
PHYSICAL REVIEW E 109, 025210 (2024)

Dephasingless plasma wakefield photon acceleration
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Sandberg and Thomas [Phys. Rev. Lett. 130, 085001 (2023)] proposed a scheme to generate ultrashort, high-
energy pulses of XUV photons though dephasingless photon acceleration in a beam-driven plasma wakefield. An
ultrashort laser pulse is placed in the plasma wake behind a relativistic electron bunch such that it experiences a
comoving negative density gradient and therefore shifts up in frequency. Using a tapered density profile provides
phase-matching between driver and witness pulses. In this paper, we give the details of the wakefield solutions
and phase-matching conditions used to generate the phase-matching density profile. The short, high-density, and
weak driver limits are considered. We show, explicitly, the numerical algorithm used to calculate the density
profiles.
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I. INTRODUCTION

The many applications of bright, coherent XUV light have
motivated substantial interest in source development, such as
the construction of XUV wavelength free electron lasers such
as FLASH [1] as well as nonlinear frequency mixing [2], high
harmonic generation [3], relativistic flying mirrors [4–6], and
XUV lasing [7], to name a few. Another method for generating
short wavelengths is photon acceleration [8,9].

From the linear, unmagnetized plasma dispersion relation
ω2 = k2c2 + ω2

p, where ω2
p = e2n/meε0 for a plasma of num-

ber density n, it can be seen that if we identify a localized
electromagnetic energy wave packet with central frequency
ω as a quasiphoton and consider its quasiphoton energy and
momentum E = h̄ω and �p = h̄�k, when propagating in the
background plasma it will gain an effective mass h̄ωp/c2.
The wave-packet group velocity is �vg = �k/ω and hence if its
frequency is up-shifted, the dispersion relation implies that
the quasiphoton will travel at a higher velocity, i.e., it is
accelerated. In the presence of copropagating density gradi-
ents, the quasiphotons experience local frequency shifts due
to spatiotemporal variations in the phase velocity [10] and
are therefore accelerated. The resulting quasiphoton phase-
space trajectories in plasma wakefields are similar to those of
leptons [11].

Photon acceleration can arise as a result of plasma
wakefields [8], ionization fronts [12,13], and even using
metamaterials [14]. Photon acceleration was measured in ion-
ization front [15] and laser wakefield acceleration experiments
[16,17]. Recent results include cascaded sequences of local-
ized ionizations [18], resulting in large frequency shifts and
the use of plasma wakes to downshift radiation to very long
wavelengths [19]. Limits to photon acceleration in plasma
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wakefields in the linear [20] and nonlinear regimes [21,22]
were previously studied, identifying dephasing of the photon
beam with respect to the accelerating refractive index gradient
as placing a ceiling on the frequency shift. Dephasing occurs
when the difference between the phase velocity of the wake
and the high-frequency photon pulse results in it slipping out
of the accelerating refractive index gradient. A recent scheme
for overcoming this restriction using an ionization front is
dephasingless frequency shift using a flying focus, a com-
bination of a chirped laser pulse and an achromatic lens for
spatiotemporal shaping of a laser pulse [23]. The flying focus
was also used to mitigate the analogous process of electron
beam dephasing in a plasma wakefield [24], in addition to
related spatiotemporally structured focusing schemes [25,26].

Another method for mitigating dephasing in the context
of electron acceleration is the use of tapered plasma den-
sity ramps [27–30]. By having a nonuniform density, the
plasma wavelength varies along the propagation length, which
allows for locking the accelerating phase with the particle
beam. Tapered density ramps were previously suggested as a
way of increasing the frequency shifts in photon acceleration
[8,20]. In our recent paper [31], we showed that by using
a relativistic-charged-particle-beam driven photon accelerator
with a tapered density ramp, dephasing could be mitigated
and large frequency shifts were possible, limited only by the
available driver energy. With a beam driver, we found that
the appropriate density profile is a down ramp rather than
the up ramp considered in previous studies of the laser driven
case. We refer to this as the dephasingless plasma wakefield
photon acceleration (dePWPA). In one-dimensional ab ini-
tio relativistic electromagnetic particle-in-cell simulations we
demonstrated a more than 50 times frequency shift.

In this paper, we expand on the details of the analytic model
used for the results of Ref. [31], including the derivation
of the beam-driven wakefield solution and the phase match-
ing condition and validate approximations in the short driver
limit. We also explicitly give the algorithm used to solve the
equations to calculate the tapered density profile needed to
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mitigate dephasing. In Sec. II, we review the frequency shift
and phase-matching condition required for dePWPA given in
our previous paper [31] for completeness. In Sec. III, we de-
velop the solution for the wakefield given behind an arbitrary
density and length beam driver pulse; the one-dimensional
wake solutions for a wakefield driven by a top-hat profile
beam were developed by Rosenzweig [32] for the weak driver
beam case, nd/n < 1

2 , where nd is the drive-beam density. We
extend this model to solutions for arbitrary drive-beam density
nd/n � 1

2 . In Sec. IV, we show the method for solving the
dephasing condition, including the computational algorithm
(the actual Python code used to calculate the density maps
used in Ref. [31] is also included as Supplemental Material
[33]). In Sec. V, we study the approximations to the solutions
in the short, high-density (SHD), and weak driver limits. In
particular, we show that as the plasma density drops for the
dephasingless scheme, the driver approaches the SHD limit
and so the SHD limit is valid initially for a large fraction
of initial beam parameters and asymptotically for all beam
parameters. Finally, we conclude in Sec. VI.

II. DEPHASINGLESS PHOTON ACCELERATION

A. Frequency shifts in the presence of a density gradient

A laser pulse that experiences a comoving plasma density
gradient will be upshifted in frequency. From eikonal solu-
tions to the wave equation, well-known ray-tracing solutions
can be used for the temporal variation in the light [9,34] to
relate it to the density gradients generated in a wakefield. For a
given dispersion relation D, the frequency ω and wave number
kz of an optical mode propagating in the z direction satisfy the
following relations:

dz/dτ = ∂D/∂kz, dkz/dτ = −∂D/∂z,

dt/dτ = ∂D/∂ω, dω/dτ = ∂D/∂t . (1)

The optical mode will vary with distance propagated as

dω

dz
= dω/dτ

dz/dτ
= ∂D/∂t

∂D/∂kz
. (2)

We assume that the laser pulse is propagating in a wake-
field generated by a relativistic driver (either a relativistic
particle beam or second laser pulse) propagating at velocity
vd (z) and therefore change coordinates from (x, y, z, t ) to
(x, y, z, ζ = t − ∫ z

0 dz′/vd (z′)) [28]. The change in the fre-
quency can, therefore, be expressed as

dω

dz
= ∂D/∂ζ

∂D/∂kz
. (3)

For example, for linear plasma dispersion, D = ω2 −
ω2

p/γ − k2c2, and assuming that ions are immobile and the
variations in the plasma density with respect to ζ are much
larger than the variations in ω and k:

dω

dz
� 1

2kzc2

∂
(
ω2

p/γ
)

∂ζ
. (4)

Note that the γ factor in the linear dispersion relation is to
allow for relativistically streaming electrons rather than, e.g.,
oscillations in the laser field, and therefore this dispersion
relation is considered exact for a weak laser pulse.

B. Matching condition to mitigate dephasing

For positive frequency shift, the laser pulse must be at a
phase in the wake where the density is gradient and is positive
with respect to the coordinate ζ . However, the laser centroid
moves at the group velocity of the laser pulse and so, as the
laser pulse shifts in frequency, its group velocity increases
and the pulse will change position in the wake. To mitigate
dephasing of the photon pulse, we use a tapered density
profile (similar to that proposed for mitigating dephasing in
electron acceleration [28,30,35,36]) to continuously increase
the plasma wavelength and keep the laser pulse experiencing
a positive plasma density gradient.

Here, we derive the phase-matching condition for a one-
dimensional (1D) nonlinear plasma wake, which we find
is also accurate to describe the three-dimensional case for
a broad driver (kpσr � 1), where kp = ωp/c and σr is the
root-mean-square beam radius. Under the assumption that
d log(n)/dz � kp(z) for all z, i.e., the plasma density gradi-
ents are long compared to the wake period scale, to lowest
order the wake may be assumed to follow the uniform plasma
solution with local density n(z). Hence, we write the perturbed
density of the wake nw(ζ ; z) as a function of ζ parameterized
by z, i.e., by the local density n(z).

For convenience, we choose the point where the den-
sity perturbation in the wake δn(ζ ; z) ≡ nw(ζ ; z) − n(z) = 0
within the region of positive density gradient, hereby labeled
as ζδ , as the location of the reference density gradient we
are trying to track. This is not the maximum density gradient
except in the linear regime, but the maximum is, in general,
only slightly behind ζδ , and using ζδ greatly simplifies the
analysis. It can be shown that the maximum refractive index
gradient occurs where the electric field of the wake is zero,
which is close to where the density perturbation goes to zero.
It can also be shown that the refractive index gradient is equal
to the density gradient at the point where δn = 0 for a 1D
wake.

To keep the pulse experiencing the greatest possible fre-
quency shift, we require ζcentroid = ζδ for all times, where
ζcentroid denotes the center of the witness laser pulse. Ex-
pressed in differential form, we have

dζcentroid

dz
= dζδ

dz
, (5)

which may be written as

1

vcentroid
− 1

vd
= dζd

dn

dn

dz
. (6)

For an ultrarelativistic particle beam driver, we make the
approximation vd → c. Assuming that the laser pulse moves
at the linear group velocity and the plasma is underdense,
ω2

p/ω
2 � 1, we obtain an equation relating the z profile of the

plasma number density to the variation in the wake position
of the zero density perturbation ζδ with plasma density:

dn

dz
� 1

2c

ω2
p

ω2

[
dζδ

dn

]−1

. (7)

Note that γ (ζδ ) = 1, where the density perturbation is zero.
The phase-matching condition in Eq. (7) and the

frequency-shift relation in Eq. (4) together are a coupled pair
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of differential equations for the plasma density profile that
will give phase-matched photon acceleration as well as the
predicted frequency shift given the phase matched density
profile. To close them, it remains to determine the dependence

of the quantities
∂ (ω2

p/γ )
∂ζ

|ζδ
and dζδ

dn on n and ω.

III. DESCRIPTION OF THE WAKE BEHIND THE DRIVER

In this section, the position ζδ in the wake where δn = 0
and there is a positive density gradient is obtained, along with
the density gradient at that position. We derive these quantities
using a 1D model for the wakefield, which we find is accurate
to describe the three-dimensional case in the broad driver
(kpσr � 1) approximation, where kp = ωp/c and σr is the
root-mean-square beam radius. The wake behind the driver is
modeled with the 1D Akhiezer-Polovin (AP) [37] relativistic
wave. This is an undriven plasma wave with a given amplitude
γm and phase velocity βw = vp/c; in this paper, the wave
phase velocity is assumed to be ultrarelativistic, βw → 1.

For clarity, we express the equations in normalized units,
with all plasma densities n → n/n0 where n0 is a refer-
ence plasma density. Also ωp → ωp/ωp0, ω → ω/ωp0, p →
p/mec, etc., where ω2

p0 = e2n0/meε0, E → eE/mcωp0, etc.
The Lagrangian form of the plasma equations describing

the AP wave is used here to develop a solution parameter-
ized in terms of a periodic coordinate ϕ as derived by Infeld
and Rowlands in Ref. [38] (particularly, the expression of
the Infeld-Rowland-Akhiezer-Polovin wave derived in Verma
et al. [39,40].) With the parametrization of the wake behind
the driver, the position of zero density perturbation, ζδ , and

the plasma density gradient there,
∂ (ω2

p/γ )
∂ζ

|ζδ
, are found as func-

tions of the wake parameters ϕst and amplitude γm defining the
wake behind the driver. Then, the dependence of the starting
phase ϕst on the wake within the driver is found, particularly
on the fluid Lorentz factor γd , momentum pd , and electric
field Ezd at the end of the driver. The dependence of the
wake amplitude γm on fluid quantities in the wake will be
determined in the subsequent section.

Under the assumption that d log(n)/dz � kp(z) for all z,
i.e., the plasma density gradients are long compared to the
wake period scale, to lowest order the wake may be assumed
to follow the uniform plasma solution with local density n(z).
Hence, the density in the wake nw(ζ ; z) is a function of ζ and
is parameterized by z, i.e., by the local density n(z).

Because n(z) changes slowly compared to nw(ζ , z), we
find the dependence of nw(ζ , z) at fixed z. In this section, we
will stop explicitly writing the z dependence, i.e., nw(ζ ; z) =
nw(ζ ) and n = n(z).

The AP solution to the cold relativistic fluid equations has
the form [37,39]

ωpζ = 2

κ ′ E (ϕ, κ2) − κ ′F (ϕ, κ2) − 1

β

2κ

κ ′ sin ϕ, (8a)

γ (ϕ) = γm − (γm − 1) sin2(ϕ), (8b)

p(ϕ, γ ) = cos ϕ
√

γm − 1
√

1 + γ , (8c)

qEz(ϕ) = sin ϕ
√

2(γm − 1), (8d)

β(ϕ, γ ) = p(ϕ, γ )/γ , (8e)

nw(β ) = n(1 − β )−1, (8f)

κ2 = γm − 1

γm + 1
, (8g)

κ ′2 = 2

γm + 1
, (8h)

where F (ϕ, κ2) and E (ϕ, κ2) are elliptic integrals of the first
and second kind, respectively, and parameters ϕ = 2nπ cor-
respond to maxima in the plasma density and ϕ = j + π/2,
where j ∈ Z, correspond to points of zero perturbation, nw =
n. Furthermore, we will demonstrate soon that ϕ = (2 j +
3/2)π corresponds to points of zero perturbation and increas-
ing plasma density, ∂nw/∂ζ > 0. These equations completely
describe the wake behind the drive electron beam given the
mapping from drive beam to amplitude γm and starting pa-
rameter ϕst.

With the wake behind the driver completely described in
terms of amplitude γm and parameter ϕst, the quantities ζδ and
∂ (ω2

p/γ )
∂ζ

|ζδ
may be derived. The position ζδ , measured from the

leading edge of the drive beam, can be expressed as

ζδ = ζ (3π/2) − ζ (ϕst ) + Ld/c, (9)

where ζ (ϕ) is the position in the undriven wake as a function
of ϕ, Ld is the length of the drive beam, and ϕst is determined
so the wake is continuous across the transition from drive
beam to undriven wake. To enforce continuity of the wake, we
will require that electric field and momentum are continuous
at the transition from within the drive beam to behind the drive
beam. Let γd denote the plasma Lorentz factor at the end of
the drive beam, pd be the plasma momentum at the end of the
drive beam, and Ezd the electric field at the end of the driver.
The equations for p and Ez behind the driver can be arranged
to determine ϕ in terms of fluid quantities:

cos ϕ = p√
γm − 1

√
1 + γ

, (10a)

sin ϕ = qEz√
2(γm − 1)

. (10b)

These equations combine to determine tan ϕst as a function of
the fluid quantities:

tan ϕst = qEzd

pd

√
1 + γd

2
. (11)

Now ϕst is determined by the fluid quantities within the drive
beam. The dependence of these on the drive-beam parameters
will be derived in the next section.

Next, the dependence of
∂ (ω2

p/γ )
∂ζ

|ζδ
on the unperturbed

plasma density n and the wake amplitude γm is determined.
Because ω2

p is proportional to nw with constant of proportion-
ality e2/meε0, it suffices to calculate ∂ (nw/γ )/∂ζ |ζδ

. Because
evolution in z is considered to be much slower than evolution
in ζ , in this section n, ωp, γm(z), β, κ , and κ ′ are treated as con-
stants. Hence all quantities ultimately depend only on ζ and
we will derive d (nw/γ )/dζ |ζδ

. When δn = 0, then nw = n so
β = p = 0, γ = 1, and ϕ = ϕ j ≡ ( j + 1/2)π with j ∈ Z.
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First, we note that d (nw/γ )
dζ

|ζδ
= dnw

dζ
|ζδ

, by observing that
dγ

dζ
|ζδ

= 0. Then, because γm(ϕ j ) = 1, we have

d (nw/γ )

dζ

∣∣∣∣
ζδ

= dnw

dζ

∣∣∣∣
ζδ

= dnw

dβ

∣∣∣∣
β=0

dβ

dϕ

∣∣∣∣
ϕ=ϕ j

dϕ

dζ

∣∣∣∣
ζδ

. (12)

Performing the substitutions yields the plasma gradient
where δn = 0:

dnw

dζ

∣∣∣∣
ζδ

= n(z)(− sin(ϕ j ))
√

2(γm − 1)ωp(z). (13)

The positive plasma gradient required for positive frequency
shift then means we want odd values of j, i.e., for l ∈ Z,
values ϕ2l+1 = (2l + 3

2 )π . We can now write

d
(
ω2

p/γ
)

dζ

∣∣∣∣∣
ζδ

= ωp(z)n(z)
√

2(γm − 1). (14)

In this section, we have modeled the wake behind the
driver as a traveling relativistic plasma wave. We presented
a periodic parametrization of this wave and derived from this

representation quantities ζδ and
∂ω2

p/γ

∂ζ
|ζδ

necessary for under-
standing frequency shift and phase matching. It remains to
determine the dependence of the amplitude γm on the drive-
beam density nd and length Ld , as well as the dependence of
fluid quantities at the end of the drive beam on the drive-beam
parameters. The quantities we want at the drive-beam end are
the electric field Ezd , fluid momentum pd , and fluid gamma
factor γd .

A. Solution within drive beam

In the previous section, we determined the dependence

of ζδ and
∂ (ω2

p/γ )
∂ζ

|ζδ
on the values of the fluid electric field,

momentum, and Lorentz factor at the end of the drive beam,
Ezd , pd , and γd . To determine these expressions, we determine
the fluid equations within the drive beam as a function of ζ and
evaluate the solution at the end of the drive beam, ζ = Ld . We
follow the solution technique in Ref. [32], parametrizing the
fluid quantities by a quantity x:

γ = 1 + x2

2x
, (15a)

p = 1 − x2

2x
, (15b)

Ez = ∂x

∂ζ
= sgn(Ez )

√
2
(

1 − nd

n

)
− 1

x
+

(
2nd

n
− 1

)
x,

(15c)

φ = 1 − x. (15d)

The parameter x satisfies the equation

∂2x

∂ζ 2
= 1

2

(
1

x2
− 1 + 2nd

n

)
. (16)

The form of the solution is different for each of the
three cases 0 < nd < n/2, nd = n/2, and nd > n/2; see Ap-
pendix A for the full derivation. We write here the expressions
for the parameter x at ζ = Ld , denoted xd , in the three cases.

FIG. 1. Dependence of the parameter xd on the drive-beam pa-
rameters kpLd and nd/n. The dashed red line indicates the trajectory
a dePWPA solution starting at (kpLd , nd/n) = (20, 0.0375) takes in
(kpLd , nd/n). The solution is parameterized by the plasma density
n : 1 → 0. Note the constancy of xd with n as kpLd gets small or
nd/n gets large; this is a prediction of the short or high-density (SHD)
approximation discussed in Sec. V.

1. Low density drive beam: 0 < nd < n/2

This is the case studied in Rosenzweig [32]. Here xd is a
function of an intermediate variable θd which is determined
implicitly as a function of Ld :

(1 − 2nd/n)kpLd = 2[E (
√

2nd/n) − E (θd ,
√

2nd/n)], (17a)

xd = 1 + 2nd/n

1 − 2nd/n
cos2 θd , (17b)

sgn(Ezd ) = sgn sin(2θd ). (17c)

2. Drive-beam density equal to background density: nd = n/2

The quantity xd is determined implicitly from the equation

kpLd = sinh−1
√

xd − 1 +
√

xd − 1
√

xd ; (18)

also, sgn(Ezd ) = +1.

3. High-density drive beam: nd > n/2

xd is a function of θd , which is implicitly a function of nd

and Ld , and Ezd > 0:

(2nd/n − 1)kpLd = 2
√

2nd/n × · · ·

( k′2F (θd , k) − E (θd , k) + tan θd

√
1 − k2 sin2 θd ),(19a)

xd = 1 + tan2 θd , (19b)

sgn Ezd = +1. (19c)

B. Discussion of wake solutions within driver

In each of the cases nd > n/2, nd = n/2, and nd < n/2,
we can use Eqs. (15) to determine the fluid Lorentz factor
γ , the plasma electric field Ez, and the fluid momentum p as
functions of x within the driver. The dependence of x on ζ is
implicit. In each case, we found the dependence of xd and the
sign of Ezd on nd and Ld . In Fig. 1, the dependence of xd on
drive-beam parameters is presented. With γd , pd , and Ezd , we
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can evaluate the continuity condition for ϕst using Eq. (11) as
determined in Sec. III.

As discussed by Rosenzweig [32], we know from the con-
tinuity of the wake that

γm = 1

2

(
∂x

∂ζ

∣∣∣∣
Ld

)2

+ γd = 1 − nd

n
+ nd xd

n
. (20)

If we recall that ϕd = 1 − xd , we can express the wake am-
plitude in terms of fluid quantities just as we did ϕst. Just
as with the other fluid quantities γd , pd , and Ezd , we know
the potential φd in terms of xd and xd implicitly in terms of
drive-beam parameters nd , Ld . Hence the equation for γm,

γm = 1 − φd nd/n, (21)

is the final equation needed to describe ζd and ∂δn
∂ζδ

|ζδ
in terms

of the drive-beam parameters.
Using the solutions in this section, we can determine the

fluid quantities at the end of the drive beam γd , pd , Ezd , and φd

from the drive beam parameters nd , Ld and the plasma density
n(z). We can then calculate ϕst and γm from the fluid quantities
at the end of the drive beam. This map can be used to calculate
the wake for any flat-top drive beam and any density n.

IV. OBTAINING PHASE MATCHED DENSITY
PROFILE AND FREQUENCY

We found previously that we could determine a plasma
density profile that would guarantee phase matching of a laser
pulse and the position of positive density gradient in the wake
of an electron beam if we could solve the system of Eqs. (4)
and (7):

dω2

dz
� n3/2

√
2[γm − 1], (22)

dn

dz
� 1

2

n

ω2

[
dζδ

dn

]−1

. (23)

Using the work in the previous sections, we have maps
from the drive-beam parameters nd , Ld , and the unperturbed

Algorithm 1. Determining the dePWPA wake profile.

1: Input: Drive parameters nd , Ld

2: Determine xd implicitly from nd , Ld � Equations (A14),
(A16), and (A28)

3: Evaluate γd , pd , Ezd , and φd as functions of xd �
Equations (15)

4: Evaluate ϕst and γm as functions of γd , pd , Ezd , and φd

� Equations (11) and (21)
5: Use ζd (n) to numerically evaluate ∂ζd

∂n � Equation (9)
6: Numerically solve dω2

dz � n3/2√2[γm − 1], dn
dz � 1

2
n

ω2 [ dζδ

dn ]−1

� Equations (22) and (23)

plasma density n to the ζδ , the position of positive density
gradient where δn = 0, and γm(n; nd , Ld ), the amplitude of the
wake behind the drive beam. The function ζδ (n; nd , Ld ) can
be evaluated and differentiated numerically, yielding values
for the gradient dζδ/dn. Thus, we can close the system of
Eqs. (22) and (23) and numerically integrate the ordinary
differential equations to obtain n, ω. We summarize the pro-
cedure for obtaining the density profile and frequency shift in
Algorithm 1, together with references to the relevant equa-
tions in the text. In Fig. 2, we show a sample profile as
predicted by Algorithm 1. This computation was performed
for a drive beam with density nd = 0.4, and length Ld = 1.
The tapered density profile is shown on the left of Fig. 2(a)
and the relative gain in frequency, ω/ω0, is show on the right
of Fig. 2(b). A numerical implementation of the algorithm is
shared in Appendix C.

Equations (22) and (23) are a coupled system of differential
equations that can be evaluated to determine the density pro-
file and expected frequency shift for phase matched photon
acceleration driven by an ultrarelativistic beam driver. How-
ever, finding the variation of ζδ with density in the nonlinear
case is a challenge as it is the solution of an implicit equation.
This can be evaluated numerically for specific cases but is
not tractable for analytic predictions of long-term behavior
or scaling laws. Insight can be gained by using short or

FIG. 2. Numerically determined profiles for unlimited photon acceleration, computed by Algorithm 1 with nd = 0.4, Ld = 1, and A = 0.4.
(a) shows the computed plasma density and (b) shows the relative gain in laser frequency.
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high-density driver approximations, for which an analytic so-
lution can be found. This is presented in the following section.

V. SHORT AND HIGH-DENSITY DRIVER LIMITS,
UNLIMITED PHOTON ACCELERATION,

AND WEAK DRIVER LIMIT

In this section, we consider phase-matched photon accel-
eration in various limits to explain the pattern seen in Fig. 1,
where the parameter xd is constant with respect to n for small
kpLd or large nd/n. We investigate the plasma response behind
the drive beam in both the short and high-density drive-beam

limits. In each case, we find xd � 1 + nd L2
d

2 , as indicated in
Fig. 1.

A. Short drive-beam limit

First, we consider the case kpLd � 1. Due to the qualitative
distinction between drive beams of density nd/n > 1/2 and
nd/n <1/2, we consider the short drive-beam limit in each
case separately.

1. Low-density drive beam: nd < n/2

Recall the equations describing the plasma response behind
a low-density beam, nd = nd/n < 1/2, are

(1 − 2nd/n)kpLd = 2[E (
√

2nd/n) − E (θd ,
√

2nd )], (24a)

xd = 1 + 2nd/n

1 − 2nd/n
cos2 θd , (24b)

where E (θ, k) ≡ ∫ θ

0

√
1 − k2 sin2 θ ′dθ ′ and E (k) ≡

E (π/2, k). In the limit kpLd � 1, Eq. (24a) becomes

E (
√

2nd/n) = E (θd ,
√

2nd/n), (25)

meaning θd ≈ π/2.
If we then expand around θd = π/2 and approximate the

integral in Eq. (24a), we find

E (
√

2nd/n) − E (θd ,
√

2nd/n)

�
√

1 − 2nd/n(π/2 − θd ), (26)

and hence θd�π/2 − √
1 − 2nd/n kpLd/2. Then

cos2 θd� 1
4 (1 − 2nd/n)(kpLd )2. In these normalized units,

kp = √
n and thus

xd�1 + nd L2
d

2
. (27)

2. High-density drive beam: nd/n > 1/2

In this section, we derive the plasma density response be-
hind a high density, meaning nd/n > 1/2, short (kpLd < 1)
beam. The governing equations are

xd = 1 + tan2 θd , (28a)

(2nd/n − 1)kpLd

= 2
√

2nd/n(k′2F (θd , k) − E (θd , k)

+ tan θd

√
1 − k2 sin2 θd ), (28b)

k2 = n/2nd , k′2 + k2 = 1. (28c)

It can be shown that the angle θd tends to 0 as kpLd → 0.
If we expand in small θd and approximate the integrals for F
and E , we get(

2nd

n
− 1

)
kpLd

= 2

√
2nd

n

[
(1 − k2)

(
θd + k2θ3

d

4
− O

(
θ5

d

))

−
(

θd − k2θ3
d

4
+ O

(
θ5

d

))
. . .

+
(

θd + θ3
d

3
+ O

(
θ5

d

))(
1 − k2θ2

d

2
+ O

(
θ4

d

))]
. (29)

To lowest order in θd , this is

θd = kpLd

√
nd

2n
. (30)

Inserting in the xd equation, Eq. (28a), and keeping the
lowest order in θd , we have again

xd � 1 + nd L2
d

2
. (31)

B. High-density drive-beam limit

In this section, we derive the plasma density of a very high
density (nd/n � 1/2) beam. As in the preceding section, de-
scribing the short driver limit when nd > n/2, Sec. V A 2, the
plasma response follows the nd > n/2 equations, Eqs. (28).

If k is small, then the integrand of the elliptic function
F (θd , k) simplifies and F becomes

F (θd , k) =
∫ θd

0

1√
1 − k2 sin2 ϕ

dϕ (32)

� θd

(
1 + k2

4

)
− k2

8
sin 2θd . (33)

Similarly,

E (θd , k) = θd

(
1 − k2

4

)
+ k2

8
sin 2θd . (34)

Then Eq. (28b) becomes√
nd

2n
kpLd � k′2

[
θd

(
1 + k2

4

)
− k2

8
sin 2θd

]

×
[
θd

(
1 − k2

4

)
+ k2

8
sin 2θd

]

+ tan θd

(
1 − k2

2
sin2 θd

)
. (35)

To lowest order in k, tan θd = √ nd
2 Ld and

xd � 1 + nd L2
d

2
. (36)
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FIG. 3. Comparing numerical and short or high-density small A expansions. We show that the wake amplitude γm, the position of 0 density
perturbation ζδ , and the predicted density n and frequency gain kL/kL0 profiles for A = 0.01, 0.1, 1, and 10 when kp0Ld0 = 0.01. The length
satisfies kp0Ld � 1, so γm = 1 + A2/2n is always accurate. The expansion to O(A2) is quite accurate for ζδ, n, and kL for A as large as 1. The
expansion when A = 10 is not good for ζδ but is surprisingly accurate in predicting n and kL even for A = 10.

C. Implications of the short and high-density limits

As long as the drive beam is not both long and low density,
the plasma response behind the driver is characterized by xd =
1 + nd L2

d
2 . Then the wake amplitude is γm � 1 + n2

d L2
d

2n .
The areal beam charge density A ≡ nd Ld is a measure of

the strength of the drive beam, especially in the short drive-
beam limit. The wake amplitude is

γm = 1 + A2

2n
. (37)

Hence, the frequency shift relation, Eq. (22), in the short or
high-density limit is

dω2

dz
= nA. (38)

Equations (38) and (23) may be combined,

dω2

dz
= dω2

dn

dn

dz
= 2Aω2 dζδ

dn
, (39)

and directly integrated,∫ ω

ω0

1

ω′2 dω′ = 2A
∫ n

n0

dζδ

dn′ dn′, (40)

to obtain

ω(n) = ω0 exp [A(ζδ (n) − ζδ0)], (41)

defined for n in (0, n0] where n(0) = n0.
The matched phase in the wake, ζδ , also has a simpler

expression in the SHD approximation. Since the width of the
beam vanishes, the wake starts at phase ϕ0 = π/2 and the
expression for ζδ is

ζδ = ζ (3π/2) − ζ (π/2)

= 1

ωp

[
4

κ ′ E (κ ) − 2κ ′K (κ ) + 4
κ

κ ′

]
, (42)

where κ2 = (1 + 4n/A2)−1 and κ ′2 = (1 + A2/4n)−1.
Larger frequency shifts require lower densities and longer

propagation distances. For a given frequency ω to be realized,
Eq. (41) indicates what plasma density n must be attained.
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Then the propagation distance z can be determined as a func-
tion of n. The differential relation between z and n is

dz

dn
= dω2

dn

dz

dω2
= 2ω2

n

dζδ

dn
. (43)

This equation can be integrated to give

z = 2ω2
0

∫ n

n0

1

n′
dζδ

dn′ e2A(ζδ (n)−ζδ0 )dn′. (44)

Equations (41) and (44) provide a complementary and more
analytic method of determining density profiles and frequency
shifts to the numerical integration of Eqs. (22) and (23).

D. Unlimited photon acceleration

Since dω2/dz > 0 and dn/dz < 0, there are no fixed
points or periodic orbits and so, by the Poincaré-Bendixon
theorem, there are no limit sets to the orbits. In fact, we
demonstrate that as n → 0, ζδ (n) → ∞ and ω(n) → ∞.

Recall that κ2 = A2

4n+A2 → 1 as n → 0 and so κ ′2 → 0. It
can be shown [41] that E (κ ) → 1 as κ → 1 and

K (κ ) ∼ ln
4

κ ′ as κ → 1. (45)

Now ζδ simplifies to

ζδ ∼ 1√
n

[
4

κ ′ (1 + 1) − 2κ ′ ln
4

κ ′

]

∼ 1√
n

8

κ ′ → ∞ as n → 0. (46)

From Eq. (41), the laser frequency ω is unbounded as plasma
density tends to 0. This unlimited photon acceleration (see
also Bulanov et al. [22] for some discussion of unlimited
particle acceleration) is quite significant in that a physical
mechanism for frequency shift is now rigorously proven to
admit arbitrary frequency shifts, provided that the drive beam
can be sustained. This unlimited photon acceleration is, how-
ever, only true within the idealization of the mathematical
model. See Appendix B for a discussion on limitations due
to nonideal conditions.

E. Weak driver limit

For a moderate strength driver, A < 1, the function ζ (n) is

ωpζ = ϕ − A

n1/2
sin ϕ + A2

16n
(3ϕ + sin 2ϕ). (47)

The location of the zero density perturbation, ζδ , can be
described accurately by the expansion

ζδ = π

n1/2
+ 2A

n
+ 3π

16

A2

n3/2
+ · · · . (48)

Retaining up to the third term in this expansion, the phase-
matching relation, Eq. (23), is

dn

dz
= − n5/2

πω2

(
1 + 4πA

n1/2
+ 9A2

16n

)−1

. (49)

The expansions developed in this section are seen to be
accurate over a large parameter range. In Fig. 3, we present γm,
ζd , n, and kL for A = 0.01, 0.1, 1, and 10 and for Ld0 = 0.01.
This short driver length guarantees that the SHD limit holds

very well. This is why the dashed and solid lines in the top
row, which shows the wake amplitude γm, agree so well for
all A. The second row shows the position of 0 density pertur-
bation ζδ and its approximations, which agree with the exact
function to A = 1. The next rows show the predicted density
profile and frequency gain. The density profile is accurately
predicted with the expansion for A as large as 1. The slow
variation in n in all cases means that the predicted frequency
gain of the analytic expansion matches the numerical predic-
tion for all values of A calculated. We see that generally the
expansion is good for A = 1 and surprisingly accurate even
for A = 10.

VI. CONCLUSIONS

In conclusion, we have given the details for an ana-
lytic model for a plasma density profile that achieves phase
matching for a beam driven plasma wakefield accelerator.
The model predicts arbitrary frequency shift limited only
by depletion of the drive beam. This model was used to
generate the density profiles used in Ref. [31] that were
used in ab initio relativistic electromagnetic particle-in-cell
simulations. The simulations in that paper were both one-
and three-dimensional; the one-dimensional solutions were
demonstrated to be effective in three dimensions in the broad-
driver regime, as expected. The algorithm developed should
enable other researchers to easily study the dePWPA scheme.
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APPENDIX A: DETAILS OF THE SOLUTION
FOR THE WAKE WITHIN THE DRIVER

In this Appendix, we determine the map from drive-beam
parameters to wake behind the driver. In the previous section,
we found that the wake behind the driver can be completely
understood in terms of its amplitude γm and a continuity
condition between the wake within the drive beam and the
wake behind the drive beam. The continuity condition de-
pends on the plasma particle Lorentz factor γd , momentum
pd , and electric field Ezd at the end of the drive beam. In
this Appendix, we derive γm, γd , pd , and Ezd in terms of the
drive-beam parameters. To determine the wake quantities at
the end of the drive beam, we solve the fluid equations with
nonzero drive-beam density.

This section consists of three parts. First, the plasma fluid
equations within the drive beam are presented. Next, these
are solved in three cases depending on the relation between
the drive-beam density nd and the unperturbed plasma density
n = n(z), namely, when nd > n/2, nd = n/2, and nd < n/2.
Since there are three solution sets, the quantities γd , pd ,
and Ezd are expressed in three different cases. The electric
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potential at the end of the driver, φd , will also be presented
in each case, since it is needed for determining the ampli-
tude γm of the wake behind the driver. This Appendix ends
by deriving the relation γm = 1 − ndφd between the drive-
beam parameters and the amplitude of the wake behind the
driver.

We begin with the plasma fluid equations within the drive
beam. We assume an ultrarelativistic (βd → 1) drive beam, in
which case the fluid equations are

nw

n
= 1

1 − β
, (A1a)

1

ω2
p

∂2

∂ζ 2
(γ (1 − β )) = β

1 − β
+ nd

n
. (A1b)

Using the approximation that the plasma density n(z) is
slowly varying, we may use the wake solutions in constant
density to find nw(ζ ; n(z)). We therefore treat n(z) as a con-
stant, n, and write ζ = ωpζ , nd = nd/n, and Ld = ωpLd/c.
This normalization was not used in the text to prevent confu-
sion when incorporating the variation of n(z). Here, however,
in the context of determining the wake profile, the constant
density assumption permits the convenient suppression of n.

Following Rosenzweig [32], we let

x(ζ ) ≡ γ (1 − β ) =
√

1 − β

1 + β
. (A2)

This leads to

∂2x

∂ζ 2
= 1

2

(
1

x2
− 1 + 2nd

)
. (A3)

We assume that the plasma is quiescent ahead of the driver, so
for ζ � 0, β = 0 = p = E , and n = 1 = γ = x.

This integrates once to give(
∂x

∂ζ

)2

= 2(1 − nd ) − 1/x + (2nd − 1)x. (A4)

We make a detour to discuss the electric field and choice
of sign for the square root that equals ∂x

∂ζ
. Recall that Gauss’s

law in this ultrarelativistic problem states

− 1

vd

∂Ez

∂ζ
= 4πe(ni − ne − nd ),

∂Ez

∂ζ
= −(1 − nw − nd ) = ∂2x

∂ζ 2
. (A5)

We can make the identifications Ez = ± ∂x
∂ζ

and φ =
±(−x + 1) since Ez = 0 = ∂x

∂ζ
for ζ � 0. Since we made the

assumption that the plasma species and beam particles are
electrons, immediately behind the driver the electron density
is decreased; then ∂Ez

∂ζ
= nw + nd − 1 > 0 and we start with

the positive square root for ∂x
∂ζ

.
For identifying dependence of fluid quantities on drive

beam parameters, we identify dependence on x:

γ = 1 + x2

2x
, (A6a)

p = 1 − x2

2x
, (A6b)

Ez = ∂x

∂ζ
= sgn(Ez )

√
2(1 − nd ) − 1/x + (2nd − 1)x, (A6c)

φ = 1 − x. (A6d)

The sign of Ez can change in some cases; we comment in each
case whether Ez stays positive or not and how to determine the
sign of Ezd .

In Eq. (A4), the term (2nd − 1)x changes signs based on
the relation of nd and 1/2, as does the qualitative behavior
of the solution and the technique used to derive the solution.
There are three cases to consider:

1. 0 < nd < 1/2

This is the case studied in Rosenzweig [32]; the equa-
tion for x is

∂x

∂ζ
=

√
2 − 2nd − 1/x − (1 − 2nd )x. (A7)

Following Rosenzweig, we perform a change of variables to

(x − 1)(1 − 2nd ) ≡ 2nd cos2 θ (A8)

and write the solution as an implicit relation for θ as a function
of ζ :

(1 − 2nd )ζ (θ ) = 2(E (
√

2nd ) − E (
√

2nd , θ )), (A9)

where

E (θ, k) ≡
∫ θ

0

√
1 − k2 sin2 θ ′dθ ′ (A10)

is the incomplete elliptic integral of the second kind and
E (k) = E (π/2, k) is the corresponding complete integral of
the second kind.

The above relation is valid within the driver for −Ld � ζ �
0. Solving for θ (ζ ), we can find x:

x(ζ ) = 1 + 2nd

1 − 2nd
cos2 θ (ζ ). (A11)

Here x(ζ ) is oscillatory, so determining the electric field
requires determining sign changes. Since the electric field is
equal to ± ∂x

∂ζ
, ∂x

∂θ
= 2nd

1−2nd
sin 2θ (ζ ), and

∂θ

∂ζ
= 2nd − 1

2
√

1 − nd sin2 θ
> 0, (A12)

we know that

sgn(Ez ) = sgn sin 2θ. (A13)

In summary, xd is a function of an intermediate variable θd

which is determined implicitly from the following equations:

(1 − 2nd )Ld = 2(E (
√

2nd ) − E (θd ,
√

2nd )), (A14a)

xd = 1 + 2nd

1 − 2nd
cos2 θd , (A14b)

sgn(Ezd ) = sgn sin(2θd ). (A14c)

2. nd = 1/2

In this case, the equation for x simplifies to

∂x

∂ζ
=

√
1 − 1

x
. (A15)
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Since ∂ζ

∂x > 0 at x = 1, ζ = 0, ∂x
∂ζ

> 0 for all ζ and so x(ζ )
is a positive, monotonically increasing function. In addition,
as x(ζ ) is nonoscillatory, Ez and nw will be monotone and, in
particular, Ez stays positive within the drive beam. Similarly,
the electric potential φ < 0 within the drive beam.

The quantity xd is determined implicitly from the equation

Ld = sinh−1
√

xd − 1 +
√

xd − 1
√

xd (A16)

and sgn(Ezd ) = +1.

3. nd > 1/2

The equation for x is

∂x

∂ζ
=

√
2(1 − nd ) − 1/x + (2nd − 1)x. (A17)

Note that this will stay positive, so x is a positive, monoton-
ically increasing function of ζ . Rearranging so we can solve
for ζ (x),

∂ζ

∂x
=

√
x√

x − (2nb − 1)x − 1 + (2nb − 1)x2
, (A18)

and integrating, we have

√
2nd − 1

∫ ζ

0
dζ ′ =

∫ x

1

√
x′√

(x′ − 1)
(
x′ + 1

2nd −1

)dx′. (A19)

Following a similar vein to the solution technique for nd <

1/2, we use the substitution

(x − 1)(2nd − 1) = t2, (A20)

and arrive at

√
2nd − 1ζ = 2√

2nd − 1

∫ t

0

√
t2 + 2nd − 1√

t2 + 2nd

dt . (A21)

The integral in Eq. (A21) is an elliptic integral. We find a
recipe for its evaluation in Eqs. (221.04) and (313.02) of Byrd
and Friedman [41] :∫ t

0

√
t ′2 + b2

√
t ′2 + a2

dt ′

= gb2

(
1

k′2

{
k′2F

(
tan−1 t

b
, k

)
− E

(
tan−1 t

b
, k

)

+ t

b

√
1 − k2 sin2

(
tan−1 t

b

)})
, (A22)

a2 = 2nd , b2 = 2nd − 1, g = 1

a
= 1√

2nd
,

k2 = a2 − b2

a2
= 1

2nd
, k′2 = 1 − k2 = 2nd − 1

2nd
. (A23)

Now we employ a trigonometric substitution,

tan θ = t

b
, (A24)

and, observing that

gb2

k′2 = 2nd − 1√
2nd

2nd

2nd − 1
(A25)

=
√

2nd , (A26)

we arrive at

(2nd − 1)ζ = 2
√

2nd × . . .

( k′2F (θ, k) − E (θ, k)

+ tan θ
√

1 − k2 sin2 θ ). (A27)

To complete the nd > n/2 equations, we combine the sub-
stitutions in Eqs. (A20) and (A24) to get the equation for xd

as a function of θd and include the condition on sgn Ezd :

xd = 1 + tan2 θd , (A28a)

sgn Ezd = +1. (A28b)

To evaluate the accuracy of this map in each of the three cases,
we compare the theoretical wake profile with the wake profile
computed in 1D PIC simulations for drive beams of various
lengths and of densities at, greater than, and less than the
plasma densities. As seen in Fig. 4, the theoretical prediction
agrees very well with the computed wake.

APPENDIX B: LIMITATIONS TO THE IDEAL 1D MODEL

The mathematical 1D dePWPA model assumes an ultra-
relativistic driver moving at the speed of light. Given these
assumptions, the frequency shift is arbitrarily large (unlim-
ited). In practice, these assumptions are violated and this
imposes some limitations on the frequency shift that is real-
izable. We discuss some of these limitations in this Appendix.

The treatment of the wake behind the drive beam as an
AP wave assumes a cold 1D plasma and that γm < γd ; if this
condition is not met, the AP wave breaks. Background plasma
particles can be trapped in the wake, the fields and density pro-
file are altered, and, in particular, the plasma density gradient
differs from the AP model. Wave breaking is not considered in
this paper but would limit the achievable frequency shift. For
the ultrarelativistic drive-beam approximation assumed in our
work, vd → c, the Lorentz factor γd → ∞ and the AP condi-
tion is always met. Given a realistic driver with vd < c, the AP
wave breaks when γm � γd . Consider, for example, a 10 GeV
electron beam driver for which γd ≈ 20 000, with normalized
areal beam charge density A ∼ 1. In this case, using the ultra-
short beam limit described above for γm, the wave-breaking
condition occurs when 20 000 = 1 + A2/2n, so the limit can
be estimated using A2/n ∼ 104, i.e., n would drop to 10−4 of
its initial value. Hence, the plasma frequency would drop to
10−2 of its initial value and the relativistic plasma wavelength
would increase by a factor O(100). Now recall the frequency
shift scaling from Eq. (41), ω(n) = ω0 exp(A(ζδ (n) − ζδ0)).
The position of the laser, ζδ , scales with the plasma wave-
length. We can therefore estimate that wave breaking occurs
for these parameters when the laser frequency has increased
by a factor of exp(O(100)); wave breaking is evidently not a
very restrictive limit in the cold 1D model.
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FIG. 4. Analytic expressions in the wake compared to OSIRIS 1D simulation data. Top row: kp0Ld0 = 1.9, nd0/n = 0.2, 0.5, 0.8. Middle
row: kp0Ld0 = 6.28, nd0/n = 0.1, 0.5, 0.6 Bottom row: kp0Ld0 = 9.5, nd0/n = 0.1, 0.5, 0.6. The expressions are exact in a uniform density
plasma (here n = 1 but any value of n is possible).

On the other hand, it is well-known [42] that the wave-
breaking threshold is lowered by finite plasma temperature.
Including the effect of finite plasma temperature may more
significantly limit the achievable frequency shift and would be
an interesting direction of future work. More importantly, for
experimental realization of dePWPA, transverse motion and
3D effects were also not considered in this paper. Although
we showed in our previous paper [31] that, in practice, the 1D
solutions could be used reasonably in the 3D case, inclusion of
transverse effects introduces additional wave-breaking mech-
anisms and qualitative changes to the wake profile that would
affect the asymptotic limits presented here. For example, if
the plasma is driven hard enough that the plasma electrons

can be completely expelled from the wake, it may form a
spherical cavity of positive charge behind the driver, known
as the blowout [43] or bubble [44] regime. In the blowout
regime, the smoothly varying plasma gradient becomes very
steep in a narrow sheath region around the bubble. While this
steep gradient may provide enhanced photon acceleration, the
laser pulse is likely to be much longer than the scale length
of the density gradient and may not be well modeled by the
dePWPA scheme presented in this paper. Moreover, the size of
the wake and, particularly, the position ζδ are different in the
blowout regime than in the 1D PA wave. Several 3D wakefield
models for the bubble regime have been put forward in the
literature that agree well with PIC simulation results [45–47];
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FIG. 5. Jupyter notebook output demonstrating usage of the Python code dephasingless_pwpa_plasma_profile to calculate the dephasing-
less PWPA plasma density profile and theoretical laser frequency.

it would be interesting to investigate whether the dePWPA
theory can be extended to include the 3D nonlinear model
of the blowout in calculating ζδ and dζδ/dn and whether
photon acceleration can still be effective in the blowout
regime.

Laser-driven dephasingless photon acceleration, a deL-
WPA scheme, would be of interest. The evolution of a laser
pulse is very different from an electron beam, so LWPA
theoretically is a separate research topic. However, there
are spatiotemporal pulse-shaping techniques (that generate a
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FIG. 6. A sample help message for the get_depa_profile function in the dephasingless_pwpa_plasma_profile Python code.

so-called flying focus), that would enable a laser pulse with
group velocity that mimics the rigid motion of an ultrarela-
tivistic electron beam driver [48,49]. In this case, we antici-
pate that minor modifications to the dePWPA theory would
accommodate similar frequency shifts driven by a laser pulse
with flying focus, similar to previous work using an ionization
front [23].

APPENDIX C: EXAMPLE CODE TO OBTAIN PLASMA
DENSITY PROFILE

In this Appendix, we present the practical evaluation of the
dephasingless PWPA plasma density profile using a Python
script. A sample Jupyter notebook is shown in Fig. 5, demon-
strating usage of the code along with a visualization of the
resulting plasma density profile and laser frequency. To use

this code to generate a plasma density profile in the Python-
based PIC code FBPIC, we created an interpolating function
based on the arrays returned by the Python dePWPA code. To
generate a profile for the OSIRIS PIC code, the plasma density
profile must be expressed in terms of elementary functions
that are recognized by the OSIRIS function parser. We found
that a function of the form f (x) = a + b/(c + x)d yielded a
good fit for the plasma density profile.

The Python code itself, dephasingless_pwpa_plasma_
profile, is provided in the Supplemental Material [33].
The primary function in dephasingless_pwpa_plasma_
profile is get_depa_profile, which takes as required in-
put the initial critical-to-plasma-density ratio, the initial drive
beam density, and the initial drive beam length and returns
arrays of propagation distances, the plasma density profile at
those distances, and the theoretical resulting frequency shift.
This code is documented for ease of use, as shown in Fig. 6.
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