the relevant
laser-driven parameters in the unperturbed ablative flows have been analyzed to reveal the inherent stability
mechanism underlying the dynamically stabilized configuration. A single-mode ARTI for the modulated laser
pulse is first compared with that of the unmodulated laser pulse. The results show that the modulated laser
stabilizes the surface perturbations and reduces the linear growth rate and enhancement of the cutoff wavelength.
For multimode perturbations, the dynamic stabilization effect of the modulated laser pulse contributes to
suppress the small-scale structure and reduce the width of the mixing layer. Moreover, the results show that
the stabilization effect of the modulated laser pulse decreases as the maximum wavelength increases.
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I. INTRODUCTION

Inertial confinement fusion (ICF) involves high-power
lasers or soft x-rays driving the spherical compression of a
capsule containing deuterium and tritium as fuel, with the
goal being to achieve self-sustaining fusion [1–5]. In the cen-
tral hot-spot ignition ICF scheme, the driving source heats
the shell outer surface of the spherical capsule, causing a
low-density plasma to inwardly accelerate the high-density
shell [6,7]. During the acceleration phase, perturbations
seeded by nonuniform irradiation and surface roughness on
the capsules are magnified via the Rayleigh-Taylor instability
(RTI) [8,9]. Sufficient growth of the perturbation can cause
the dense shell to break up and mix the shell material into
the main fuel at a later stage of the implosion [10–12]. The
RTI is one of the main challenges to overcome to achieve
ignition [13]. During the course of an ICF implosion, the RTI
must be reduced to an acceptable level, to improve implosion
performance and achieve the desired fusion burning and high
gain.

Considerable research has been devoted to reduce the
growth of the ablative RTI (ARTI) in laser-driven targets.
Previous studies show that mass ablation is caused by heat
flux leaving the unstable interface [14–21], which indicates
that mass ablation tends to stabilize the ARTI. The growth
rate of the ARTI derived by Bodner and Takabe [14,15],
γ = α

√
kg − βkVa, is generally consistent with the experi-
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mental results [22], where k = 2π/λ is the perturbation wave
number, g is the acceleration, and Va = ṁ/ρh is the abla-
tion velocity. The parameters α and β are coefficients that
depend on the ablative flow parameters. As predicted by
the dispersion relation, Fujioka et al. [23] observed that the
density profile stabilizes laser-driven targets. Considering the
density profile stabilization at the ablation front [17,24,25],
the ARTI linear growth rate is γ = α

√
kg/(1 + kLm ) − βkVa,

where Lm = min[|ρ/(∂ρ/∂x)|] is the minimum density gradi-
ent scale length at the ablation surface. Ye et al. [26] proposed
the modified formula for the preheating case.

To improve stability, a wide variety of strategies have been
proposed to further suppress the ARTI or/and mitigate the
laser imprint on direct-drive ICF implosions. In recent years,
efforts have increased with adiabat-shaping techniques, [27]
which involve designing the laser pulse with both small pick-
ets [28] and “high-foot” [29] types; these designs stabilize the
instability in the ablator. The possible stabilizing mechanisms
of nonlocal electron heat transport [30], high-Z-doped tar-
get [31], radiation preheating [32], and magnetic field [33,34]
affect the evolution of the ARTI. While these physical mech-
anisms and strategies control the RTI growth to avoid the
nonlinear behavior [35,36], amplifications of perturbations
seeded by target roughness and laser imprint still threaten
the ignition process. For this reason, developing methods to
suppress the instability growth could ultimately prove crucial
to improving implosion performance in ICF experiments.

Dynamic stabilization driven by the vertical vibration of
the ablation front in an ICF scenario has been suggested as
a possible stabilization method for mitigating or suppressing
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the instability growth [37–40]. The dynamic stabilization of
the ARTI in ICF targets was first developed in numerical
simulations by Boris [37], and later Betti et al. developed
a linear stability analysis for a sinusoidal modulation of the
laser intensity [38]. To gain a deeper insight into the different
modulation of the driving acceleration g(t ) = g0 + b	(ωt ),
Piriz et al. [39,40] used a simplified theoretical model to
obtain the dispersion relations of the dynamic stabilization
of the RTI in the ablation front. Here g0 is the background
acceleration, b	(ωt ) is the local acceleration that oscillates
with the frequency ω and amplitude b = ω2A of the mod-
ulation acceleration, and A is an amplitude of a harmonic
oscillation in the vertical direction at the interface of two
fluids. In general, the mass ablation effects of the ARTI in
ICF implosions resembles those produced by the viscosity
and surface tension in Newtonian fluids [41]. The dynamic
stabilization of the RTI in Newtonian fluids has been experi-
mentally demonstrated by applying vertical vibration [42,43],
and the analyses of these experiments indicate the importance
of viscosity and surface tension in determining the possible
stable regions [44–46]. The consistency between the theoret-
ical model and experimental results demonstrates modulating
the driving acceleration is a feasible method to dynamically
stabilize the RTI.

Although the linear stability analysis accurately predicts
the growth rate and the stability region of the dynamically
stabilized ARTI, the analytical results are obtained by using
the simplest modulation in the acceleration [38–40]. A related
but more complicated acceleration for the dynamically stabi-
lized configuration is established near the ablation front when
a planar target is irradiated by an appropriately modulated
laser. Notably, such a modulated laser pulse plays a signifi-
cant role in stabilizing the ARTI growth and is feasible at a
real laser facility for applications to direct-drive ICF ignition
target designs. Another interesting aspect of the dynamically
stabilized configuration is that the modulation frequency de-
pends both on compressibility and the response time of the
target materials imposed by the oscillating ablation pressure.
Therefore, the dynamic stabilization of the modulated laser
pulse must be regarded from a broader perspective. Revealing
the inherent stability mechanism underlying the dynamically
stabilized configuration is of great importance to the success
of laser direct-drive ICF ignition.

This work applies a full analysis of the relevant laser-driven
parameters in the ablative flow to better understand the dy-
namic stabilization effect of the modulated laser pulse. The
interface is stable only when accelerated from the heavier
to the lighter fluid, which is a criterion to reveal the intrin-
sic stability mechanism of the ablation front. Still, obtaining
such physical parameters is essential to present the stabilizing
features of the dynamically stabilized configuration. In addi-
tion, according to the phenomenology of the nonlinear RTI
in the presence of time-varying accelerations [47,48], both
experimental and simulated results indicate that the growth
and late-time scaling of the nonlinear RTI depend on the
temporal acceleration profile g(t ). In particular, the periodic
modulation of the acceleration field suppresses the turbulent
mixing by the classical RTI. To date, the dynamic stabilization
of the modulated laser pulse has not been studied beyond the
linear regime. Therefore, it is necessary to study the nonlinear

dynamics of the multimode ARTI underlying the dynamically
stabilized configuration to understand the stabilization effect
of the modulated laser pulse in the mixing region.

The remainder of this paper is organized as follows. The
mathematical framework and numerical setup are presented
in Sec. II. The simulation results are reported in Sec. III,
where we analyze the stability features of the unperturbed
ablative flow and discuss the dynamic stabilization for single-
mode and multimode ARTIs. Finally, the conclusions are
given in Sec. IV.

II. NUMERICAL METHODS AND SIMULATION SETUPS

A. Governing equations

This study models the physical system as a two-
dimensional (2D) inviscid, single-temperature single fluid
with laser energy deposition and the thermal conduction. Not
considering radiation, our numerical code is based on an ideal
gas equation of state, the governing equations of which are

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu
∂t

+ ∇ · (ρuu) + ∇p = 0, (2)

∂E

∂t
+ ∇ · [(E + p)u] = ∇ · (κ∇T ) + WL, (3)

where ρ (g/cm3), u (cm/µs), and T (MK) are the density,
velocity, and temperature, respectively, p = cv(γh − 1)ρT is
the pressure, E = cvρT + ρuu/2 is the total energy, cv is
the specific heat at constant volume, and γh is the specific
heat ratio. For the plastic (CH) foil material, γh = 5/3 and
cv = 86.2713 cm µs−2 MK−1.

For intense laser irradiation of planar targets, the laser
energy deposition WL is calculated by using the inverse
bremsstrahlung absorption model [49–51]. Together with the
heat flux transported by the electron thermal conduction, the
electron thermal conductivity coefficient κ = κ0T 5/2 is calcu-
lated by using the classical Spitzer-Härm electron thermal
transport model [52]. The one-dimensional (1D) simulation
assumes that a planar target is irradiated directly by a laser
beam with a wavelength of ∼ 351 nm and where the intensity
increases linearly to a maximum and then remains constant.

B. Numerical methods

For simplicity, the system of partial differential equations is
expressed in the form

Qt + LQ = LvQ + S, (4)

where the conservative variable Q = (ρ, ρu, ρv, E )T , and u
and v are the velocities in the x and y directions, respec-
tively. L and Lv are the spatial differential operators for the
first-order (inviscid, nonlinear, hyperbolic) and second-order
(linear, parabolic) terms, respectively, and S is approximated
as the bulk-force source term.

The complete simulation code [53], including the hy-
drodynamic module, the laser energy deposition, and the
electron thermal conduction, is designed to solve the gov-
erning equations. A finite volume method is used to solve
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Eq. (4). The numerical results of LQ are obtained by solv-
ing the approximate Riemann problem [54]. A nonuniform
grid is used to reduce the computational load. Grid-moving
(target-tracking) technology ensures that the ablation surface
is always under the refined-mesh area. Considering the inci-
dent and reflection process in an intense laser illumination of
planar targets, the source term S involving the laser energy
deposition is calculated by the physical parameters obtained
from the hydrodynamic module. A redesigned grid and a
parallel partitioning strategy avoids parallel communication
and improves the efficiency. When the thermal conductivity
coefficient κ �= 0, the second-order parabolic term involving
the electron thermal conduction is solved by using an implicit
iteration method for the large and sparse linear system of
equations, which is provided by the HYPRE library in the
form of high-performance preconditions and solvers [55]. The
second-order accuracy in spatial and temporal discretization is
thus determined via numerical methods.

The physical domain is rectangular. The domain length in
the laser direction x is Lx = 1610.8 µm. For single-mode per-
turbations, the domain in the transverse direction y is chosen
to be periodic with length Ly = λ, where λ is the perturba-
tion wavelength. The simulation domain in the y direction
for multimode perturbations uses Ly = 150 µm. Free-stream
boundary conditions are imposed at both ends of the domain
in the x direction because, for a sufficiently large domain, the
flow remains unchanged far from the center of the computa-
tional domain. Periodic boundary conditions are imposed on
the upper and lower boundaries of the simulation domain in
the y direction.

In the simulations presented in Sec. III, the spatially
uniform and nonuniform grid points are designed in the trans-
verse and laser directions, respectively. The cell size along
the laser direction is finely gridded with �x = 0.2 µm over
the entire ablation front and the critical density regions, then
stretching smoothly to about �x = 2.0 µm on either side of
the finely gridded region. Properties similar to those of the
present numerical grid are used in the laser-matter interaction
codes FAST2D and FastRad3D [50,56,57]. Furthermore, the
grid ratio �x/�y of our grid distribution ranges from 0.256
to 2.56 in all regions and is similar to the distribution of grids
points reported by Gardner et al. for growth of the ARTI [58].
For initial multimode perturbations, the number of grid points
used in the x and y directions are Nx = 2760 and Ny = 1024,
respectively.

C. Setup of initial conditions

To explore how the specially modulated laser pulse dynam-
ically stabilizes the nonlinear evolution of the ARTI, we must
obtain a quasisteady ablative flow in the noninertial reference
frame of the accelerating target. More specifically, a 400 µm
thick plastic target with a density of 1.0 g/cm3 [see Fig. 1(a)]
is irradiated directly by a laser beam with a wavelength
∼ 351 nm and maximum intensity 3.0 × 1014 W/cm2. The
intensity of this laser pulse increases linearly within 4.0 ns and
then remains at its maximum value, as plotted in Fig. 1(b).
The laser intensity required for the numerical simulation is
well within the working range of already existing laboratory
apparatuses, which provides an opportunity to answer some

FIG. 1. (a) Schematic of planar target. (b) Profile of laser inten-
sity. (c) Distribution of initial basic flow (t = 0.0 ns) along the x axis.
The minimum density gradient scale length of the ablation front is
about 0.93 µm.

critical questions. For a higher laser intensity (i.e., �1015

W/cm2), we hope to use this laser intensity in future research
into ablative flow problems. When the target material is irradi-
ated by this intense laser beam, the ablation front accelerates.
The instantaneous acceleration is oscillatory in the early
stage and approaches a constant value, which indicates that
the quasisteady ablative flow is established in the vicinity of
the ablation front (defined as the zone at half-peak density).
For the ARTI problem, the ablative flow must be maintained
in the quasisteady-acceleration phase.

We have chosen the ablative flow at time 0.0 ns as the initial
basic flow for the following simulations. The initial condition
of this ablative flow is quasisteady state, which corresponds
to a typical acceleration phase of the laser direct-drive target
ICF. As shown in Fig. 1(c), the initial ablation front is at
s(t = 0.0 ns) ≈0.0 µm and the peak density ρh ≈ 6.0 g/cm3.
The pressure driving the dense compressed target comes pri-
marily from removal of the ablated material at the surface
of the planar target. Therefore, by adopting the noninertial
reference frame of the dense compressed target, the target sup-
ported by the low-density plasma of the ablation flow is in the
effective gravitational field of the acceleration. Furthermore,
the initial velocity of the ablation front in the quasisteady
ablative flow is about 10.5 cm/µs due to the target material
has been already driven within 12 ns, as shown in Fig. 1(c).
Accordingly, we choose this ablative flow as an initial ablative
flow. Thereafter the driving acceleration of the ablation front
will be constant.

The primitive variables (ρ, u, v, T ) of the initial quasis-
teady ablative flow are perturbed by the interface perturbation.
Actually, the perturbations on all relevant interfaces are gen-
erally a natural multimode. To investigate the multimode
perturbations in the ablative flows generated by unmodu-
lated and modulated laser pulses, the initial perturbations
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with a continuous spectrum and a random phase are in two
dimensions.

III. SIMULATION RESULTS AND DISCUSSION

This section describes the 1D ablative flows and 2D sim-
ulation results of the single-mode and multimode ARTIs in
a laser-driven planar target. First, we discuss the physical
features of the relevant parameters in the unperturbed ab-
lative flow, and reveal the inherent stability mechanism of
the specially modulated laser pulse. Second, we describe the
dynamic stabilization behaviors of the ARTI with the single-
mode perturbation at the ablation surface. Finally, the spatial
structure of the ablation surface and the nonlinear dynamics
for multimode ARTI are simulated and analyzed to investigate
the dynamic stabilization behaviors of the modulated laser
pulse in the nonlinear evolution of the system.

A. Stability analysis of the unperturbed ablative flow

Previously published theoretical studies of the dynamic
stabilization of the RTI in the ablation front focused on the
modulation of the driving acceleration [39,40]. The analysis
of the theoretical results indicates that dynamic stabilization
depends on the driving waveform, vibration frequency, and
oscillation amplitude of the modulation acceleration. More
importantly, the driving acceleration involving a Dirac δ

function produces the best dynamic stabilization. In our sim-
ulations, the laser pulse, specially modulated as a function
of time to produce the oscillating ablation pressure, is deter-
mined by running multiple simulations. When the unablated
material layer ahead of the ablation front is imposed by the os-
cillating ablation pressure, it exhibits a periodic compression
and decompression due to the compressibility of the material.
Thus, a local acceleration consisting of Dirac δ functions is
generated near the ablation front, where the oscillating accel-
eration exceeds the background acceleration driving the whole
mass of the accelerated shell.

After the quasisteady ablative flow is established in the
vicinity of the ablation front [see Fig. 1(c)], two typical
laser intensity profiles of the specially modulated and un-
modulated pulse shapes appear (see Fig. 2) and drive the
accelerating target. As can be seen, a constant intensity of
the unmodulated laser pulse as a reference case is always
3.0×1014 W/cm2, which is consistent with the maximum
value used in Fig. 1(b). According to the previous analysis,
the ablative flow for the reference case continues to main-
tain its quasisteady system with the constant acceleration. To
achieve sufficient stabilization, we assume that the specially
modulated laser pulse consists of the perfectly symmetric
square wave used in the simulations. Note that the dynamic
stabilization of the modulated laser pulse depends strongly on
the modulation amplitude and period of the symmetric square
wave. Next, a general amplitude with 50% modulation depth
is taken for the specially modulated laser pulse, which the
peak and valley intensities are 4.5×1014 W/cm2 and 1.5×1014

W/cm2, respectively. Another stabilization factor is due to the
modulation period of the symmetric square wave. Considering
the stabilization effect and the difficulty of laser modulation,
then the symmetric square wave with a period of 2.0 ns

FIG. 2. Laser intensity profiles for unmodulated (dashed line)
and for specially modulated (solid line) pulse shapes. A constant
intensity of the unmodulated laser pulse as a reference case is always
3.0×1014 W/cm2. The specially modulated case of 50% modulation
depth consists of a symmetric square wave with a period of 2.0 ns,
the peak intensity of 4.5×1014 W/cm2, and the valley intensity of
1.5×1014 W/cm2.

corresponding to the oscillation frequency is used in the fol-
lowing simulation, for which the rising and falling times of
the modulated laser pulse are ∼100 ps. Theoretically, the
considerable stabilization effect of the modulated laser im-
proves if the period is sufficiently short. However, an optimal
modulation period needs to be determined by considering the
compressibility of the ablator materials and the response time
of dense fluids, which is left to subsequent investigations.
We limit the present study to the stability mechanism of the
modulated laser pulse.

To further extend our understanding of the dynamically
stabilized configuration, we compare the relevant laser-driven
parameters of the unperturbed ablative flow driven by the
specially modulated laser pulse with those of the unmodulated
laser pulse, which reveals the inherent stability mechanism
underlying the dynamically stabilized configuration. Figure 3
shows the temporal evolution of the relevant laser-driven pa-
rameters in two unperturbed ablative flows for modulated and
unmodulated laser pulses, including the position s, accelera-
tion g, pressure pa of the ablation front, peak density, mass
ablation rate ṁ, and ablation velocity Va. For the reference
case with the unmodulated laser pulse, Fig. 3 shows that
the position of the ablation front follows a highly similar
trajectory for modulated and unmodulated laser pulses. The
acceleration profile for the unmodulated laser pulse at the
ablation front remains unchanged, gunm � 12.0 µm/ns2 during
the quasisteady ablative flow, the pressure of the ablation
front is constant at pa � 39.0 Mbar, and the peak density
(ρh) gradually decreases over time due to the laser ablation.
It is easy to find that the velocity of the ablation front in
the unmodulated laser pulse continuous to increase linearly
due to the constant acceleration. Moreover, the mass abla-
tion rate (ṁ) at long times approaches a constant value of
∼ 0.98 g/(µs cm2), and the ablation velocity (Va = ṁ/ρh )
remains approximately constant at ∼ 1.7 µm/ns and in-
creases slightly with decreasing peak density ρh. In addition
to this undistinguishable trajectory, the modulated laser pulse
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FIG. 3. Temporal evolution of the interesting laser-driven parameters in two unperturbed ablative flows for modulated (solid line) and
unmodulated (dashed line) laser pulses. The laser parameters include (a) position s, (b) acceleration g, (c) pressure pa of the ablation front
(defined as the zone at half-peak density), (d) peak density ρh, (e) mass ablation rate ṁ, and (f) ablation velocity Va.

produces a periodic oscillating system near the ablation front,
which includes the oscillating distribution of the acceleration,
ablation pressure, peak density, mass ablation rate, and abla-
tion velocity, as shown in Figs. 3(b)–3(f). This result differs
completely from that obtained in the reference case. Compar-
ing the constant acceleration, the modulating acceleration gmod

with a sequence of positive Dirac δ functions and negative
square waves is distributed in a complex and asymmetric
manner. The dynamic stabilization of the RTI in the ablation
front is supported theoretically by considering a modulation in
the acceleration [38–40]. As in Fig. 3(c), the descent (ascent)
of the oscillating ablation pressure corresponds to the phase
of low-acceleration gmod < gunm (high-acceleration gmod > gunm),
which is a reciprocating motion with the compression and
decompression process. Note that the velocity of the ablation
front in the modulated laser case exhibits a periodic oscil-
lation due to the oscillating distribution of the acceleration
and ablation pressure, which is different from that of the
unmodulated case. Although there is a periodic oscillation
in the peak density, as shown in Fig. 3(d), the minimum
oscillating peak density remains larger than that in the low-
density ablated plasma, which weakly affects the perturbation
growth at the ablation surface. For the laser-driven target, the
mass ablation is an important factor in the perturbation evolu-
tion. Furthermore, comparing the distribution of the ablation
velocity and acceleration, as shown in Figs. 3(b) and 3(f),
the stabilization of the ablation velocity coincides with the
acceleration in the ablative flow field driven by the specially
modulated laser pulse. As previously described, the evolution

of the perturbations at the ablation front is strongly affected by
the presence of these oscillating results. These results suggest
that the modulated laser pulse contributes considerably to the
dynamic stabilization of the ARTI.

A series of shocks launched when the laser intensity is
modulated causes the adiabat of the modulated laser pulse
to likely differ from that of the unmodulated case, which
affects the growth of the ARTI. Figure 4 compares the evolu-
tion of the adiabat near the ablation front for the modulated

FIG. 4. Evolution of the adiabat near the ablation front for the
modulated (solid line) laser pulse compared with that of the unmod-
ulated (dashed line) laser pulse. The dotted line shows the average
adiabat of the modulated laser pulse.
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FIG. 5. Spatial profiles of density (solid lines) and pressure
(dashed lines) near the ablation front for unmodulated (top row) and
modulated (bottom row) laser pulses at 2.8 ns [(a) and (c)] and 3.5 ns
[(b) and (d)]. The interface for the unmodulated laser pulse is always
unstable because the pressure gradient opposes the density gradient.
The interfaces for the modulated laser pulse at 2.8 ns and 3.5 ns are
unstable and stable, respectively.

and unmodulated laser pulses. Here the adiabat is defined
as αadi = P/PFermi, where P = pa is the ablation pressure and
PFermi = Adegρ

5/3 is the Fermi degenerate pressure with Adeg

being a constant for CH foil. The adiabat of the reference case
increases slightly over time, and this small variation in αadi can
be neglected for the growth of the instability. For the dynami-
cally stabilized configuration produced by the modulated laser
pulse, the adiabat oscillates periodically, as shown in Fig. 4. A
high adiabat reduces the growth of the ARTI [28]. Although
the periodic oscillating adiabat produces an effective stabiliza-
tion mechanism, the duration of the strong adiabat is relatively
short compared with the reference case. Furthermore, the
adiabat of the modulated laser pulse is averaged over the
laser irradiation time, whose average value is only about 6.0%
higher than that of the reference case, as shown in Fig. 4. In
comparison with the reference case, the cumulative stabilizing
effect of the strong adiabat in the modulated case decreases
significantly, especially in the linear growth regime, which
indicates a small difference between two typical laser intensity
pulses. These results suggest that the stabilizing effect of the
adiabat is not very important in the dynamically stabilized
configuration.

We have presented the spatial variation of the ablative
flow and a simple analysis of the periodic oscillating sys-
tem to reveal the dynamically stabilized configuration. The
spatial profiles of the density and pressure near the abla-
tion front for unmodulated (top row) and modulated (bottom
row) laser pulses at 2.8 and 3.5 ns are plotted in Figs. 5(a)
and 5(c) and Figs. 5(b) and 5(d), respectively. Here two in-
stantaneous ablation pressures of the modulated laser pulse
at 2.8 and 3.5 ns are in the ascending and descending curves
in Fig. 3(c), which corresponds to the peak and valley ac-
celerations, respectively. For the quasisteady ablative flow
generated by the unmodulated laser, Figs. 5(a) and 5(b)

show that the ablation surface keeps unstable because the
pressure gradient opposes the density gradient. Somewhat
surprisingly, the simulation results show that the direction
of the pressure gradient for the specially modulated laser
pulse is reversed in Figs. 5(c) and 5(d), corresponding to
the unstable and stable states, respectively. According to the
distribution of the laser-driven parameters in the periodic os-
cillating system, we infer from the local potential field of
the interface that the perturbation can be altered by the fre-
quency and the periodic force due to the oscillation. In other
words, the dynamic stabilization of the RTI in the ablation
front can potentially reduce the perturbation growth com-
pared with the reference case with the constant acceleration
field.

B. Dynamic stabilization of single-mode ablative
Rayleigh-Taylor instability

The stabilizing effect of laser-driven planar target irradi-
ated by the modulated laser pulse is studied and analyzed
through the single-mode perturbation at the ablation surface.
The evolution of the ARTI with a sinusoidal small-amplitude
perturbation for the modulated laser pulse is measured via
numerical simulations. The growth of the ablation surface
initiated by the same perturbation for the unmodulated laser
pulse is considered as the reference case to understand the
dynamic stabilization of the modulated laser pulse. Figure 6
illustrates the density contours of the single-mode ARTI
initiated by a sinusoidal small-amplitude perturbation for un-
modulated (top row) and modulated (bottom row) laser pulses
at 2.0, 4.0, 6.0, and 8.0 ns, where the initial wavelength and
its perturbation amplitude are λ = 60 µm and A0 � 0.0034λ,
respectively. During the earlier stage of the instability [see
Figs. 6(a1) and 6(b1)] a closely similar perturbation shape
exists for the unmodulated and modulated laser pulses. How-
ever, as the perturbation grows, the perturbation amplitude
of the modulated laser pulse becomes significantly smaller
than that of the unmodulated laser pulse, especially at late
time [see Figs. 6(a4) and 6(b4)]. The comparison of numerical
results from the two cases indicates that the modulated laser
pulse stabilizes the evolution of the ARTI. To more directly
verify the dynamic stabilization of the modulated laser pulse,
the single-mode perturbations with different wavelengths have
been investigated. Figure 7 shows the evolution of the bubble-
spike amplitudes of the single-mode ARTI initiated by the
small-amplitude perturbation and irradiated by the unmodu-
lated (dashed lines) and modulated (solid lines) laser pulses
for wavelengths of 20, 60, and 90 µm. As seen in Fig. 7(a), the
bubble-spike amplitude of the short-wavelength perturbation
for the modulated laser pulse is almost zero about after 2.6 ns
and noticeably smaller than for the unmodulated laser case,
which indicates that the perturbation of this wavelength is
completely suppressed. The stabilizing effect leads to the con-
clusion that the ablation surface with initial small-amplitude
perturbations is stable for all wavelengths � 20 µm. As shown
in Figs. 7(b) and 7(c), the bubble-spike amplitudes of the
modulated laser remain less than those of the unmodulated
case, but the stabilizing effect decreases with increasing per-
turbation wavelength. In addition, a periodic oscillation of the
bubble-spike amplitude appears at the ablation surface for the
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FIG. 6. Density contours of the single-mode ARTI initiated by a small-amplitude perturbation for unmodulated (top row) and modulated
(bottom row) laser pulses at 2.0, 4.0, 6.0, and 8.0 ns. The initial wavelength and its perturbation amplitude are λ = 60 µm and A0 � 0.0034λ,
respectively.

modulated laser pulse. This feature differs from the perturba-
tion amplitude of the unmodulated laser pulse. A comparative
analysis of different wavelength simulations shows that the
stabilizing effect of the modulated laser on short-wavelength
perturbations decreases significantly and gradually with in-
creasing wavelength.

In addition to the dynamic stabilization, several physical
effects cause the ablation front to become extremely com-
plex. These physical effects include the oscillatory ablation
pressure produced by the modulated laser pulse, mass abla-
tion, and hydrodynamical instabilities. The following analysis
concentrates on the evolution of amplitude of the ablation
front over a single modulation period (i.e., the first modulation
period). When the laser intensity increases, the driving accel-
eration of the dense compressed material under the greater
ablation pressure is larger than that for the unmodulated case.

Moreover, the peak density starts to grow sharply, as shown in
Fig. 3(d), reducing the ablation velocity to less than that of the
unmodulated case. Therefore, the amplitude of the ablation
front grows and is suppressed by the combined effects of the
large driving acceleration and the lower ablation velocity, as
shown in Fig. 7 for the rising-amplitude stage. Correspond-
ingly, when the laser intensity decreases, the perturbation
amplitude is also affected by both the ablation pressure and
mass ablation. As the ablation pressure decreases rapidly, the
driving acceleration rapidly decreases and even reverses its di-
rection, which in the case of the reversed driving acceleration
causes the interface to oscillate in time. As the peak density
rapidly decreases, the ablation velocity increases gradually
beyond that of the unmodulated case, which produces greater
ablative stabilization. Therefore, the reduction of the perturba-
tion amplitude is mainly due to the large ablation velocity and

FIG. 7. Evolution of normalized bubble-spike amplitudes (ηb+s/λ) of the single-mode ARTI driven by the unmodulated (dashed lines) and
modulated (solid lines) laser pulses for a perturbation with (a) λ = 20 µm, (b) 60 µm, and (c) 90 µm. The initial perturbation amplitudes for
cases (a)–(c) are about 0.083, 0.206, and 0.323 µm, respectively.
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the amplitude evolution becomes a stable ARTI oscillation
under the influence of the reversed driving acceleration, as
can be seen in Fig. 7 for the decreasing-amplitude stage.
In fact, the ablation front in the modulated case undergoes
ARTI growth, greater ablative stabilization, and stable ARTI
oscillation for each modulation period.

Based on the previous analysis, the modulated laser plays
a stabilizing role for the spatial evolution of the perturbed
interface in the linear regime. Several theories [17,38–40]
have been developed to explore the basic physical features of
the linear growth in the ARTI. For instance, the modified Lindl
formula [17] has been applied to the steady ablation front with
the unmodulated laser pulse, the Betti stability theory [38] has
been applied to the unsteady ablation front with the temporally
modulated laser pulse, and the Piriz model [39,40] has been
applied to the dynamic stabilization of the ablation front with
the asymmetric modulation of the driving acceleration.

To capture the basic physical features of the dynamic sta-
bilization of the modulated laser pulse, the stability analysis
of the present work focuses on the driving acceleration of
the ablation front. Figure 8(a) shows the temporal evolution
of the driving accelerations obtained from the unmodulated
and modulated laser pulses. The driving acceleration (dashed
line) of the ablation front directly driven by the unmodulated
laser pulse approaches a constant gunm � 12.0 µm/ns2. The
modulating acceleration (solid line) of the ablation front is
generated by the modulated laser pulse, with a period of
2.0 ns. The distribution of the modulating acceleration is
complex and asymmetric and consists of positive Dirac δ

functions and negative square driving waves. Moreover, the
proportion of the square driving wave is more prominent.
To better understand the stabilization of the modulating ac-
celeration, we introduce the oscillatory acceleration (dotted
line) with an asymmetric square wave at the ablation front.
This instantaneous modulating acceleration is then approx-
imated by g(t ) = g0 + b	(ωt ), where g0 � 12.2 µm/ns2 is
the background acceleration, and b	(ωt ) is the asymmetric
square-wave modulation of the oscillatory acceleration (see
Fig. 1 in Ref. [40]). Here the minimum and maximum of
the instantaneous modulating acceleration are gmin � −3.9
µm/ns2 with a duration of tmin ∼ 1.52 ns and gmax � 63.3
µm/ns2 with a duration of tmax ∼ 0.48 ns, respectively, with
the condition (gmax − g0 )tmax = (g0 − gmin )tmin imposed to ensure
that the average acceleration of the ablation front is 〈g(t )〉 �
g0. In addition, other associated parameters are the ablation
velocity of the ablation front 〈Va〉 = 1.7 µm/ns and the charac-
teristic scale length 〈Lm〉 = 0.6 µm, where the angle brackets
〈〉 represent the average from 2.0 to 6.0 ns in the linear growth
phase.

Growth and oscillation of the perturbation amplitude are
observed in many simulations with the modulated laser pulse,
leading to the conclusion that the analytical description of
these simulations depends strongly on the instability growth
rate γ and the oscillation frequency ω. Each simulation re-
sult in the linear regime is taken into consideration, where
the perturbation amplitude includes the growth component
varying as an exponential waveform and the oscillation com-
ponent varying as a sinusoidal waveform. In our analytical
procedure, the perturbation amplitude is then well fitted
by η0 exp(γ t )[1 + a0 cos(ωt + θ0 )], which produces a linear

FIG. 8. (a) Temporal evolution of driving accelerations obtained
from unmodulated (dashed line) and modulated (solid line) laser
pulses. The dotted line represents an asymmetric square-wave modu-
lation of the oscillatory acceleration. (b) Linear growth rates obtained
from numerical simulations with unmodulated (diamonds) and mod-
ulated (spheres) laser pulses, Lindl formula (dashed line) [17], Betti
theory [38], and the Piriz model (dashed line) [39,40]. The cutoff
wavelengths of the numerical simulations for the unmodulated and
modulated laser pulses are about 5.0 and 20.0 µm, respectively.

growth rate, where η0 is the initial perturbation amplitude, a0

is an oscillation parameter, and θ0 is the initial phase.
Figure 8(b) compares the linear growth rates obtained from

numerical simulations with the unmodulated and modulated
laser pulses, the Lindl formula [17], Betti theory [38], and
the Piriz model [39,40]. For the unmodulated laser pulse, the
linear growth rates obtained by fitting the simulations are rea-
sonably consistent with that obtained using the Lindl formula,
γ = α

√
kg/(1 + kLm) − βkVa, where the fitting coefficients

α = 0.90 and β = 1.65, and the acceleration g = gunm � 12.0
µm/ns2, and the characteristic scale length Lm � 0.6 µm. The
simulation results indicate that the numerical code for the
laser-driven planar plastic target is reliable and accurate.

For the modulated laser pulse, the dynamic stabilization
of the ablation front for the oscillatory acceleration is vali-
dated by Betti [38], Piriz [39,40], and the above observation.
The simulation results for the modulated laser are consistent
with the theoretical estimations. The numerical solution of the
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FIG. 9. Density contours of initial multimode ARTI for unmodulated laser pulse at times (a) 2.0 ns, (b) 4.0 ns, (c) 6.0 ns, and (d) 8.0 ns.
The maximum initial wavelength and its perturbation amplitude are λ3 = 50 µm and A3,0 � 0.552 µm.

instability growth rate is obtained by replacing the sinusoidal
form in the Mathieu equation of Ref. [38] with the instan-
taneous modulating acceleration, and the analytical solution
of the linear growth rates is calculated by applying the Piriz
model to the oscillatory acceleration with the asymmetric
square-wave modulation [40]. Overall, the linear growth rates
obtained from the modulated laser are significantly smaller
than that of the unmodulated case. In particular, the cutoff
wavelengths of the numerical simulations for the unmodulated
and modulated laser pulses are about 5.0 and 20.0 µm, re-
spectively. The small-amplitude perturbations up to the cutoff
wavelength are completely inhibited by the modulated laser.
These results show that the ablation front driven by the modu-
lated laser has been dynamically stabilized for the reduction of
the growth rate and the enhancement of the cutoff wavelength.
In general, the laser modulation provides the dynamically
stabilized configuration near the ablation surface and can be
an efficient method for mitigating perturbations.

C. Dynamic stabilization of multimode ablative
Rayleigh-Taylor instability

In this section we address how the stabilization effect of
the modulated laser pulse affects multimode perturbations. It
is clear that the hydrodynamic instability involving multimode
perturbations is seeded by surface roughness and drive asym-
metries. These multimode perturbations, consisting of random
amplitudes and phases, grow into the nonlinear regime and
lead to a wider mixing region. The nonlinear evolution of
initial multimode perturbations in the presence of the un-
modulated laser pulse is used as a reference case is easily to
understand because the detailed features of the stabilization
effect of the modulated laser pulse are easy yo understand.
Figure 2 shows these two typical laser pulse shapes. The mul-
timode perturbations with small amplitudes Am,0 = A0/kθ

m , a
continuous spectrum m � mmin, and random phases φm,0 are ex-
pressed as

∑
mmin

Am,0 cos(kmy + φm,0 ) exp (−km|x − x0|), where
A0 is a small parameter, km = 2π/λm is the wave number,
λm = Ly/m is the wavelength of the perturbation mode m, Ly is
the length of the simulation domain in the transverse direction,
θ = 1.6 is a fixed spectrum index, mmin is the minimum pertur-
bation mode, and x0 is the location of the ablation front. The
minimum perturbation mode mmin for multimode perturbations

corresponds to the maximum wavelength. Figure 9 illustrates
the density contours of initial small-amplitude perturbations
for the unmodulated laser pulse at times t = 2.0, 4.0, 6.0,
and 8.0 ns, where the maximum wavelength and its initial
amplitude are λ3 = 50 µm and A3,0 � 0.011λ3, respectively.
As shown in Figs. 9(a) and 9(b), the amplitude and the spatial
scale of the ablation surface are relatively small at the ear-
lier stage of the perturbation growth, when the perturbation
amplitude of each mode grows exponentially in time. After
the exponential growth, the structure of bubbles and spikes be-
comes larger in the nonlinear regime [see Fig. 9(c)], where the
perturbation amplitude of the dominant modes is comparable
to its wavelength. Due to the bubble competition, as shown in
Fig. 9(d), the larger bubbles become broader and the smaller
bubbles are gradually absorbed by the nearby larger bubbles,
with the number of dominant bubbles gradually decreasing
and their wavelength increasing. The bubble-front evolution
obtained from the current simulation is consistent with the
results of Oron et al. [59]. The small-amplitude perturbations
at the ablation surface evolve into a large and complicated
structure over time, and the large-scale structure gradually
assumes a leading role. In parallel, the width of the mixing re-
gion increases, with the dominant bubbles becoming broader
and the spikes narrower.

To capture how the modulated laser pulse stabilizes the
nonlinear evolution of the system, Fig. 10 shows a typical
example of the density contours of an initial multimode ARTI
for the modulated laser pulse at times t = 2.0, 4.0, 6.0, and
8.0 ns. The maximum initial wavelength and its perturbation
amplitude are the same as in Fig. 9 to facilitate comparison
with that the unmodulated case. Figure 10 shows that the
evolutionary system of the ablation surface for the modulated
laser described here differs clearly from the reference case.
The most interesting difference occurs in the spatial structure
and the mixing layer. Compared with the unmodulated case,
the simulation results show that the small-scale structures
have been suppressed, leading to a very smooth surface. This
is due to the fact that the modulated laser plays a stronger
stabilizing role than the unmodulated laser, as discussed pre-
viously and shown in Fig. 8(b): more short wavelengths (up to
the cutoff wavelength) in the dynamically stabilized configu-
ration are completely inhibited. In the later phase, the mixing
layer of the ablative surface is thinner than in the unmodulated
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FIG. 10. Density contours of initial multimode ARTI for modulated laser pulse at times (a) 2.0 ns, (b) 4.0 ns, (c) 6.0 ns, and (d) 8.0 ns. The
maximum initial wavelength and its perturbation amplitude are the same as in Fig. 9.

case, which indicates that the modulated laser stabilizes the
growth of the mixing region. Furthermore, the simulation
of the modulated laser pulse is similar to the unmodulated
case. In both cases the size of the dominant bubble gradually
increases and the number of bubbles decreases. Figures 9
and 10 show that the modulated laser stabilizes the ablation
surface and inhibits instability growth. Considering how the
modulated laser stabilizes multimode perturbations is thus the
next step.

To investigate in detailed the stabilizing effect of the mod-
ulated laser pulse, the spatial structure of the ablation surface
is subjected to a Fourier analysis. At the late stage of the
development, the structure is large and complicated, as shown
in Fig. 9(d), so a Fourier analysis may be inaccurate. Figure 11
compares the Fourier amplitude distributions as a function of
mode number at 2.0, 4.0, and 6.0 ns, converted into areal
density and irradiated by unmodulated and modulated laser
pulses. During the earlier stage of multimode perturbations
[see Fig. 11(a)], there is a closely similar Fourier amplitude
distribution for these two cases due to a weaker stabilization
of the modulated laser pulse on the ablation surface. Due
to growing perturbations, as shown in Fig. 11(b), the high-
mode amplitudes of the modulated laser case are significantly
smaller than those of the unmodulated laser, which indicates
that the modulated laser more strongly stabilize the high-
mode perturbations than the low-mode perturbations. In the
subsequent phase of the perturbation growth, the low-mode
components corresponding to the long-wavelength perturba-
tions are also gradually stabilized by the modulated laser,
as shown in Fig. 11(c). The Fourier analysis shows that the
short-wavelength perturbations are more stabilized by the
modulated laser than the long-wavelength perturbations.

The stabilization effect of the modulated laser pulse
contributes to reducing the width of the mixing layer, a re-
markable feature which becomes evident upon comparing the
unmodulated and modulated laser pulses in Figs. 9 and 10.
The modulated laser stabilizes multimode perturbations at the
ablation surface, the width of the mixing layer is reduced, and
long-wavelength perturbations are the main component of the
spatial structure. These main components make a dominant
contribution to the growth of the nonlinear mixing region. The
other simulation domains (Ly = 240 and 360 µm) correspond-

ing to the maximum initial wavelengths of 80 and 120 µm
are considered now to estimate how the modulated laser pulse
stabilizes the growth of the nonlinear mixing region.

Figure 12 plots the evolution of the widths of the mixing
layers for the unmodulated and modulated laser pulses for
simulation domains Ly = 150, 240, and 360 µm in the y
direction. The maximum initial wavelengths (i.e., the per-
turbation amplitudes) for the three simulation domains are
50 µm (∼ 0.552 µm), 80 µm (∼ 0.858 µm), and 120 µm
(∼1.143 µm), respectively. As seen in Fig. 12, the widths
of the mixing layer for the modulated laser are significantly
less than those for the unmodulated laser, and they oscillate

FIG. 11. Comparison of Fourier amplitude distributions as a
function of mode number at (a) 2.0 ns, (b) 4.0 ns, and (c) 6.0 ns,
converted in the areal density and irradiated by unmodulated laser
pulses (diamonds) and modulated laser pulses (spheres).
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FIG. 12. Evolution of mixing layer widths for unmodulated (dashed lines) and modulated (solid lines) laser pulses for simulation domains
(a) Ly = 150 µm, (b) Ly = 240 µm, and (c) Ly = 360 µm in the y direction. The maximum initial wavelengths (i.e., the perturbation amplitudes)
for three cases (a)–(c) are 50 µm (∼ 0.552 µm), 80 µm (∼ 0.858 µm) and 120 µm (∼1.143 µm), respectively. The one-dimensional parameters
of the unmodulated and modulated pulses are the same as in Figs. 9 and 10.

periodically, which indicates that the dynamic stabilization is
generated by considering the modulated laser pulse. Figure 12
shows that the stabilization effect of the modulated laser pulse
decreases as the maximum wavelength increases.

IV. CONCLUSIONS

This work numerically studies the dynamic stabilization
of the ARTI in the presence of a temporally modulated laser
pulse, which is a prominent feature in comparison with the
reference case of the unmodulated laser pulse. We analyze
the physical features of the relevant laser-driven parameters
in the unperturbed ablative flows. The results show that the
modulated laser pulse produces a periodic oscillating system
near the ablation front, including the acceleration, pressure,
peak density, mass ablation rate, ablation velocity, and adi-
abat, which is completely different from the situation in
the reference case. Moreover, analyzing the spatial profiles
of the density and pressure near the ablation front for the
modulated and unmodulated laser pulses reveals the inherent
physical mechanism underlying the dynamically stabilized
configuration.

Subsequently, we compare the interfacial evolution of the
single-mode ARTI for the modulated laser pulse with that of
the unmodulated case. The results show that the modulated
laser stabilizes the growth of the ARTI. A comparison of the
linear growth rates obtained by fitting the simulated data indi-
cates that the linear growth rates obtained from the modulated
laser are smaller than those obtained in the unmodulated case.
In particular, the cutoff wavelength for the modulated laser
pulse is about 20 µm, which is significantly greater than the
unmodulated case (5 µm). Moreover, the measured growth
rates at the ablation front for the modulated laser are gen-
erally consistent with previous theoretical estimates obtained

by substituting the modulating acceleration into Betti stability
theory [38], and by applying the Piriz model [39,40] with the
asymmetric square-wave modulation acceleration.

As in the multimode ARTI, we report several features of
the ablation surface in the presence of the specially modulated
laser pulse. The stabilization effect of the modulated laser con-
tributes to suppressing the small-scale structures and reduces
the width of the mixing layer. Applying the method of Fourier
analysis shows that the short-wavelength perturbations are
more stabilized by the modulated laser for long wavelengths.
The present work shows that the dynamic stabilization effect
of the modulated laser pulse decreases as the maximum wave-
length increases.

Finally, we conclude that the temporally modulated laser
pulse produces the dynamically stabilized configuration and
contributes to reducing the growth of the ARTI and of the
mixing-layer width. Therefore, a periodically modulated laser
pulse is an efficient method for mitigating perturbations, and
should be the subject of experimentation on a practical laser
facility to develop applications involving the design of direct-
drive ICF ignition targets.
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