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Spectral modulation of high-order harmonics in relativistic laser-solid interaction
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Spectral modulation of high-order harmonics generated in relativistic laser-solid interaction is investigated.
Numerical simulations show that the modulation depends on surface plasma density profile, resulting in spectral
envelope modulation and regular and irregular harmonic splitting. The mathematical and physical connections
between the spectral modulation of high-order harmonics and the temporal modification of attosecond pulse
train are explained. Based on these understandings, we propose a possible method to produce isolated attosecond
pulses by tailoring surface the plasma profile.
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I. INTRODUCTION

High-order harmonic generation (HHG) by the interaction
of intense laser pulses with solid targets can provide a compact
bright light source in the extreme ultraviolet and x-ray spectral
range [1,2]. It has the potential to produce intense attosecond
pulses [3–5]. Such sources can be achieved by three mecha-
nisms depending on the laser intensity and plasma parameters:
coherent wake emission (CWE) [6], relativistically oscillat-
ing mirror (ROM) [7–9], and coherent synchrotron emission
(CSE) [10]. The emitted harmonics usually have a unique
spectral shape. In the relativistic domain, harmonic spectrum
is found to follow power-law or exponential scalings [10–15].
This makes the harmonic intensity I decline monotonically
with the harmonic order n.

Some studies have found that the harmonic spectrum could
deviate from the monotonic decline under some specific con-
ditions. Early experimental results obtained with a picosecond
laser showed a modulation of the harmonic spectrum enve-
lope in the whole spectral range [16], so that some orders
of the harmonics are enhanced. Watts et al. attributes such
modulation to the higher modes of critical surface oscillation
when the preplasma with a long scale length is compressed
by a long laser pulse [16]. When harmonics are driven by
laser pulses with shorter duration, Teubner et al. showed
that the modulation of spectral envelope originates from the
complex electron-density profile evolution due to the interplay
of resonance absorption and ponderomotive force [17]. Using
particle-in-cell (PIC) simulations, Boyd et al. revealed another
mechanism for the harmonic spectral modulation, showing
that the plasma waves excited in the overdense plasma could
modulate the harmonic spectrum at the plasma frequency
ωp [18].

Modulated harmonic spectra could surpass the monotonic
spectral decline if the surface plasma, so-called preplasma
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in experiments, is steepened [16–18]. Recently, we ex-
perimentally demonstrated a scheme to actively steepen
the preplasma with a normally incident circularly po-
larized prepulse [19]. We observed the modulated har-
monic spectrum, which indicated a sharp truncation of
preplasma. Meanwhile, each harmonic showed regular or
irregular harmonic splitting in our experiment. However,
the harmonic splitting is usually observed with large-scale-
length preplasma [20–22], which is not the case for our
experiment.

We found that the harmonic splitting should be attributed
to the relativistic self-phase modulation (RSPM) of the drive
laser when it passes through a residual underdense preplasma.
The RSPM occurs before the HHG process but can lead to
the spectral splitting of subsequently generated harmonics.
A comprehensive theoretical study on these spectral modu-
lations is helpful to design the HHG experiments or even
diagnose the preplasma profile. In this paper, we show that the
spectral modulations correspond to different distributions of
preplasma in front of solid targets. We analyze the modulation
mechanism and reveal the relation between spectral modu-
lations and attosecond pulse train by using PIC simulations.
Based on these understandings, a possible method to produce
isolated attosecond pulse by tailoring surface plasma profile
are discussed.

II. SPECTRAL MODULATION OF HIGH-ORDER
HARMONICS

The spectral modulation of high-order harmonics is re-
lated to both the laser pulse characteristics and the preplasma
profile. Basically, the laser pulse characteristics, such as
the prepulse intensity and the laser chirp, will affect the
HHG by modifying the preplasma profile before the pulse
peak arrives at the target surface. To simplify the dis-
cussion, we fix the parameters of the drive laser and
investigate the spectral modulation with different preplasma
profiles.
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FIG. 1. Generation of high-order harmonics and attosecond pulses with different preplasma profiles. The left, middle, and right columns
represent the target with a preplasma scale length of L = 0, λ0/20, and λ0/2, respectively. The upper row shows the drive laser and plasma
density profiles. The middle row depicts the harmonic spectra, where I (ω) is normalized. The bottom row plots the attosecond pulse trains
(filtered by ω/ω0 � 10), where E (t ) is normalized by E0 = meω0c/e.

As shown in Fig. 1, the laser pulse is p polarized and
has a duration of τ = 10T0, where T0 = λ0/c is the laser
period and λ0 is the laser wavelength. It has a pulse shape
of a = a0 sin2(πt/τ ), where a0 = 5 is the laser peak am-
plitude. We have performed both one-dimensional (1D) and
two-dimensional (2D) PIC simulations. Results show that the
spectral modulation of high-order harmonics is a quasi-1D is-
sue. 1D and 2D simulation results have similar spectral shapes
without considering the far-field propagation effect. There-
fore, we mainly discuss the 1D situations in this paper. Grid
size in the 1D simulations is λ0/1000; 100 electrons and ions
are put into each grid. To observe the HHG with oblique inci-
dence, transversely moving frame used by Lichters et al. [23]
is introduced in our simulations. All the particles have an ini-
tial transverse momentum of γ v⊥/c = −1, which represents
that the laser incident angle is 45◦. The target has a bulk
plasma density of n0 = 20nc, where nc is the critical plasma
density of the laser. The preplasma density rises exponen-
tially as ne = n0e(x−3λ0 )/L when x < 3λ0, where L is the scale
length.

We select three typical cases that can produce representa-
tive spectral shapes here. First, we assume a step-like plasma
density profile with L = 0, as shown in Fig. 1(a). The gener-
ated harmonic spectrum is obtained by the Fourier transform
of reflected laser, which is depicted in Fig. 1(d). It can be
seen that the harmonic intensity does not decline monoton-
ically with harmonic order. The spectral envelope presents a
leapfrog feature with a period of �ω = 6–7ω0, which is larger
than the plasma frequency ωp ≈ 4.5ω0 corresponding to the
plasma density. Among each leapfrog, the harmonic spectrum
becomes flatter. Then, we introduce some preplasma in front
of the target with a scale length of L = λ0/20 [Fig. 1(b)].
Now as depicted in Fig. 1(e), the harmonic spectrum becomes

monotonically declining, following the power-law scaling of
I (ω) ∝ ω−8/3 predicted by ROM [11]. We further increase the
preplasma scale length to L = λ0/2 [Fig. 1(c)]. The spectrum
in Fig. 1(f) indicates that each harmonic is strongly split in
this case.

To better understand the underlying physics for the har-
monic spectral modulations arising from the three different
preplasma profiles, we investigate the emitted attosecond
pulse train in the temporal domain. The maximum plasma
density of 20nc implies that CWE is excluded for all har-
monics with n > 4.5. All temporal pulse trains are obtained
by selecting harmonics with n � 10. As shown in Fig. 1(h),
the attosecond pulse train has a Gaussian-like envelope and
the time intervals between successive attosecond pulses are
constant for L = λ0/20. For L = 0 with a leapfrog spec-
trum, harmonics are radiated twice in each laser cycle while
the attosecond pulse train still has a Gaussian-like envelope
[Fig. 1(g)]. However, for L = λ0/2 when the harmonic spec-
trum strongly split, the envelope of attosecond pulse train
is remarkably modified and the temporal intervals between
two successive attosecond pulses also change [Fig. 1(i)]. The
above results have shown HHG by ROM with three typical
preplasma profiles. In the next section, we discuss the connec-
tion between the temporal modification of attosecond pulse
train and the spectral modulation of high-order harmonics in
detail.

III. HARMONIC SPECTRUM MODULATION MECHANISM

The attosecond pulse train can be expressed as E (t ) =∑
m Em f (t − tm), where Em and f (t ) are the amplitude and

temporal shape function of the mth attosecond pulse. Nor-
mally, one attosecond pulse is emitted in each laser cycle
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with equal temporal spacing (tm = 2πm/ω0), so the Fourier
transform of E (t ) is

Ẽ (ω) = F (ω)
M∑

m=1

Eme− j(2πmω)/ω0 , (1)

where M is the total number of attosecond pulses. Equa-
tion (1) gives a regular harmonic spectrum, which usually
has no spectral modulation. However, as shown in Figs. 1(g)
and 1(i), attosecond pulses could also be emitted twice in one
laser cycle and the temporal spacing may be unequal. Then,
the shape function f (t ) becomes f (t ) + αm f (t − �t ) and the
emission time tm becomes tm = 2π (m + dm)/ω0, where αm

represents the relative field strength of the secondary emis-
sion, �t = 2πβ/ω0 (|β| < 1/2 for |�t | < T0/2) is the delay
between two emissions within one laser cycle, and dm is the
relative time shift in each laser period. With these variations
in temporal domain, the Fourier transform of E (t ) in the
frequency domain is modified as

Ẽ (ω) = F (ω)
M∑

m=1

(
1 + αme− j(2πβω)/ω0

)
Eme− j[2π (m+dm )ω]/ω0

(2)
The coherent superposition term e− j(2πmω)/ω0 in Eq. 2 makes
the spectrum peak at integers ω/ω0 = n to produce harmon-
ics. Other than this term, there are three additional terms
related to m (αme− j(2πβω)/ω0 , Em, and e− j(2πdmω)/ω0 ) which
lead to the modulation of high-order harmonic spectrum.

First, the term αme− j(2πβω)/ω0 brings the envelope mod-
ulation. Harmonic intensity could be enhanced if ω = p

β
ω0,

where p = 0, 1, 2, . . .. This makes the harmonic spectrum
peak at the order p/β with a leapfrog step �ω/ω0 = 1/β.
Second, the term Em brings regular splits of the harmonic
spectrum. Referring to Fig. 1(i), we assume that Em has a low-
frequency fluctuation of Em = sin(2πm/4) = j(e− j(2πm)/4 −
e j(2πm)/4)/2. Combining with the term e− j(2πmω)/ω0 , it can
be found that the initial harmonic peak at an integer order
ω/ω0 = n will be split into two peaks at the noninteger or-
ders ω/ω0 = n ± 1/4. Third, the term e− j(2πdmω)/ω0 brings
irregular splits of the harmonic spectrum. If dm changes
proportionally with m, which means the temporal intervals
between two successive attosecond pulses are different from
T0 but keep constant, the harmonic spectrum would not get
split but have an overall frequency shift. However, mostly
dm does not change proportionally with m. This makes the
frequency shift irregular and finally results in chaotic splits of
the harmonic spectrum.

These three kinds of spectral modulations can be checked
by numerical calculations. We separately extract the temporal
envelope of Em and the time shift dm from Figs. 1(g)–1(i),
which are shown in Figs. 2(a) and 2(b). One can see the
Gaussian-like temporal envelope for L = 0 and λ0/20 but a
sine-like envelope for L = λ0/2. The time shift is nearly zero
for L = 0 and λ0/20 but changes significantly for L = λ0/2.
We begin with an attosecond pulse train with six Gaussian
pulses. Each pulse has the same amplitude and duration of
0.1π/ω0. Figure 2(c) shows the harmonic spectrum when the
train is modified by the temporal envelope and time shift of
L = λ0/20. No spectral modulation can be seen on this spec-
trum. It is similar when the temporal envelope and time shift
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FIG. 2. (a) Normalized temporal envelopes and (b) emission time
shifts of the three attosecond pulse trains in Fig. 1. The lines in
panel (a) show the spline fitting of the data. Panels (c)–(f) show
the normalized harmonic spectra when a train of uniform attosec-
ond pulses is modulated with different envelopes and times shifts:
(c) both envelope and time shift from L = λ0/20, (d) both envelope
and time shift from L = 0 but two attosecond pulses in a laser cycle
with a delay of 1/ω0, (e) only envelope from L = λ0/2 without time
shift, and (f) only time shift from L = λ0/2 without envelope change.

of L = 0 are applied to the attosecond pulse train. However,
for L = 0 there should be two pulses in each laser cycle.
According to Fig. 1(g), we add a secondary pulse in each laser
cycle. The secondary pulse is at a delay of �t = 1/ω0 and
has a relative field strength of 1/4 with respect to the initial
pulse. Now, the broad spectral envelope modulation with a
leapfrog step �ω = 2π can be clearly observed on the har-
monic spectrum. For L = λ0/2, both the temporal envelope
and the time shift of the attosecond pulse train are significantly
modified, so we discuss the two effects separately. Figure 2(e)
shows the harmonic spectrum when only the temporal enve-
lope modification shown in Fig. 2(a) is considered. It can be
seen that each harmonic is regularly split into two peaks. Such
regular splitting has been experimentally observed [19,24].
Figure 2(f) shows the harmonic spectrum when only the
time shift is considered. In this case, the harmonic splitting
becomes irregular.

In the above, we have mathematically explained that the
spectral modulation can be attributed to three kinds of tempo-
ral modifications of attosecond pulse trains. All of them have
physically corresponding factors. The temporal modification
of attosecond pulse trains originates from the relativistic os-
cillation of surface plasma affected by the plasma profile or
drive laser. For the ideal situation, a laser pulse should be
reflected at the surface of the critical plasma density. Electrons
will be driven to resonantly oscillate with the laser and radiate
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once in a laser cycle. However, the plasma density at the solid
targets surface is highly overcritical if no preplasma exists.
Surface electrons will oscillate with a frequency higher than
the laser frequency and consequently two or more attosecond
pules will be emitted in a laser cycle [25]. In contrast, if the
preplasma has a large scale length, the reflection surface will
move during the interaction due to the laser ponderomotive
force. Therefore, the temporal spacing of attosecond pulses
are constantly changed. The ponderomotive effect has been
explained in detail in Ref. [20]. The dynamics of surface
plasma alone cannot completely explain the temporal modi-
fication of attosecond pulses, such as the envelope of Em. We
note that the RSPM [26] of laser pulse also plays an important
role in the temporal modification of attosecond pulses and
spectral modulation of high-order harmonics.

We give an estimate of the RSPM with a simplified model.
The phase shift of a relativistic laser in plasma is [26]

φ = ω0

c

∫ xcut

0

[
1 − ne(x)

γ nc

]1/2

dx, (3)

where γ = (1 + a2/2)1/2 is the Lorentz factor. To be simple,
we assume that the plasma has a linear density profile ne(x) =
ncx/xc. The phase shift can be calculated as

φ = 4πγ xc

3λ0

[
1 −

(
1 − xcut

γ xc

)3/2
]
. (4)

When analyzing a spectrum, the absolute phase shift is not
the most important. More critical parameter is the relative
phase shift among laser cycles. We define the phase at the
peak cycle as the zero-phase point. Then the relative phase
shift becomes �φ = φ(γmax) − φ(γ ). Now, two situations
can be discussed. Normally, the preplasma rises continuously
from ne = 0 to the solid density. Considering the relativistic
self-transparency [27], the laser will be reflected almost at
xcut = γ xc. The relative phase shift becomes

�φ = 4πxc

3λ0
(γmax − γ ). (5)

In another special situation, the preplasma may be truncated,
like the modified preplasma profile in Ref. [19]. Assuming
preplasma being truncated at xcut = ηxc (η � γ ), the relative
phase shift becomes

�φ ∼ η2 πxc

2λ0

(
1

γ
− 1

γmax

)
, (6)

with the second-order Taylor expansion of Eq. (4). From
Eqs. (5) and (6), it can be found that �φ is larger for a longer
preplasma scale length and a laser cycle farther away from the
peak. Furthermore, the rising edge of laser pulse will be com-
pressed and the falling edge of laser pulse will be elongated.
Note that the analyses here can only qualitatively estimate the
relative phase shift. The real process of RSPM, which includes
the dynamics of plasma oscillation driven by the laser fields
and its reaction to the relativistic laser pulse, is more complex.
Therefore, the amplitude modulation of laser pulse is hard to
analytically calculate. We investigate the dynamic process of
RSPM by PIC simulations.

In the simulation, we artificially separate a truncated pre-
plasma from the target with a vacuum gap between them.
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FIG. 3. Illustration of the effect of RSPM on HHG. (a) Plasma
density profile. (b) Evolution of the preplasma density and the front-
to-end position of laser pulse when removing the target. The green,
red, and black dashed lines represent the positions of pulse front,
peak, and end, respectively. (c) Laser waveform after passing through
the preplasma in panel (a), where the red and blue lines are the
laser pulses before and after propagation through the preplasma,
respectively. (d) Harmonic spectrum obtained for the plasma profile
shown in panel (a).

Such profile refers to the experimentally modified preplasma
in Ref. [19]. As shown in Fig. 3(a), the preplasma density
linearly rises from 0 to a maximum of 0.7nc; the gap be-
tween the preplasma and target is 0.5λ0. With such plasma
density setting, the modification of the laser pulse in the pre-
plasma could be decoupled from the HHG in the overdense
plasma, and the moving of plasma surface is avoided as well.
We first investigate the laser modulation in the preplasma.
Figure 3(b) shows the evolution of the preplasma density
and the front-to-end position of the laser pulse without the
target. The compression of pulse rising edge and the elon-
gation of pulse falling edge can be clearly observed after
the laser passes through the preplasma. During the process,
strong oscillation of the preplasma is excited by the laser
fields. For some cycles, the laser will experience a plasma
barrier with relatively high density, which reduces the laser
transmission ratio. Figure 3(c) shows the laser waveform after
passing through the preplasma. One can find the amplitude
modulation and the relative phase shift. Owing to the com-
pression of pulse rising edge, the peak intensity of laser pulse
even exceeds the initial value. Besides, because we assume
the transverse moving frame moves in the positive direction
in our simulation, electrons tend to be pushed forward in the
positive half cycles of the laser pulse, which causes the neg-
ative cycles to experience a higher plasma barrier and lower
transmission ratio. When such modulated laser impinges on
the target, attosecond pulses will be emitted with temporal
modifications both on the amplitude envelope and the time
spacing. Thus, both the regular and chaotic harmonic split-
ting can be found in the reflected laser spectrum, as shown
in Fig. 3(d). Meanwhile, because the target density is far
larger than nc, the leapfrog spectral modulation can also be
observed.
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IV. ISOLATED ATTOSECOND PULSE

Based on the above understanding of harmonic spectral
modulation mechanism, specially designed surface plasma
profiles can be used to control the high-order harmonic emis-
sion for applications. An important application of high-order
harmonics is to probe attosecond physical process by ac-
quiring an isolated attosecond pulse [28]. To get an isolated
attosecond pulse, many methods have been proposed, such as
using few-cycle laser [29], attosecond lighthouse [30], and
polarization gating [31]. All of these methods rely on the
manipulation of laser spatiotemporal properties. Here, we pro-
pose a possible method to produce isolated attosecond pulse
by tailoring the surface plasma profile.

Mathematically, a flat and continuous spectrum is benefi-
cial for the generation of an isolated attosecond pulse. This
inspires us that combining the spectra of Figs. 1(d) and 1(f)
may produce an isolated attosecond pulse. To examine the
feasibility, we design a tailored plasma profile where a long-
scale preplasma is followed by a step-like target. As shown
in Fig. 4(a), the plasma profile is set to be a preplasma of L =
λ0/2 followed by an overdense target of L = 0. The maximum
density of preplasma is ne = 3nc and the density of over-
dense target is ne = 20nc. Such a profile may be implemented
in experiments by coating thin near-critical-density CH or
carbon-nanotube foams on the surface of solid targets [32].
It should be noted that the plasma density is not limited to the
parameters here. ne can be scaled with the laser amplitude a0

while fixing the similarity parameter S = ne/a0nc. The pre-
plasma scale length can be precisely controlled by a prepulse
as done in Ref. [33].

Figure 4(b) shows the comparison between incident and
reflected laser waveforms. It can be seen that a very sharp
peak with high-frequency components is generated only in the
laser peak cycle. We also extract the harmonics of ω/ω0 � 10.
Figure 4(c) shows the generated attosecond pulse train. The

TABLE I. Generation efficiency of attosecond pulses with differ-
ent plasma profiles.

Profiles L = 0 L = λ0/20 L = λ0/2 Tailored

Efficiency 2.08% 2.55% 1.13% 2.02%

radiation intensities in the side cycles are below 1/e2 of those
in the laser peak cycle. An isolated attosecond pulse with a
duration of 106 as (FWHM) is achieved. We find that the
generation efficiency in the isolated attosecond pulse is close
to the L = 0 case. Table I shows the attosecond pulse genera-
tion efficiency

∫
E2

atto(t )dt/
∫

E2
laser (t )dt with different plasma

profiles. For the case with tailored plasma profile, only the
intensity of isolated attosecond pulse is integrated. It can be
found that the HHG efficiency of isolated attosecond pulse in
the tailored case almost equals to the overall efficiency of the
whole attosecond pulse train in the L = 0 case. This efficiency
is much higher than the nontailored L = λ0/2 case.

To explore the specific physics for isolated attosecond
pulse generation, the spatiotemporal evolution of plasma den-
sity and the corresponding attosecond radiation are diagnosed,
as shown in Fig. 4(d). Because the existence of long-scale pre-
plasma, high-order harmonics cannot be radiated efficiently
at the laser rising edge. However, different from the case of
L = λ0/2, electrons at the surface of step-like target are piled
up by the ponderomotive force of laser rising edge for the case
with tailored plasma profile. As a result, the laser peak cycle
will interact with an ultrathin and high-density electron layer.
An intense attosecond pulse is emitted by the CSE mecha-
nism [10] during the interaction. And the secondary emission
from the step-like target is suppressed in the laser peak cycle.
Due to the background ions are immobile in such short time,
the electrostatic force will make the ultrathin electron layer
collapse rapidly when the ponderomotive force falls. Thus,
high-order harmonics are also radiated inefficiently at the
laser falling edge.

We have also investigated the robustness of isolated at-
tosecond pulse generation by tailoring the surface plasma
profile. As shown in Fig. 4(b), the isolated attosecond pulse
is generated when the electric field of the reflected laser is
negative. Therefore, the carrier envelope phase (CEP) may be
an important factor. We refer to the characterization method in
Ref. [29]. Gaussian fitting E2

train(t ) ∝ exp(−4 ln 2 t2/τ 2
train ) is

performed to characterize the attosecond pulse train envelope,
where τtrain represents the FWHM duration of the pulse train.
Figure 5(a) shows the variation of τtrain with the CEP of laser
pulse. We find that when τtrain > 1.45 (dashed line), there will
be two attosecond pulses in τtrain. For CEP ∈ [−π/3, 2π/3],
an isolated attosecond pulse can be obtained. The laser pulse
shape and duration can also affect the generation of isolated
attosecond pulse. As illustrated in Fig. 4(d), the pondero-
motive force of the laser rising edge is crucial. Therefore,
the duration of laser rising edge should be short to produce
the ultrathin surface electron layer. However, the laser falling
edge could be long. Figure 5(b) shows the attosecond pulse
train obtained by a laser pulse with 5T0 rising edge and 10T0

falling edge. The feature of the isolated attosecond pulse still
keeps.
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FIG. 5. (a) Variation of the pulse train width τtrain (FWHM) with
the CEP of laser pulse. The solid line is a quadratic fitting of the data.
There will be two attosecond pulses within τtrain if the data exceed
the dashed line. (b) Attosecond pulse train for a laser pulse with 5T0

rising edge and 10T0 falling edge. (c) Feature of isolated attosecond
pulse in a 2D simulation.

Finally, we also performed a 2D simulation to verify this
scheme. The grid size in the 2D simulation is �x = �y =
λ0/100 and 49 electrons are put in each grid. The laser trans-
verse shape is set to a = a(t ) exp(−r2/w2

0 ), where w0 = 3λ0

is the beam waist. Other parameters are the same as what was
set in 1D simulations. Figure 5(c) shows the 2D simulation
result. An isolated attosecond pulse can still be observed with
a pulse width (FWHM) of τ = 420 as. Besides, the attosec-
ond pulse is further found to be spatially gated because the
ultrathin electron layer cannot be formed at the edge of laser

beam. The simulation result shows that the attosecond pulse
of n > 10 harmonics only has a source size of w = λ0/3, one
order of magnitude smaller than the spot size of the drive laser.

V. SUMMARY

In summary, we have investigated the spectral modulation
of high-order harmonics generated in relativistic laser-solid
interactions. Based upon numerical simulations and theoret-
ical analyses, three kinds of harmonic spectral modulations:
envelope modulation, regular harmonic splitting, and irreg-
ular harmonic splitting, are discussed. These are associated
with the temporal structure of attosecond pulse radiation. The
harmonic spectral modulation physically originates from the
higher modes of surface plasma oscillation, temporal moving
of the reflection surface, and relativistic self-phase modula-
tion. This work gives a detailed understanding of the spectral
and temporal features of high-order harmonic emission by rel-
ativistic lasers. Based on these understandings, we further give
a possible method to produce isolated attosecond pulse by
tailoring surface plasma profile. Besides, spectral modulation
of high-order harmonics may be a tool to diagnose the surface
plasma profile of solid targets.
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