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Staircase resiliency in a fluctuating cellular array
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Inhomogeneous mixing by stationary convective cells set in a fixed array is a particularly simple route to
layering. Layered profile structures, or staircases, have been observed in many systems, including drift-wave
turbulence in magnetic confinement devices. The simplest type of staircase occurs in passive-scalar advection,
due to the existence and interplay of two disparate timescales, the cell turn-over (τH ), and the cell diffusion
(τD) time. In this simple system, we study the resiliency of the staircase structure in the presence of global
transverse shear and weak vortex scattering. The fixed cellular array is then generalized to a fluctuating vortex
array in a series of numerical experiments. The focus is on regimes of low-modest effective Reynolds numbers,
as found in magnetic fusion devices. By systematically perturbing the elements of the vortex array, we learn that
staircases form and are resilient (although steps become less regular, due to cell mergers) over a broad range
of Reynolds numbers. The criteria for resiliency are (a) τD � τH and (b) a sufficiently high profile curvature
(κ � 1.5). We learn that scalar concentration travels along regions of shear, thus staircase barriers form first, and
scalar concentration "homogenizes" in vortices later. The scattering of vortices induces a lower effective speed
of scalar concentration front propagation. The paths are those of the least time. We observe that if background
diffusion is kept fixed, the cell geometric properties can be used to derive an approximation for the effective
diffusivity of the scalar. The effective diffusivity of the fluctuating vortex array does not deviate significantly
from that of the fixed cellular array.
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I. INTRODUCTION

A. Background

Staircases [1]—structures of long-range layered order
[2]—have been predicted and observed in applications such
as doubly diffusive convection (e.g., stellar interiors, oceans,
and planetary atmospheres) [3,4], rotating geophysical fluids
[e.g., potential vorticity (PV) jumps associated with sharp jets
(zonal flows)] [1], fluids with stratified density [5], and mag-
netized plasmas [6–9]. In all of these, sharp gradient layers act
as barriers to transport. On account that layering is observed in
many different types of systems, it is beneficial to understand
how staircases form—i.e., how “inhomogeneous mixing” is
realized? Such mixing results in the local sharpening of a
scalar’s (e.g., PV, temperature, etc.) gradient. When the gra-
dient steepens, a pattern of “jumps” and “steps” develop in
the scalar profile, hence the staircase.

In magnetically confined plasma, layering is manifested
by the formation of an E × B staircase—a quasiperiodic pat-
tern of mean field and fluctuation intensity. A signature of
this structure is the containment of avalanche activity, which
can be detrimental to confinement [10]. Both simulation and
experimental data have shown a pressure profile that resem-
bles a staircase. At “jumps” (strong localized temperature
gradients), turbulence drives an enduring layer of localized
shear that acts as a permeable transport barrier. In regions of
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“steps” (mixing region), there is strong, avalanche-like trans-
port. Here, the interspersed regions of localized shear reduce
the spread of avalanche-like transport.

There are two common approaches when explaining the
phenomenon of layering in magnetic confinement. One ap-
proach proposes that the formation process is due to the
interplay of mixing on two length scales [11]. Here, bista-
bility, which is key to staircase formation, enters via a
gradient dependent mixing length. The mixing length is de-
termined by an excitation scale and the Rhines scale [12].
The emergent scale for drift-wave turbulence is the Rhines
scale [13,14], which is defined by the cross-over between the
wave interaction mismatch frequency and the decorrelation
rate characteristic of the inverse cascade. Note that both the
local profile scale length and the turbulence intensity enter the
Rhines scale—hence its “emergent” character. The interplay
of processes on two length scales triggers self-sharpening of
modulations, leading to a staircase. For an extensive study on
the two-scale mixing process, see Refs. [15–18]. The other
approach is the jams model [19–21]. In this alternative picture,
the staircase forms due to a time delay between temperature
modulations and local heat flux. For a more detailed discus-
sion of these two approaches, see Appendix A.

So far, nearly all suggestions involve a feedback process
between zonal shears, turbulence, and their mutual interac-
tion by modulation processes. However, perhaps the simplest
explanation of inhomogeneous mixing is to observe that it
occurs when the turbulence field is organized in an array of
marginally overlapping convective cells (see Fig. 1). Such
a configuration is expected when instabilities are weakly
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FIG. 1. Illustration of marginally overlapping cells. Marginally
overlapping cells are cells that are tangent at a point, or which
intersect over, or are separated by, a distance of no more than a
collisional diffusion length.

excited but not strong enough to produce large transport (i.e.,
when turbulence is relatively weak, cells overlap only slightly,
and profiles are “near-marginal”). Such states are character-
istic of “stiff profiles”, which adopt roughly the same shape
regardless of the applied heating and fueling profiles [22].

Marginally overlapping cells capture two different trans-
port mechanisms. The two transport methods can be under-
stood using the setup of overlapping and nearly overlapping
cells (see Fig. 2). In the former, particles can scatter directly
from cell to cell. A classic example of the latter is the problem
of passive-scalar advection by an array of stationary convec-
tive cells [23–25]. A feature of this model is that there is
a coexistence and interplay of fast (cell turn-over) and slow
(diffusion) transport timescales. In this setup, many overturns
occur in one diffusion time, thus resulting in inhomogeneous
mixing. As depicted in Fig. 4, the system has a global density
gradient in the x direction. As the cells rotate, they capture and
trap particles. Due to a global diffusion D, the particles can be
kicked off a streamline at a narrow gap (δ) between two con-
vective cells. Note that we assume that the characteristic scale
of the cells is d , hence d � δ. Here, the cell boundary acts
as a transport barrier; therefore, the simplest case of staircase
formation occurs in a stationary array of eddies and passive
scalar dynamics (see Fig. 3). It is important to note that in

FIG. 2. Particle transport in overlapping and nearly overlapping
cells. In the overlapping case, the particle can scatter directly from
cell to cell. For the nearly overlapping case, there is a coexistence
of fast transport (mixing in cell) and slow transport (kicks between
cells).

FIG. 3. Illustration of a staircase profile. Domains of cellular
mixing (“steps”) and regions of cell boundaries (“jumps”) are de-
noted by d (red) and δ (green), respectively.

this setup, “feedback” is not necessary to form a staircase
structure.

A remarkable result which is characteristic of this model
is the effective diffusivity (D∗) caused by the interplay of
fast and slow transport. To derive the effective diffusivity, we
consider a random walk with a diffusion coefficient calculated
by (�x)2/�t , where �x and �t represent the cell length
along (d ) the global density gradient and the boundary layer
scattering time [(d/δ)τH ], respectively. Here, τH represents
the cell circulation time. Therefore, we have the following:

D∗ ≈ (�x)2

�t
. (1)

Since particles undergo a pure random walk at the boundary
layer, we can define δ as

√
DτH . To formulate an expression

for τH , we introduce the cellular stream function

ψ0 = sin π (x/d ) sin πβ(y/d ), (2)

FIG. 4. Illustration of the model solved in this paper. The
passive-scalar equation utilizes both Neumann and periodic bound-
ary conditions to model the physics of core to edge in fusion devices.
In our model, x and y can represent the radial and poloidal direction,
respectively.
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and flow velocity

u = (ũd/π )ẑ × ∇ψ, (3)

where ũ is the maximum flow velocity. We can define the
circulation time around the roll as

τH = d

ũβ
.

Here, the term β is the ratio of cell lengths along (d = dx) and
perpendicular (dy) to the global density gradient. Plugging in
these values into Eq. (1) results in

D∗ ≈
√

DDcell = D
√

Pe, (4)

where Dcell = ũdβ. Here Pe represents the Peclet number,

Pe = τD

τH
, (5)

which is the ratio of the time for diffusion of a particle through
a roll (τD = d2/D) to the time of circulation around the roll.
Since layering in a cellular array requires that the cell circu-
lation time be much less than the diffusion time, the result
in Eq. (4) is only valid in the regime of Pe � 1. It is worth
emphasizing that the effective diffusivity is not determined by
simple addition as in D∗ = D + Dcell, but by the geometric
mean

√
DDcell.

Many but not all properties of the nearly overlapping cells
are present in magnetic confinement devices. For example,
convection cells take the form of the E × B convection, zonal
flows represent the boundary regions between cells, diffusion
represents ambient collisional diffusion, and scalar concentra-
tion represents the spatial propagation of turbulent intensity.
The propagation of turbulent intensity enables turbulent heat
transport and thus carries a heat flux. Due to these similarities,
it is convenient to review the simplest incarnation of the stair-
case, which is the cellular array with two disparate timescales.
This model is a minimal approach to layering, which comple-
ments other ideas such as the E × B “predator-prey” model,
where drift-wave turbulence and zonal flow populations in-
teract via a dynamical feedback loop. Note that although this
model incorporates features relevant to magnetically confined
plasmas, it should not be construed as an exact representation
thereof. For a brief discussion on staircases in magnetic con-
finement, see Appendix A.

In this paper, we explore structural fluctuations and con-
sider the effects of an additional shear stream function on the
fixed cellular array. Here, we answer the following:

(1) Will the staircase structure form in the presence of
global transverse shear and turbulence-induced mixing?

(2) How does global transverse shear affect the mixing of
scalar concentration? If we increase the strength of the shear,
then what will happen to the staircase?

(3) In a fluctuating vortex array, how does the staircase
structure change? What are the criteria for a staircase to be
considered resilient?

(4) As scalar concentration flows in the fluctuating vortex
array, will the staircase step or barrier develop first?

(5) As vortices are scattered, how will the effective veloc-
ity of scalar concentration front change?

(6) In the fluctuating vortex array, how does effective dif-
fusivity deviate, if at all, from the D

√
Pe scaling?

In the paper, we address these six questions and interpret
the results in the context of magnetically confined plasmas.

B. Fixed cellular array model

The governing equation for passive-scalar transport is(
∂

∂t
+ u · ∇

)
n = D ∇2n, (6)

where n is the scalar concentration, u the fluid velocity [see
Eq. (3)], and D the background diffusion coefficient. For our
simulations, we set the values of ũ to 0.5. The dimensionless
stream function produces the flow structure

ψ = ψ0 + α ψshear. (7)

In Secs. I B and II, the value of β is set to one. In Sec. III,
we calculate the average value of β by measuring the length
of the cells along and perpendicular to the mean gradient. For
α = 0, the stream function creates an array of convection cells
[23–25]. In section II, we explore the case of α �= 0. We note
that Eqs. (3) and (7) follow the same normalization as the
stream function and fluid velocity given in Ref. [23].

The passive-scalar equation is numerically solved on a two-
dimensional grid where x and y range from [0, L]. The value
of L and d are set to 2π and π/3 and are kept fixed for all
numerical simulations and calculations performed throughout
the paper. For our simulation domain, the value of d results in
an array of 6 × 6 stationary convective cells.

We impose Neumann boundary conditions in x and peri-
odic boundary conditions in y on the passive-scalar equation.
The direction of the mean gradient is set by the Neumann
boundary conditions and is similar in design to those in
Ref. [26]. The Neumann boundary conditions are of the form

�|x=0 = −1 + η�̃, (8)

�|x=L = −1. (9)

Here, η�̃ corresponds to a random scalar concentration flux,
thus producing a noisy flux-driven system. The term η�̃ is
also used for diagnostic purposes, such as mapping the path
of the scalar concentration via a pulse train. The use of these
particular boundary conditions help approximate the fixed flux
condition and periodic structure found in real physical sys-
tems (e.g., magnetic confinement). An example of a physical
system that demonstrates these boundary conditions is shown
in Fig. 4.

To solve the passive-scalar transport equation, we use an
explicit finite difference numerical scheme. The time deriva-
tive uses forward Euler and the spatial derivative uses a
centered difference approach. The numerical results are ac-
curate up to first-order in time and second-order in space.

We test the accuracy of the numerical code on the array
of 6 × 6 stationary convective cells. The accuracy of the code
is verified by producing a staircase structure and comparing
the computed effective diffusivity to the validated effective
diffusivity shown in Eq. (4). To determine the effective dif-
fusivity, we drive a flux of scalar concentration at one side
of the array until the staircase profile forms. We generate the
staircase profile by taking an average of n along the direction
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FIG. 5. Staircase profile as function of x for Pe = 30 and Log-
Log plot of effective diffusivity D∗ as a function of Pe. The validated
scaling [Eq. (4)] and computational results are represented by the
solid blue line and red points, respectively. Computational results
follow a 1/2 slope for large Pe number. Note that 〈n〉y is normalized
by its max value.

perpendicular to the mean gradient

〈n(x)〉y = 1

L

∫ L

0
n(x, y) dy. (10)

Thereafter, we use Fick’s law to calculate the effective diffu-
sivity (D∗),

D∗ = − (x2 − x1)2

�t

ntot,t f (x = [x1, x2]) − ntot,ti (x = [x1, x2])

〈nt f (x2)〉y − 〈nt f (x1)〉y
.

(11)

Here x1 and x2 represent (1/4)L and (3/4)L, respectively.
Note that the difference between t f and ti is 8.3 diffusive
cycles (i.e., �t = 8.3τD). For the region [x1, x2], we define
the parameter ntot at a given time as

ntot = 2

L2

∫ x2

x1

∫ L

0
n(x, y) dy dx.

For a detailed explanation of how we obtain D∗, see Ap-
pendix C. We find that for a wide range of D, the staircase
profile forms as long as Pe � 1. Additionally, we determine
that the numerical code is sufficiently accurate and agrees with
Eq. (4). A plot of log10 D∗ versus log10 Pe is shown in Fig. 5
comparing both simulation and theory. Here, we demonstrate
an agreement between simulation and theory for Pe � 1.

The outcome of studies regarding both transport and stair-
case profile resiliency to the effects of global shear and
turbulence-induced variability in the flow structure are deter-
mined and discussed. The remainder of the paper is outlined
here. In Sec. II, we study staircase resiliency by probing
the fixed-cellular array using a global shear stream function.
In Sec. III, the cellular array is relaxed by switching to a
fluctuating vortex array. Here the vortex array is allowed to
fluctuate by slowly increasing the Reynolds number in the
Navier-Stokes equation. Finally in Secs. III A, III B, and III C,
we discuss the staircase in the fluctuating vortex array, the
criteria for staircase resiliency, and scalar concentration trans-
port in the fluctuating vortex array.

FIG. 6. Array of convective cells with parabolic shear (m = 1)
in the y direction for the case of α = 6. The strength of the shear in
the flow is controlled by α. The increase in α, destroys the array cell
structure.

II. GLOBAL SHEAR ON FIXED CELLULAR ARRAY

The effects of global velocity shear on the staircase struc-
ture are explored by including an additional shear flow,

ψshear = − cos
mx

2
, (12)

into the stream function [Eq. (7)]. As clarification, the term
“shear” refers to advection in the y direction. The addi-
tion of the global shear stream function creates a new
timescale, which will call the shear dispersion timescale
[τadv = 12π/(ũαm)]. It is important to make the distinction
that τadv represents the time for advection by ψshear across the
box in y (i.e., τadv = L/uS). Note that this is different from the
familiar shearing time [τS = 1/(dus/dx)], which is equal to
(1/3md )τadv.

We conduct a scan of m (i.e., the number of waves per
distance L) at different integer values and different strengths,
α. As a preliminary analysis, we study the physical effects that
the global shear stream function has on the original cellular
array flow structure. In Fig. 6, we demonstrate that increasing
the amplitude of a quarter sinusoidal wave (m = 1) disrupts
the cellular mixing structure. As stated in the introduction,
cellular mixing structures are essential for the confinement of
scalar concentration. Thus, it is reasonable to expect that the
destruction of the cells will affect the scalar staircase profile
and scalar transport.

To understand global transverse shear effects, we compare
the three different timescales τH , τD, and τadv. The ratio of the
diffusion timescale to the shear dispersion timescale results in

τD

τadv
= αmũd2

12πD
. (13)

Here, we find that when the product of α and m is greater
than 12πD/(ũd2), the global transverse shear transports
the passive-scalar at rate faster than diffusion. Thus, when
αm > 12πD/(ũd2), the shear dispersion time becomes an
intermediate time, between τD and τH . To find the upper limit
such that τadv becomes shorter than τH , we take the ratio of
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TABLE I. Global shear timescale scenarios.

Cases Timescales

α = 0 τH < τD

0 < αm < 12πD/(ũd2) τH < τD < τadv

12πD/(ũd2) < αm < 12πβ/d τH < τadv < τD

12πβ/d < αm τadv < τH < τD

the circulation timescale to the shear dispersion timescale

τH

τadv
= αmd

12πβ
. (14)

Keep in mind that the value of β is set to one for this section.
Here, we find that when the product of α and m is greater than
12πβ/d , the shear dispersion gives an effective mixing rate
faster than inner-cell mixing. We summarize the order of the
timescales in Table I.

The simulations for this section span the space of 0 <

αm < 45. We cover this parameter space to capture the effects
of global transverse shear on the scalar concentration staircase
structure. By running simulations for different values of α and
m, we can also determine the consequences that the order of
time scales has on the transport of the scalar concentration.

We begin by analyzing the case of m = 1. For m = 1,
we increase the value of α and study the change in 〈n(x)〉y.
We find that as the shear strength increases, the staircase
profile breaks down. The staircase profile breaks down in the
sense that staircase steps dissolve (see Fig. 7). As sheared
flow transports the scalar concentration in the y direction, the
gradient d〈n〉y/dx increases in the region where global shear
is dominant. Due to the nature of the shear stream function,
shear is weak at the boundaries, hence the flat steps persist
there [uS (x = 0) = uS (x = L) ∼ sin (mx/2) = 0].

As stated in Sec. I A, the staircase structure has inter-
spersed barriers and steps, which limit transport and trap the
scalar concentration. The fast mixing in the cells trap scalar

FIG. 7. Scan of normalized averaged scalar concentration in y
as a function of x for m = 1 and different α values. As the shear
strength increases, the staircase profile breaks down. Global shear
flow dissolves staircase steps.

FIG. 8. Variance in x as a function of αm. For different mode
numbers m, the variance grows logarithmically. We conclude that for
αm > 12πβ/d = 36, the average scalar concentration profile will no
longer change significantly and will be of similar form for different
m.

concentration, and inter-cell barriers limit transport due to a
slow diffusion time scale. By destroying the steps, the inter-
spersed trapping of scalar concentration (due to inner-cellular
mixing) no longer occurs. To understand how different values
of m breakdown the staircase profile, it is convenient to asses
the deviation of the 〈n〉y profile from the original staircase
profile (α = 0). By doing so, we can also measure the total
scalar concentration in the flow as a function of staircase
profile deviation.

To quantify, for different m, the deviation or breakdown of
the staircase profile, the variance with respect to x is calculated
for different α values,

σ 2
x =

∫ L

0
(〈n〉y − 〈n0〉y)2dx. (15)

Here, we define the baseline staircase profile (α = 0) as
〈n0〉y. The variance measures the deviation between the α �= 0
profiles and the baseline staircase. In Fig. 8, we plot the
square-root of Eq. (15) as a function of αm. In the plot,
we mark the transition points where the different order in
time scales occur [αm = 12πD/(ũd2) and αm = 12πβ/d] as
black dashed vertical lines. The graph shows a similar trend
in the variance for distinct mode numbers (m). For each mode
number, the increase in α results in a significant increase in
the deviation up to values of αm ∼ 12πβ/d . For values of
αm > 12πβ/d , the variance plateaus at σx ∼ 1.19 for all m.
The plot of the variance shows that up to a critical shear of
αm = 12πβ/d , the 〈n〉y profile for different mode numbers
will be similar in form and no longer notably change through-
out the regime of τadv < τH < τD. To summarize, we show
that the 〈n〉y profile deviates significantly in the regime of
τH < τadv < τD, but goes unchanged once αm > 12πβ/d .

Next, we want to explore how the order in timescales
affects the dynamics of the scalar concentration transport.
In Fig. 7, we observe that as α increases, the staircase steps
gradually dissolve, resulting in an increase in d〈n〉y/dx. Thus,
the scalar concentration is no longer trapped by the cells, as
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FIG. 9. Total scalar concentration as a function of the variance
in x. The total scalar concentration increases as the scalar concentra-
tion profile deviates from the staircase (α = 0) profile. Global shear
weakens mixing in the x direction. The value of d〈n〉y/dx increases
with shear, thus improving confinement of scalar concentration.

advection in the y direction becomes the dominant form of
transport. With increasing d〈n〉y/dx, the transport (in x) due to
cell circulation is reduced. To assess whether shear diminishes
mixing along x and its relation to the deviation of the staircase
profile, we calculate the total scalar concentration for various
values of m and α,

ntot = 1

L2

∫ L

0

∫ L

0
n(x, y) dy dx. (16)

In Fig. 9, we show a line with positive slope between
the total scalar concentration and σx. We find that as the
pattern of staircase corrugation decays, the total scalar con-
centration increases. Hence, the increase in global shear
weakens/strengthens the mixing of scalar concentration
along/perpendicular to the mean gradient. We note that as
σx approaches 1.19, the total scalar concentration does not
change significantly. Thus, transport of scalar concentration
can no longer be suppressed once it surpasses a value of
αm = 12πβ/d . Nevertheless, results show that an additional
global sinusoidal shear flow weakens the staircase structure
and reduces the transport of scalar concentration in x for
values of αm > 12πD/(ũd2).

The question of whether Eq. (4) can help explain the sup-
pression of scalar concentration may arise. The answer to
this question is no. With increasing shear strength (α), the
global shear disrupts cellular mixing structures, causing scalar
concentration to advect in the y direction. In this context,
explaining the suppression of scalar concentration cannot be
achieved via Eq. (4). This is due to the condition that requires
cell boundaries to be intact.

In the next section, the cellular array will be allowed to
relax and fluctuate. There, we will discuss the effects that the
relaxed vortex array has on the staircase robustness and scalar
transport.

III. RELAXATION IN A FLUCTUATING VORTEX ARRAY

Up till now, the research presented in this paper has in-
volved only a slight modification to the problem of the fixed
cellular array studied in Ref. [23]. We argue that the fixed
cellular array setup is contrived and overly constrained; there-
fore, it is an unrealistic representation of physical systems
observed in nature. Such physical systems will manifest vari-
ability, fluctuations, and intrinsic jitter. Thus, the cell pattern is
more like a melting vortex array than a frozen array. Hence, we
study the dynamics of a less constrained cell array (i.e., vortex
array with fluctuations) and ask how resilient the staircase
profile is in the presence of fluctuations. In addition to that,
we give answers to the following:

(1) What happens to interspersed regions of strong scalar
concentration mixing as cells relax? What about other cellular
interactions?

(2) What is the behavior of the scalar concentration tra-
jectory through the vortex array? As we increase fluctuations
in the vortex array, how will the speed and trajectory of the
scalar concentration front change (see Fig. 24)?

(3) How does the increase in scattering in the vortex array
affect the transport of scalar concentration?

To answer these questions, we use the model of a “melting
vortex crystal,” advanced in Refs. [27,28]. In this setup, a
spatially periodic force creates the vortex array pattern. The
vortex array flow is driven and damped by both viscosity and
drag. The fluctuations of the vortex array can be explored
systematically by scans of modest Reynolds numbers. Here,
the Reynolds number is set by the forcing strength. Such a
variable vortex array flow is akin to a melting crystal, where
“melting” is related to the turbulent mixing field. By sys-
tematically varying the vortex array state (i.e., the degree of
melting), one can explore the connection between cell size
perturbations and staircase-variability.

The governing equation for the vortex array is the 2D
Navier-Stokes (NS) equation, which can be written in nondi-
mensional form as(

∂

∂t
+ u f v · ∇

)
ω = 1

�
∇2ω + Fω − αω, (17)

∇2ψ f v = ω. (18)

We write the 2D incompressible NS equation in terms of the
stream function ψ f v and vorticity ω = ∇ × u f v , where u f v =
ẑ × ∇ψ f v is the fluid velocity at position x and time t . Note
that u f v is not the same flow velocity [Eq. (3)] we insert into
the passive-scalar transport equation [Eq. (6)]. For a derivation
of Eq. (17) and control parameters, see Appendix B. The
spatially periodic force Fω in the NS equation is defined as

Fω ≡ −n3[cos nx + cos ny]/�. (19)

Here n represents the injection wave vector and is set to n = 4
for all simulations. The boundary conditions for Eq. (17) are
periodic in both x and y direction. In Eq. (17), there are two
control parameters: the nondimensional Ekman-friction α and
�. Here, � is equivalent to the familiar and intuitive Reynolds
number. Note that the velocity is set by the forcing. We can
define � as the ratio of the viscous timescale (τν = n2/k2ν)
to the cell circulation timescale (τH = nkν/Famp). The alpha
parameter is defined as the ratio of cell circulation timescale
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to the mean shearing timescale (τS = 1/α′). Thus, the two
control parameters are

� = τν

τH
, (20)

α = τH

τS
. (21)

Here Famp is the forcing amplitude, k inverse length scale,
ν the kinematic viscosity, and α′ the dimensional Ekman-
friction. The value of α affects large-scale flow and � affects
small scale flow and also the strength of the forcing function,
Fω. In this setup, the spatially periodic force Fω yields, at
� < 5.5, a zero fluctuating vortex array.

The NS equation is solved numerically by using a
pseudo-spectral method with 2/3 dealiasing cutoff and the
fourth-order Runge-Kutta method for the time steps. The time
step used here is δt = 0.01 with a spacial grid set to N =
128. To make sure that the temporal evolution of the system
is obtained accurately, typical runs consist of 3 × 106 time
steps. We remind the reader that this numerical scheme differs
from that used to solve Eq. (6). Here, we employ the same
numerical methods as Refs. [27,28], aiming to replicate the
results obtained in those works. By employing this numeri-
cal scheme, we can precisely generate, classify, and validate
various stages in the evolution of the fluctuating vortex array.

Before discussing the destabilization of the zero-
temperature vortex array state, the initial vorticity in the DNS
has the form

ω = ωs + 10−4
2,2∑

m1=1,m2=1

[sin (m1x + m2y)

+ cos (m1x + m2y)]m2
2

/√
m2

1 + m2
2,

where ωs = −n[cos (nx) + cos (ny)]. The system is evolved
by the application of the force Fω. Here, exploration of the
different fluctuating vortex array stages is done by slowly
increasing the value of �. Note that this study focuses on
low-modest Reynolds numbers (� = 4–40), mainly exploring
a regime of spatiotemporal chaos. The fluctuating vortex array
model allows us to realize similar physics to that which occurs
in actual physical systems (e.g., drift-wave turbulence). For
all simulations, the following are output (a) the total kinetic
energy E (t ) ≡ ū2

f v and (b) the stream function ψ f v .
We use the value of � to categorize the different stages

in the evolution of the fluctuating vortex array. We denote
the onset of cellular fluctuations as �s. Here �s is the ef-
fective Reynolds number where cellular fluctuations occur.
When � < �s = 6, the vortex array is referred to as a zero-
temperature vortex array. The vortex array is allowed to
fluctuate by increasing � from the stable state �s, in in-
crements of 0.5. This allows us to clearly mark transitions
between states of the flow in the vortex array. The transitions
are marked as follows: SX, the zero-temperature vortex array
imposed by the force; followed by SXA, steady distorted
array; leading to a distorted array that oscillates in time, either
periodically (OPXA) or quasiperiodically (OQPXA); last, the
system becomes disordered and exhibits spatiotemporal chaos
and turbulence (SCT). Here spatiotemporal chaos means that
the temporal evolution of the system becomes disorder and

TABLE II. Different stages of the fluctuating vortex array. In this
paper we consider small and large � any value within SX and SCT
range, respectively.

Transitions � Range

SX � < 6
SXA 6 < � < 7
OPXA/OQPXA 7 < � < 13
SCT 13 < �

the spatial organization of the vortex array is distorted (i.e.,
flow patterns appear and disappear in irregular fashion). A
table of these transitions is provided in Table II. In Fig. 10,
we show the energy time-trace for each of these transitions.
These stages are categorized based on the behavior of the en-
ergy time-trace and its autocorrelation. In the autocorrelation
analysis of the energy, we measure the relationship of the ob-
servations between the different points in time, and thus seek
a pattern or trend in the time series. For states of SX and SXA
(� < 7), the energy autocorrelation is 1 for all lags, while for
OPXA and OQPXA (7 < � < 13), the energy autocorrelation
oscillates with the frequency of the periodic fluctuation for
lag greater than zero. In the case of the chaotic/turbulent state
(� > 13), the energy autocorrelation value is low (∼0) for all
lags.

Before injecting the passive scalar into the flow, we address
the question of “cellular interactions” as the cells are allowed
to relax. This discussion will be of use when later discussing
the staircase structure and transport of scalar concentration
in the vortex array. It’s important to note that the flow will
evolve differently depending on the values chosen for k, ν,
and α′. For our study, we assign the following values to each
parameter: k = 10, ν = 10−2, and α′ = 0.55. To understand
the consequence of this, we have to look at the timescale def-
inition of the control parameters � = τν/τH and α = τH/τS .
At this point, the alert reader will notice that the amplitude
of the forcing (Famp) couples α and �. Therefore, the two
values are inversely proportional to each other. It is clear from
Fig. 11 that �α > 1 for all simulations. In timescale notation,
this means that τS < τν , which implies that large-scale flows

FIG. 10. Energy time-trace for the different stages of the fluctu-
ating vortex array. Here nt represents the time-steps in the DNS.
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FIG. 11. Plot of simulations in Reynolds (�) and 1/α number
space. Here � and 1/α control turbulent mixing and large-scale
flows. The different stages of the fluctuating vortex array are high-
lighted in different colors. All simulations ran in this study fall in the
regime of τν > τS .

develop at a rate faster than fluid momentum diffuses over a
scale length (n/k). Here, the diffusion of the fluid momentum
is associated with the excursion of a cell during cell array
fluctuations.

As a consequence of the τS < τν condition, as � increases,
cells merge. An increase in �, such that � > �s, perturbs
the location of the cells. This perturbation causes cells to run
into each other and merge (see Fig. 12). The merging of flow
lines results in vortices merging and forming larger vortex
structures, which over time, develop into large-scale flows. We
confirm this by qualitatively studying the contour plots of the
stream function at different stages of the fluctuating vortex
array (see Fig. 13). In addition to this, we observe that only
vortices of the same sign merge.

To quantitatively analyze the formation of large-scale
flows, we investigate the influence of the nondimensional
Ekman-friction parameter (α) on the fluctuating vortex array.
In Fig. 14, we present an investigation of the α parameter.
The solid blue line in the graph depicts the energy of the zero-
temperature vortex array in wave number (k) space. When α

is sufficiently large (∼1.6), the parameter dampens both large

FIG. 12. An increase in �, such that � > �s, perturbs the loca-
tion of the cell. Cells then run into each other and merge. Here, �s

represents the onset of cellular fluctuations.

and small scale flows. For large α, the flow follows the frozen
vortex array pattern dictated by the external force Fω. Here,
energy is concentrated at the wave injection number k = 4.
While maintaining a constant � (� ∼ 5.7), we decrease the
value of α. The graph’s dashed red line illustrates the evolu-
tion of the energy as α transitions to a lower value. At a lower
value of α, the energy increases significantly for values of k
less than 4. This demonstrates that small values of α imply
large-scale flow structures (where the value of α serves as a
control for large-scale flows).

As an extension to the previous assessment, we use the
Okubo-Weiss field to measure the evolution of large-scale
flows relative to vortices as the value of � increases. The
Okubo-Weiss field (�) is defined as

� = ∂ux

∂x

∂uy

∂y
− ∂ux

∂y

∂uy

∂x
. (22)

The Okubo-Weiss field gives the difference between square
vorticity and square shear strain [29,30]. The quantity �

characterizes the local topology (i.e., Gaussian curvature of
streamlines) of an incompressible two-dimensional fluid flow.
Here, � is a distinctive measure of fluid properties, particu-
larly in distinguishing and describing regions dominated by
deformation and rotation. In Fig. 15, we plot the ratio of
� < 0 to � > 0, which corresponds to the ratio of the area
of saddles to the area occupied by centers, respectively. The
increase in � results in an increase in the population of saddles
relative to centers, which coincides with our previous assess-
ment based on the evolution of energy in wave number space.

For different stages of the fluctuating vortex array, the
stream function (ψ f v) is output from the vorticity equa-
tion [Eq. (17)]. It is important to note that (∇ψ f v ) f v is
dimensionless, thus when inserting into Eq. (3) we make the
following transformation, ∇ψ = (π/d )(∇ψ f v ) f v . We insert
this into the passive-scalar equation [Eq. (6)] through the
velocity term [Eq. (3)],

u = (ũd/π )ẑ × ∇ψ = ũ(ẑ × (∇ψ ) f v ). (23)

By doing this normalization, we can compare passive scalar
transport in the fluctuating vortex array to the fixed cellular
array. The scalar concentration is evolved in this flow using
the same boundary conditions discussed in Sec. I B. In the
following subsections, we present the effects large-scale flows
and vortex fluctuations (in the regime of τν > τS) have on
staircase structure resiliency and passive-scalar transport.

A. Staircase profile in the vortex array

Now that we have a general understanding of how � affects
cellular interactions and flow dynamics, we drive a flux of
scalar concentration (similar to Sec. I B) in the flow created by
Eq. (23). We stress that simply using Eq. (10) will not result in
a staircase profile. Here, the average of the scalar concentra-
tion must be calculated at different orientations to recover the
staircase profile. By doing so, we can establish a connection
with the fixed cellular array (i.e., baseline case) and show
pattern formation occurs. In addition, this also demonstrates
that oblique staircases exist, which can influence transport in
x.
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FIG. 13. Contour plots, illustrating different stages of the fluctuating vortex array. As � increases, there is a merger of vortices along
with distortions of the cellular flow array. Growth in � leads to scattered vortices and large-scale flow structures.

To produce the staircase profile, we rotate the scalar con-
centration field in two different directions, θ = ±π/4, with
respect to x. In Fig. 16, we illustrate the averaging along one
of the orientations. Therefore, we now define the average of
the scalar concentration as

h(x′) = 〈n(x′)〉y′ = 1

L′

∫ L′

0
n(x′, y′) dy′. (24)

Here, the terms x′ and y′ represent the x axis and y axis
in the two different orientations. In terms of L, the value

FIG. 14. Log-log plot of the energy as a function of the wave
number k for different α. The decrease in the α parameter results
in large-scale flows. The solid blue line denotes the zero tempera-
ture cellular flow (� ∼ 5.7), where all energy is mainly focused on
k = 4. As α decreases, the energy grows for smaller k, as shown in
the dashed red line.

of L′ is 0.82L. To setup a baseline case, we consider the
zero-temperature vortex array. In this stage, the average scalar
concentration profile (Fig. 17) takes the form of the staircase
presented in Ref. [23]. We note that for the case of � = 0
(i.e., no fluctuations), the result is the same since the vortices
become locked in the cellular array pattern.

We repeat the same process for different stages of the
fluctuating vortex array. As cells are scattered from the zero-
temperature state, the cells begin to merge, resulting in larger
cell structures. The formation of large cell structures is a
consequence of the τS < τν condition, which we discuss in
detail in Sec. III. In Fig. 18, we examine two different cases,
namely � = 8 and � = 11.5. Here, the two contour plots
of the scalar concentration demonstrate that cell streamlines
connect for several cell structures. The connection of cell

FIG. 15. Plot of saddle area (�−) to center area (�+) as a func-
tion of �. In the regime of τν > τS , fluctuations lead to large-scale
flows, thus the area of saddles increase compared to area of centers.
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FIG. 16. Illustration of the incline scalar concentration averag-
ing. We note that averaging along y′ as a function of x′ leaves out
cells due to y′ and x′ cutoffs. The cutoffs will make it appear as if 〈n〉
leaves steps.

streamlines reflect as mergers in staircase steps in the average
scalar concentration profile. By looking at the profile of h, one
can mistakenly interpret that there are no steps or that steps
are missing. To explain this, we emphasize that steps become
elongated due to vortex mergers and that the missing steps
correspond to the cutoffs of the incline scalar concentration
averaging, as shown in Fig. 16. The rest of the fluctuat-
ing vortex array stages are summarized through analysis of
the step-size (Fig. 19) and curvature of the staircase profile
(Fig. 20) as a function of �.

To assess the mergers in steps, we measure the step length
at different values of � (see Figs. 18, 19, and 21, 22). Here,
the average and maximum step length in the staircase structure
grows with �. This analysis verifies that cell mergers result in
elongated staircase steps (as discussed in Fig. 18). The plot of
the step-size also confirms that as � increases, the cells in the
flow grow in size.

FIG. 17. Illustration of the zero temperature cellular flow struc-
ture. The solid blue and dashed red plot lines correspond to averaging
in the θ = −π/4 and π/4 direction. In the zero temperature vortex
array, the staircase profile for the blue (solid) and red (dashed) nor-
malized h(x′) plot lines are the same.

In addition to step measurements, we calculate the curva-
ture of the scalar concentration profile. Based on our study
of Figs. 19 and 18, as the vortex array relaxes, the number
of steps decrease due to mergers. The result of step mergers
means there are fewer interspersed regions of corrugations. To
measure the interspersed regions of corrugations, we calculate
the curvature of the scalar concentration profile

κ =
∫ L′

0

h′′(x′)
(1 + h′(x′)2)3/2

dx′, (25)

where h(x′) represents Eq. (24). We discern in Fig. 20 that the
increase in � results in the decrease of κ . It is important to
note that the value of κ does not vanish, but instead remains
above ∼1.5 for large values of �. Here, κ quantifies and
describes the step length scale in the staircase. Large and
small values of curvature represent small steps and big steps,
respectively. Similarly, the value of κ can also be interpreted
as a measure of the number of steps or interspersed regions
of corrugations in the staircase profile. Hence, the profile
curvature is a signature of layering.

B. Staircase resiliency

In this subsection, we provide an in-depth discussion
on staircase resiliency. So far, we have only provided evi-
dence that staircase structures persist up to modest values of
Reynolds numbers. To give a precise meaning to the statement
of “resiliency,” a set of criteria must be established.

First and foremost, Pe � 1 is a necessary condition for the
formation of transport barriers in the process of scalar mixing,
as mentioned in Sec. I A. Maintaining Pe � 1 over a relevant
range of Reynolds numbers is thus one natural criterion for
“resilience.” It is of use then to calculate Pe for different stages
of the fluctuating vortex array. Since we control the max flow
velocity and background diffusivity (D = 1.7 × 10−2), the Pe
number only depends on the dimensions dx and dy of the cells.
As discussed in Sec. I B, d represents the length of the cell in
the direction of the mean gradient (dx) and β represents the
ratio of dx to the length of the cell perpendicular to the mean
gradient (dy). By using the stream function (ψ f v), we can
determine the average size of the cells in the flow to calculate
the Pe number. In Fig. 23, we show for values of � greater
than 25 that Pe decreases up to a value of ∼17.5. Hence, the
Pe � 1 criterion is satisfied for the range of 0 < � < 40.

On the topic of Pe, it is useful to measure the ratio of Pe
to Reynolds numbers used here. We can define the Schmidt
number, which measures the ratio of momentum diffusivity to
scalar diffusivity,

Sc = τD

τν

. (26)

For our simulations, we operate in a regime of Sc = [0.5, 7.5].
It is unclear whether maintaining Sc ∼ O(1) is a strict or
necessary requirement to sustain the staircase structure. In
future work, we plan to study the Sc number in more detail.

A second criterion is that a staircase should maintain a
sufficiently high curvature (equivalent to sustaining a suffi-
cient number of steps) over the relevant range of � values.
The precise critical value of curvature (κ) is not determined,
though our studies suggest κ � 1.5 is an adequate value for
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FIG. 18. Snapshot of passive-scalar concentration for the case of � = 8.0 and � = 11.5. On the left figures, the streamlines display
mergers/connections of vortices. These mergers are reflected on the normalized h(x′) profiles on the right, by the elongated staircase step
on the solid blue and dashed red line. The blue (solid) and red (dashed) plot lines correspond to averaging in the θ = −π/4 and θ = π/4
directions with respect to x. As the cells fluctuate from the zero temperature state, the staircase structure remains robust. We indicate steps as
regions where dh/dx′ ∼ 0. These are clearly separated by distinct jumps (i.e., regions of corrugations).

a staircase. In Fig. 20, the plot of κ versus � shows that
κ is greater than 1.5 for most values of Reynolds numbers.
Even for the largest Reynolds number studied, κ does not

FIG. 19. Plot of step size divided by the spatial grid spacing
(�x = L/N) as a function of �. As the vortex array fluctuates, cells
begin to merge, leading to overall average step size and max step size
increase.

vanish, though it does decrease as the staircase coarsens due
to mergers. To substantiate this assertion, we present Figs. 21
and 22, which illustrate the presence of staircase structures

FIG. 20. The plot of the curvature as a function of �. As cells
scatter, the merger of steps decrease interspersed regions of corruga-
tion, hence a decline in h(x′) curvature.
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FIG. 21. Snapshot of passive-scalar concentration for the case of � = 19.0 and � = 35.2. Similar to Fig. 18, cell mergers are reflected on
the normalized h(x′) profiles on the right. Here, we demonstrate evidence that the staircase structure persists up to the value of � = 35.2.

at the highest values of �. Hence, we identify the condition
κ � 1.5 as a second criterion.

Therefore, resilience of a staircase over a given range of �

requires:
(1) Pe � 1, so barriers are formed and maintained.
(2) κ � 1.5, so a requisite number of steps is sustained.
Clearly, criterion (1) is based on first principles, while cri-

terion (2) is empirical, and emerges from our studies. Finally,
we speculate that the curvature criterion (2) may be ultimately
related to the Pe � 1 criterion (1). However, we are unable to
report anything further at this time. We summarize the crite-
rion for resiliency discussed here in Table III. In the following
subsection, we will direct our attention to the transport of the
scalar concentration in the vortex array.

C. Transport in the vortex array

In this subsection, we explore the trajectory and transport
of scalar concentration in the vortex array. Note that the scalar

TABLE III. Criterion of staircase resiliency.

Staircase Resiliency Criterion

Peclet number Pe � 1
Curvature κ � 1.5

concentration trajectory is the path that an element of scalar
concentration (i.e., scalar particle) takes to reach the right
boundary (see Fig. 24). In the process of scalar concentration
reaching the right boundary it’s of use to understand how
interspersed regions of corrugations form (i.e., how a staircase
structure forms).

We find that in the process of forming a staircase, the scalar
concentration forms a “web” structure. The web structure rep-
resents the flow of scalar concentration along regions of strong
shear and around vortices. In Fig. 25, we see that barriers in
the staircase form before steps because scalar concentration
travels along cell boundaries first. Based on previous exami-
nation of the Okubo-Weiss field (see Fig. 15), the increase in
� will result in a wider scalar concentration path (i.e., the web
will form thicker fibers). To understand how the widening of
the scalar concentration path affects the scalar trajectory, we
apply a pulse train of scalar concentration to the left boundary
[Eq. (11)].

When scalar concentration is injected into the flow via
a pulse train method, a flamelet network pattern forms (see
Figs. 26 and 27). As stated in Ref. [31], flamelet fronts are
visible in the regime of Peclet and Damköhler (Da) num-
bers much greater than one. The nondimensional number Da
is defined as the ratio of cell circulation to reaction time.
Here, the reaction time corresponds to the speed of the scalar
concentration front propagation, which is faster than the cell
rotation speed. We define “front” as the scalar concentration’s
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FIG. 22. Snapshot of passive-scalar concentration for the case of � = 24.0 and � = 26.0. Similar to Fig. 21, we demonstrate the
persistence of the staircase structure for � < 40.

furthermost point in x. The regime of Pe � 1 and Da � 1 is
also known as the weak advection regime [32–36]. The weak-
stirring of scalar concentration process ensures that steep
gradients persist at the boundaries of the cells, as shown in
Fig. 25. Yet, as the flame front propagates, the vortex entrains
the flame front over time by a sort of “homogenization” pro-

FIG. 23. Peclet number as a function of �. As the vortex array
is allowed to fluctuate, the two disparate timescales change. Fluctua-
tions of the cells weakens the cell mixing timescale.

cess (i.e., by the synergy of differential rotation and diffusion)
[37]. This explains why we still see the formation of the
staircase in Fig 18.

From earlier analysis, we know that scalar concentration
travels along contours of strong shear; therefore, we can use
the Okubo-Weiss field to map the trajectory of the scalar
concentration. To map the path of the scalar concentration in
the Okubo-Weiss field, we connect regions of strong shear to
their nearest strong shear neighbor, as shown in Fig. 27. Proof
that the scalar travels along areas of strong shear is firmly
established by comparing the paths found in the Okubo-Weiss

FIG. 24. The scalar concentration trajectory at various stages of
the fluctuating vortex array. Its important to note that the scalar
concentration trajectory is the path that an element of scalar con-
centration (i.e., scalar particle) takes to reach the right boundary. The
solid curved (red) line represents the path of the scalar particle.
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FIG. 25. In the process of forming a staircase structure, the scalar
concentration first forms a “web.” The scalar concentration flows
along areas of strong shear. The holes correspond to vortex struc-
tures. Here, the barriers are formed first because scalar concentration
travels along regions of strong shear. Over time, scalar concentration
slowly enters the vortices and becomes homogenized.

field to those in the scalar field. Here, it is significant to note
that the scalar concentration travels along strong shear but not
across it.

By mapping the scalar concentration trajectory, we learn
how the vortex array affects the speed of the scalar concentra-
tion front propagation. Here, we use the map of the trajectory
to determine the travel distance. The travel time is determined
by the number of time steps required for the scalar concen-
tration’s furthermost point (in x) to reach the right boundary.
While pulsing scalar concentration, we mark points (in green)
on the scalar concentration contours (Fig. 26) when n attains
a critical value (ncrit = 0.1). This enables us to quantify the
travel time of the scalar concentration. We show the average
scalar speed as a function of � in Fig. 28. The plot shows
that the scattering of vortices leads to an overall decrease in
scalar concentration velocity. An idea that is relevant here
is the least time criterion. As the cellular array scatters, the

FIG. 26. Pulse train of scalar concentration in � = 11.5 flow.
Flame front propagates, over time vortex entrains flame front. At
different times, we mark the position of ncrit = 0.1 in green (light
gray).

FIG. 27. In Okubo-Weiss field areas of strong shear (� < 0) are
connected to their nearest strong shear neighbor. The connections in
the Okubo-Weiss field are mapped to the scalar concentration con-
tour to show that scalar concentration travels along areas of strong
shear.

path of least time increases in length (similar to scattered path
of light in atmosphere). We also find that the average scalar
concentration front speed follows a similar trend to that of the
staircase curvature plot as we increase �. We speculate that
curvature may ultimately be related to the scalar concentration
front speed,

ū ∼ 1

�a
,

κ ∼ 1

�b
.

Here, a and b represent different constants. Therefore, ū ∼
κa/b.

Finally, we investigate how the effective diffusivity for
the relaxed vortex array differs from the fixed cellular array.
Again, applying Fick’s law, we find that as the cells fluctuate,
the effective diffusivity also fluctuates but remains close to

FIG. 28. Plot of the scalar front propagation speed as a function
of �. The scattering of vortices leads to a decrease in front prop-
agation speed. As the cellular array scatters, the path of least time
increases in length.
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FIG. 29. Plot of effective diffusion (D∗) over the zero temper-
ature effective diffusion (DRB) as a function of �. The effective
diffusion is shown to hug the line of 1, hence it does not deviate sig-
nificantly from DRB. The effective diffusivity is defined as ∝ D

√
Pe.

Keeping all quantities fixed, the only parameter that affects D∗ is
β, which corresponds to the ratio of the cell’s length dx/dy. We see
through (b) the direct effects that the geometrical properties of the
cells has on the value of D∗.

the validated effective diffusivity [Eq. (4)]. We show this in
Fig. 29(a). Note that we calculate D∗ for the two orientations
at points x1 = (1/4)L′ and x2 = (3/4)L′ using the method de-
scribed in Appendix C. Although cell structures fluctuate, we
note that as long as the cell boundaries are not destroyed, the
transport across cell boundaries will not change. The reason
for deviation in the effective diffusivity is due to geometrical
properties of the cell structure and the cell turn-over velocity.

As mentioned in Sec. III A, all simulations ran in this
experiment use a fixed background diffusivity; therefore, only
cell dimensions and cell turn-over velocity (0 < ucell < ũ) will
determine the effective diffusivity. Based on the definition of
Eq. (4), the only significant values in Dcell are dx, dy, and ucell.
Thus, we can define a scaling for the effective diffusion as

D∗ ∝
√

ucell dxβ, (27)

FIG. 30. The effective diffusion at different orientations as a
function of � and the contour image of ψ at � = 10.35 rotated at
θ = −π/4. The orientation of the dashed red boxed cell significantly
influences the placement of D∗ either below or above the dotted line.

where β is defined as dx/dy. As depicted in Fig. 13, the cells
exhibit variations (both dx and dy change) with the incremental
rise in the value of �. In this paper, we will examine the
impact of dx and dy, as our emphasis is on the impact of cell
geometry on pattern formation.

FIG. 31. Illustration of region we use to calculate D∗.
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A plot of β as a function of � is shown in Fig. 29(b), which
demonstrates similar characteristics to the effective diffusion
plot. The β shown in the graph is an average of all cell sizes
for each �; nevertheless, the mean of the aspect ratio shows
the direct effects the dimensions of the cells have on transport.
If dx is greater than dy, then D∗ will be greater than the
effective diffusivity for the fixed cellular array, which we refer
to as DRB. If dx is less than dy, then the effective diffusivity
is less than DRB. We confirm this theory by analyzing the
cellular flow at different orientations. We use � = 10.35 to
illustrate this point (see Fig. 30). As shown in Fig. 30, β ∼ 1
is the average for the cells, but there are outliers (due to cell
mergers) that make the average go above or below β = 1. This
is a reason why D∗ deviates somewhat from DRB.

To assess the relationship between cell dimensions and D∗,
we compute the correlation coefficient between Fig. 29(a) and
its corresponding d2

x /dy value, which results in a value of 0.47.
The computed value suggests a moderately positive correla-
tion between cell dimensions and D∗. It is important to note
that another factor to consider is the circulation speed of the
cells in the region where D∗ is measured. Given the variability
in cell lengths, the cell turn-over velocity will also exhibit
fluctuations, influencing the effective diffusivity. Nonetheless,
our findings indicate that with knowledge of cell dimensions
dx and dy, one can qualitatively approximate the trend of the
effective diffusivity in a fluctuating vortex array.

IV. CONCLUSION

In this paper, we examine a minimal approach to layer-
ing to explore staircase resiliency and scalar concentration
transport in a very simple system. The constrained cellular
array, which produces layering as a consequence of two dis-
parate timescales, is probed by introducing global transverse
shear and turbulence-induced mixing in the cellular flow.
It is important to note that there is no dynamic feedback
necessary. Here, we summarize the principal results of this
paper:

(1) In an array of cells, the staircase structure forms in the
presence of global transverse shear and turbulence-induced
mixing. Each, of course, affects the staircase structure differ-
ently.

(2) Global transverse shear introduces a shear dispersion
timescale, which enhances the mixing of scalar concentration
along y. This shear suppresses transport along x, resulting in
an improvement in the confinement of scalar concentration.

(3) Staircases form in the fluctuating vortex array over
a broad range of modest Reynolds numbers (0 < � < 40).
N.B., regions of corrugations lessen, due to cell mergers. The
staircases in the fluctuating vortex array satisfy the two criteria
for resiliency, Pe � 1 and κ � 1.5.

(4) Scalar concentration travels along regions of strong
shear, creating a “web” structure. Here, staircase barriers form
first, and scalar concentration “homogenizes” in vortices at a
later time.

(5) The scattering of vortices leads to an overall decrease
in scalar concentration front velocity. The paths are those of
the least time.

(6) If background diffusion is kept fixed, then cell geomet-
ric properties can qualitatively approximate the trend of the

effective diffusivity. The effective diffusivity of the fluctuating
vortex array does not deviate significantly from D

√
Pe.

The results of these simulations and their implications for a
physical system, such as drift-wave turbulence near marginal
stability in magnetic confinement devices, are reviewed and
elucidated below.

The addition of a global transverse shear [Eq. (12)]
to the fixed cellular array introduces a shear dispersion
timescale, τadv. We find that for a critical shear strength
[αm = 12πD/(ũd2)], the global transverse shear dissolves
the staircase structure and increases d〈n〉y/dx. Therefore,
transverse shear reduces the mixing of scalar concentration
along the mean gradient (see Figs. 7 and 9). For shear strength
values such that τS < τH < τD, the mixing in y of scalar
concentration can no longer be enhanced significantly regard-
less of the value of α and m. We summarize the different
timescale orders and their corresponding range of αm values
in Table I.

The problem presented in Ref. [23] and in the global
shear flow section involves fixed ordered arrays. As men-
tioned in Sec. III, an actual physical system will manifest
variability. Therefore, we introduced variability in the cellular
array via forcing and drag in the NS equation [Eq. (17)] to
study a less constrained cellular array. Here, Reynolds (�)
and Ekman-friction (α) numbers control turbulent mixing and
large-scale flows. By injecting scalar concentration into the
relaxed cellular array, we find that the staircase is resilient to
cell fluctuations. Our results indicate that staircase structures
persist, though staircase steps become less regular due to cell
mergers.

We established a set of criteria for the statement of “re-
siliency.” Two appropriate criteria for a staircase structure to
be resilient are (1) Pe � 1 and (2) κ � 1.5. The first criterion
is a fundamental requirement so that barriers are formed and
maintained, and the second criterion establishes that a stair-
case should sustain a sufficient number of steps. For the range
of 0 < � < 40, criterion (1) is satisfied. The second criterion
is empirical and emerges from our studies. Over the relevant
scope of � values, criterion (2) is maintained.

By closely analyzing the global structure of the scalar field,
the scalar concentration first travels along regions of strong
shear. This implies that staircase barriers form before “ho-
mogenization” takes place inside the vortices. The analysis
is confirmed through the visualization of flame fronts in our
simulations. Here, flame fronts occur in the regime of weak
cell advection (Figs. 26 and 27).

In addition, by tracking the scalar concentration front in the
flow, we determine the path and time it takes for an element
of scalar concentration to travel along the mean gradient. We
discover that as cells fluctuate, the scalar concentration path
of least time increases.

Finally, we find that the effective diffusivity for the relaxed
cellular array does not deviate significantly from that of the
constrained cellular array [see Fig. 29(a)]. We find that as
long as the boundaries and speed of the cells are maintained,
the effective diffusivity and transport do not change. Since
effective diffusivity is proportional to β, the transport of scalar
concentration can change by modification of cell geometric
properties (e.g., changing cell size dx or dy). We illustrate the
effect of β on D∗ in Fig. 29(b).
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TABLE IV. Comparison of vortex array to drift-wave turbulence in fusion devices.

Vortex field Drift-wave turbulence (tokamak)

Inhomogeneity (free energy source) ∇n B0, ∇n, and ∇T
Reynolds number � = 0–40 Re = 101–102 (Landau Damping)
Flux Scalar Heat
Zonal Flow Boundary layer between cells E × B shear flow (poloidal)

These results have intriguing implications for experiments
and theory. Our simulations show that the staircase structure is
resilient in the regime of low-modest Reynolds numbers (i.e.,
steady fixed and spatiotemporal chaotic flow). For our model,
low-modest Reynolds numbers indicate that flow properties
are dominated by the forcing function (Fω) as opposed to vis-
cous forces. This regime is relevant to drift-wave turbulence,
where effective Reynolds numbers range from 10–100. Here,
the ratio of inverse correlation time to the Landau damping
rate (i.e., nonlinear rate to the linear rate) can be used as a
surrogate for the Reynolds number. We emphasize that in this
system the dissipation is due to collisionless processes, such
as Landau damping (which occurs due to wave-particle reso-
nance), and not collisional viscosity [38]. For a comparison of
the fluctuating vortex array model and drift-wave turbulence,
see Table IV.

In addition to staircase resiliency, our findings suggest that
if shear strain flows are stronger than vortical flows, the spatial
propagation of turbulent intensity will travel along regions of
saddles, thus initiating the formation of the staircase barriers.
By studying the propagation of the turbulent intensity, we
observe that fluctuating cellular flow hinders the speed of
avalanche propagation. It is important to note that transport of
turbulent intensity (i.e., turbulent spreading) and avalanching
are closely related [39].

To conclude, we find that the effective diffusivity derived
for the fixed cellular array is a suitable approximation for
marginally overlapping cells in magnetic confinement. This
result applies if one only considers changes in the geometric
properties of the E × B convection cells. Results such as D∗ ≈√

DDcell may be relevant to magnetic confinement scenarios
when conditions are similar to those of this study. The result
argues that effective diffusivity is not a simple addition, but a
geometric mean.

Results presented in this paper open the door to more com-
plicated numerical simulations and experimental work, which
can expand and change our understanding of inhomogeneous
mixing. The first and most simple avenue to explore is the
parameter space of τS � τν . In this scenario, fluid momentum
diffusion occurs at a rate faster than the growth of large-scale
flows. Thus, scalar concentration dynamics may differ from
those found in this paper. A logical next step to explore is
the effects of active scalar dynamics on the cellular array and
inhomogeneous mixing. For those interested, we provide an
introduction to the active scalar problem in Appendix D. Note
that the active scalar problem is also relevant to the problem
of liquid crystals, where waves in the director field behave like
Alfvén waves.

Finally, due to the simplicity and generality of the problem,
it is possible to test the theory presented here with actual
experimental data. In the large linear magnetized plasma

device (LAPD), a vortex array can be created through mod-
ifications of a cathode plasma source with designer masks
that form multiple current channels in a cellular pattern,
thus forming the staircase structure [40–42]. This experiment
will allow us to test hypotheses and models of staircase
resiliency presented in this paper. In addition, the results
of this experiment will yield a unique set of observations
that can be used to test staircase models and impact the
interpretation of experiments in other magnetically confined
plasmas.
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APPENDIX A: MAGNETIC CONFINEMENT MOTIVATION

A current subject of interest in magnetic confinement is
the E × B staircase [7,10,43]. Nonequilibrium, near marginal
plasmas can sometimes naturally evolve towards a globally
organized critical state of spatially segregated micro barriers,
interspersed between sectors of strong, avalanche-like trans-
port [44–47]. The regime of “near marginality” is a relevant
operating regime for present and future magnetic confine-
ment devices. Here “marginality” refers to the normalized
temperature gradient for which the turbulent heat flux exceeds
neoclassical heat flux [48].

Evidence of the E × B staircase has been observed in
current fusion devices [19,49–51] and simulations [9,52,53].
In simulations, the pressure profile plot shows the coexistence
of profile flat spots and strong shear layers, which act as mini-
barriers. The shear layers correspond to strongly localized
temperature gradients. Avalanches occur in flat spots between
shear layers and zonal flows (ZF) occur in the areas of mini-
barriers. Note that ZF formation is the result of nonlocal
interactions (in k-space) between unstable drift-wave modes.
ZF are understood to regulate turbulence by “eddy shearing.”

Two ideas from self-organization that can explain the E ×
B staircase are E × B shear feedback and jams. The shear
feedback process involves the zonal shears, turbulence, and
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their mutual interaction by modulation processes. It is useful
to view drift-wave turbulence and ZF as separate popula-
tions which interact via a “predator-prey” feedback loop: the
drift waves (the prey) grow due to the gradient (instability)
drive, while the ZF (the predator) “feed” upon the drift wave
population by Reynolds stresses. For the case of jams, it is
useful to draw inspiration from traffic flow theory, where time
delay is the key element [19,20,54]. In traffic flow, a driver’s
prompt (i.e., short) reaction maintains smooth traffic flow,
while longer driver reaction times trigger jams [55]. In the
case of flux-driven turbulence, heat flux jams occur when
there is sufficient time delay between temperature modula-
tions and local heat flux. This leads to the growth of patterns
that resemble shock trains, from which develop the staircase
“jumps.” Jumps here are simply the outcome of steepening the
temperature gradient.

APPENDIX B: DERIVATION OF REYNOLDS NUMBER
AND VORTEX EQUATION

The forced incompressible Navier-Stokes equation in 2D
is of the form,

du′

dt ′ + ∇′ p′

ρ
= ν∇′2u′ − α′u′ + Famp(sin ky′x̂ − sin kx′ŷ),

(B1)

where α′ is the Ekman-friction and ν the kinematic viscosity.
Here the density ρ is set to 1. This system has the solution,

u′ = Famp

k2ν
(sin ky′x̂ − sin kx′ŷ). (B2)

To derive the Reynolds number for the forced NS equation,
we use the maximum speed of Eq. (B2),

U0 = Famp

k2ν
. (B3)

For computational purposes, we chose the following normal-
ization for position and time

x = k

n
x′, (B4)

t = Famp

nkν
t ′, (B5)

where n is the spatial frequency of the forcing. We can then
normalize and take the curl of Eq. (B1) to derive the vorticity
equation,

d

dt
ω = 1

�
∇2ω − αω + Fω. (B6)

Here � represents the Reynolds number and α the nondi-
mensional Ekman friction. These two control parameters are
defined by the following quantities:

� = nFamp

k3ν2
, (B7)

α = nνkα′

Famp
. (B8)

The forcing function Fω is defined as

Fω = −n3

�
(cos nx + cos ny). (B9)

A detailed analysis on Eq. (B1) can be found in Ref. [56].

APPENDIX C: EFFECTIVE DIFFUSIVITY (D∗)
CALCULATION

We compute the value of D∗ using

〈�〉 = −D∗∇〈n〉y. (C1)

The left-hand side represents the flux of scalar concentration
through the region between x2 = (3/4)L and x1 = (1/4)L at
different points in time, as illustrated in Fig. 31. Thus, we have
the following equation:

〈�〉 = �x

�t
(ntot,t f (x = [x1, x2]) − ntot,ti (x = [x1, x2])), (C2)

where �x represents the difference between x2 and x1. Note
that �t represents 8.3 diffusive cycles. Here, we define the
diffusive timescale (τD) with length scale d = π/3. For the
right-hand side of Eq. (C1), we use Eq. (10) to evaluate the
value of 〈n〉y at the two points x2 and x1 at time t f ,

∇〈n〉y = 〈nt f (x2)〉y − 〈nt f (x1)〉y

�x
. (C3)

By performing these calculations, we can compute a numer-
ical value for D∗. Note that for the oblique staircase profiles,
we replace the length L with L′.

APPENDIX D: ACTIVE SCALAR PROBLEM

For the active scalar problem, we convert the passive scalar
(n) to an active scalar (A),(

∂

∂t
+ u · ∇

)
A = η∇2A, (D1)

which will result in a system isomorphic to 2D MHD. Such
systems are used to study flux expulsion [57,58] and vortex
bursting [59]. Here, the active scalar is coupled to the vortic-
ity equation, thus creating feedback. The governing vorticity
equation will be of the form(

∂

∂t
+ u · ∇

)
ω = 1

�
∇2ω + B · ∇∇2A + Fω − αω, (D2)

B = ẑ × ∇A. (D3)

We box the term, which couples the vorticity equation and
Eq. (D1). For the active scalar, we consider an initial profile
A = B0x, which results in a vertical magnetic field B = B0 ŷ.
Here, the value of B0 plays a crucial role in how the active
scalar impacts the dynamics of the flow. Depending on the
magnitude of B0, the flow can be in a kinematic or dynamic
regime. The regime is determined by

M =
(

vA

U0

)2

Rm. (D4)

The terms vA and U0 represent the Alfvén speed and the
characteristic flow speed, respectively. Here Rm represents the
magnetic Reynolds number. Note that vA is proportional to
B0, thus the strength of B0 will determine the dynamics of the
flow. First, we will discuss M < 1, the flux expulsion regime.
For sufficiently small values of B0 (i.e., v2

A < U 2
0 /Rm), the

vortex will expel magnetic field lines to the vortex boundary.
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Due to magnetic field expulsion, the boundary layer of a cell
will be reinforced, thus maintaining the cellular structure. In
our cellular array model, we expect that the magnetic field
will support the cell array structure when fluctuations are
present (i.e., B0 will elasticize the cell array). Since magnetic
field lines are expelled to the boundaries, the active scalar
essentially becomes homogenized (∇A = 0) inside the vor-
tices, thus resulting in a staircase structure. Of course, unless
the magnetic field is forced, the structure is only temporary
since the magnetic field eventually decays in 2D.

The other case is the vortex bursting regime (M > 1).
If B0 is too large (i.e., v2

A > U 2
0 /Rm), then vortices will be

severely disrupted. In this scenario, Alfvénization takes place.

Alfvénization is the conversion of hydrodynamic turbulence
to Alfvén wave turbulence. Thus, we expect that the forma-
tion of a staircase structure will not be possible. Until now,
the problem of flux expulsion and vortex bursting has been
addressed only in the context of a single eddy. To expand on
this problem, we can use the setup of the vortex array, but
now the vortices will be threaded by a magnetic field. In our
upcoming study, we will address (through scans of B0) what
occurs to staircase dynamics. As magnetic fields get threaded
around vortices, will this result in a more robust staircase? For
what values of B0 will the staircase structure no longer form?
These are questions we plan to answer in the next phase of
research.
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