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Virial coefficients of the uniform electron gas from path-integral Monte Carlo simulations
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The properties of plasmas in the low-density limit are described by virial expansions. Analytical expressions
are known from Green’s function approaches only for the first three virial coefficients. Accurate path-integral
Monte Carlo (PIMC) simulations have recently been performed for the uniform electron gas, allowing the virial
expansions to be analyzed and interpolation formulas to be derived. The exact expression for the second virial
coefficient is used to test the accuracy of the PIMC simulations and the range of validity of the interpolation
formula of Groth et al. [Phys. Rev. Lett. 119, 135001 (2017)], and we discuss the fourth virial coefficient,
which is not exactly known yet. Combining PIMC simulations with benchmarks from exact virial expansion
results would allow us to obtain more accurate representations of the equation of state for parameter ranges of
conditions which are of interest, e.g., for helioseismology.

DOI: 10.1103/PhysRevE.109.025202

I. INTRODUCTION

The thermodynamic properties of Coulomb systems in a
wide region of density and temperature are of high interest
with respect to various applications. A particularly important
regime is given by so-called warm dense matter (WDM) [1],
which naturally occurs in a gamut of astrophysical objects
such as giant planet interiors [2] and brown dwarfs [3].
Moreover, WDM plays an important role in technological
applications such as the discovery and synthesis of materi-
als [4–6], hot-electron chemistry [7], and inertial confinement
fusion [8]. As a result, WDM is actively realized in ex-
periments at various research facilities such as the National
Ignition Facility [9], the Linac Coherent Light Source [10],
and the Omega laser facility [11] in the U.S. or the European
XFEL in Germany [12]. A topical overview of different rele-
vant experimental techniques has been presented by Falk [13].
At the same time, we stress that a rigorous theoretical de-
scription of such extreme states of matter is indispensable to
interpret experimental measurements [14,15] and to guide the
development of new setups [16,17].

In recent years, new possibilities to obtain results for
the thermodynamic properties beyond perturbation theory
have arisen, applying numerical simulations to solve the ba-
sic expressions [1,16,18,19]. Density-functional theory has
been successfully applied to evaluate properties of warm
dense matter [20–23], but a main deficit of it is that
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electron-electron interaction is treated in a certain approx-
imation [24,25]. Therefore, computationally more involved
path-integral Monte Carlo (PIMC) simulations [19,26–28] are
of growing interest since they allow the correct treatment of
electron-electron interaction.

As a simple example, we consider the homogeneous elec-
tron gas (uniform electron gas, UEG [19,29,30]), where the
electrons move over a positively charged background which
is added to ensure charge neutrality. The electronic part of the
Hamiltonian is given by

Ĥ =
N∑
i

p̂2
i

2m
+ 1

2

∑
i �= j

e2

4πε0|r̂i − r̂ j | , (1)

where m and e are the electron mass and charge, ε0 is the per-
mittivity of the vacuum, and p̂i and r̂i denote the momentum
and position operators of the ith electron.

In thermodynamic equilibrium, the state of the plasma is
determined by the temperature T in addition to the number
density n = N/� (with � being the volume) or the corre-
sponding chemical potential μ. Note that we consider the
unpolarized UEG throughout, where n↑ = n↓ = n/2 so that
both spin directions have the same density. The relationships
between the various state variables such as internal energy
U , free energy F , entropy S, pressure P, etc., are called
equations of state (EoS). All thermodynamic properties can
be derived from a thermodynamic potential; F (�, N, T ) as
function of �, N, T constitutes an example. We note that EoS
databases constitute key input for a host of practical applica-
tions such as the modeling of laser fusion [8] or the description
of astrophysical objects [1,3,31].

Correlations appear for the plasma owing to the Coulomb
interaction term (1) proportional to e2. No closed-form solu-
tions are known, and we must perform approximations (or use
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numerical techniques [16]) to solve this many-body problem.
We discuss two possibilities as follows.

(i) Perturbation expansion with respect to e2. We obtain
analytic expressions for arbitrary orders of e2 in terms of
noninteracting equilibrium correlation functions, which can
be easily evaluated using Wick’s theorem. However, we have
no proof of the convergence of this series expansion and no
error estimate. In order to make this analytical approach more
efficient, the methods of thermodynamic Green’s functions
and Feynman diagram technique were elaborated [32,33].
The perturbation approach is improved by performing par-
tial summations corresponding to special concepts such as
the introduction of the quasiparticle picture (self-energy �),
screening of the potential (polarization function �), or for-
mation of bound states (Bethe-Salpeter equation). This leads
to useful results for the properties of the plasma in a wide
range of T and n. However, as characteristic for perturbative
approaches, exact results can be found only in some limiting
cases.

(ii) In principle, an accurate evaluation of thermody-
namic potentials is possible using PIMC simulations; see
Refs. [18,19,34] and references therein. The shortcomings of
this approach include the relatively small number of particles
(a few dozen up to 100 at the present time [35,36]) and the
sign problem for fermions [37,38]. Over recent years, this
emerging approach has been put forward together with im-
proving computer facilities. At present, accurate calculations
have been performed mainly for the UEG over a broad range
of parameters [28,39].

The UEG is the simplest example. In a next step, cal-
culations for the two-component hydrogen plasma would
be of interest for both thermodynamics and transport prop-
erties [27,40–42]. There are some low-density results; see
Militzer [27] or Filinov and Bonitz [41] and further refer-
ences given in these works. However, high-precision PIMC
simulations for hydrogen plasmas in the low-density region,
which allow the extraction of higher-order virial coefficients,
are presently not available. As an example of a plasma in
which the virial expansion is of interest, we refer to plasmas
under the conditions that exist in the center of the sun, i.e.,
with a temperature of T = 49 Ha (corresponding to 1.3 ×
103 eV or 1.5 × 107 K) and an electron density n = 8.9 a−3

B
(corresponding to 6 × 1025 cm−3). The fourth-order virial
coefficient is important for interpreting the high-precision he-
lioseismology data [43–46]. Laboratory plasmas in the range
of warm, dense matter (temperatures up to 102 eV and den-
sities below 1022 electrons/cm3) are very hard to simulate
particle based with high accuracy, so that virial expansions
are useful.

In this work, we investigate in detail exact virial ex-
pansions, which are of considerable value as a rigorous
benchmark for numerical methods in certain limits and as
a useful constraint for (semi-)analytical EoS interpolations.
To this end, we present new PIMC simulations for the UEG
under extreme conditions, i.e., at very low densities and
very high temperatures. We investigate the virial expansion
and discuss higher-order virial coefficients not considered
in previous publications [28]. In particular, we discuss the
high-temperature limit of the fourth virial coefficient. A com-
parison is made with the interpolation formula in Ref. [47]
and the limits of its applicability are shown.

The paper is organized as follows: A brief introduction to
the virial expansion of the mean potential energy is given
in Sec. II. Effective virial coefficients and virial plots are
introduced. PIMC simulations at high temperatures and small
densities are presented in Sec. III. An interpolation for-
mula [47] is shown in Sec. IV, and the second virial coefficient
is considered as a benchmark. The fourth virial coefficient is
analyzed in Sec. V, where a high-temperature approximation
is given and compared with PIMC simulations. The exact tem-
perature dependence of the fourth virial coefficient is not yet
known but remains a challenge for future PIMC simulations,
as we conclude in Sec. VI.

II. VIRIAL COEFFICIENTS FROM ANALYTICAL
APPROACHES

A. Virial expansions for the UEG

Using the method of thermodynamic Green’s functions
from quantum statistics, the virial expansion of the free energy
of the UEG is written as

F (T,�, N ) = �kBT

{
n ln n +

[
3

2
ln

(
2π h̄2

mkBT

)
− 1

]
n

− F0(T )n3/2 − F1(T )n2 ln n − F2(T )n2

− F3(T )n5/2 ln n − F4(T )n5/2 + O(n3 ln n)

}
;

(2)

see Refs. [28,33] where expressions for the lowest virial coef-
ficients Fi are also given.

The mean potential energy V is given by

V (T,�, N ) = e2 ∂

∂ (e2)
F (T,�, N ) (3)

(for the relation to the internal energy see Ref. [48]).
From the virial expansion of F (T,�, N ), see Ref. [33], we

get the following virial expansion of V :

V

NkBT
= − κ3

8πn
− πnλ3τ 3 ln(κλ) − πnλ3

{
τ

2
−

√
π

2
[1 + ln(2)]τ 2 +

[
C

2
+ ln(3) − 1

3
+ π2

24

]
τ 3

+ √
π

∞∑
m=4

(−1)mm

2m�(m/2 + 1)

[
2ζ (m − 2) −

(
1 − 4

2m

)
ζ (m − 1)

]
τm

}
− πnλ4τ 4κ ln(κλ) + V4(T )

NkBT
n3/2 + O(n2 ln(n))

(4)
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with the variables

κ2 = ne2

ε0kBT
, λ2 = h̄2

mkBT
, τ = e2√m

4πε0
√

kBT h̄
. (5)

Here ζ (x) denotes the Riemann zeta function and C = 0.57721 . . . is Euler’s constant. We express this expansion in terms of
T, n and introduce atomic units h̄ = m = e2/4πε0 = 1 (see Appendix A), so that kBT is measured in Hartree (Ha) and n in
electrons per a3

B, nB = na3
B.

The virial expansion of the specific mean potential energy v = V/N is as follows (κ2λ2 = 4πnB/T 2
Ha):

v(T, n) = v0(T )n1/2
B + v1(T )nB ln(κ2λ2) + v2(T )nB + v3(T )n3/2

B ln(κ2λ2) + v4(T )n3/2
B + O[n2 ln(n)]. (6)

with

v0(T ) = −
√

π

T 1/2
Ha

, v1(T ) = − π

2T 2
Ha

,

v2(T ) = − π

THa

{
1

2
−

√
π

2
[1 + ln(2)]

1

T 1/2
Ha

+
[

C

2
+ ln(3) − 1

3
+ π2

24

]
1

THa

−√
π

∞∑
m=4

m

2m�(m/2 + 1)

(
−1

T 1/2
Ha

)m−1[
2ζ (m − 2) −

(
1 − 4

2m

)
ζ (m − 1)

]⎫⎬
⎭,

v3(T ) = −3π3/2

2T 7/2
Ha

. (7)

No closed expression for v4(T ) is known.

B. The effective second virial coefficient

A method for extracting the virial coefficients from data
was presented in Refs. [28,49]. We demonstrate this approach
for the second virial coefficient v2(T ) for which the exact
expression (7) is known. Since in the low-density limit the
lowest virial coefficients dominate the function v(T, n) (6),
we subtract the “trivial” contributions of v0(T ) (Debye term)
and v1(T ). The remaining part is then dominated by v2(T ) in
the low-density limit.

To extract the value of v2(T ) from numerical (or measured)
results for v(T, n), we consider isotherms and calculate an

effective, density-dependent second virial coefficient,

veff
2 (T, n) = [

v(T, n) − v0(T )n1/2
B

− v1(T )nB ln
(
4πnB/T 2

Ha

)]
/nB. (8)

We have the result v2(T ) = limn→0 veff
2 (T, n). The density

dependence of veff
2 (T, n) in the low-density limit is given

according to Eq. (6) as

veff
2 (T, n) = v2(T ) + v3(T )n1/2

B ln
(
4πnB/T 2

Ha

) + O[n1/2].

(9)

So in the virial plot where veff
2 (T, n) is plotted as a func-

tion of n1/2
B ln(T 2

Ha/4πnB), the isotherms should meet the
coordinate at v2(T ) and the slope is −v3(T ). [Note that
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FIG. 1. Extrapolating PIMC results for the interaction energy of the UEG to the thermodynamic limit (TDL) at rs = 2 and  = 217.204
(THa = 100). Left: Raw PIMC results for the interaction energy per particle V/N (green crosses) and finite-size corrected values (red circles)
as a function of system size. Right: Magnified segment around the finite-size corrected results; the solid black lines show empirical linear and
constant fits, and the blue cross depicts the extrapolated result in the limit of N → ∞.
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TABLE I. PIMC data from Refs. [28,49], corresponding parameter values, and effective second virial coefficients (atomic units, see
Appendix A).

No. rs  THa nB vPIMC[Ha] n1/2
B ln

(
T 2

Ha

/
4πnB

)
veff,PIMC

2 [Ha]

1 20 128 0.589307 0.0000298416 −0.0119299 0.0373158 −7.9796
2 20 64 0.294653 0.0000298416 −0.0160051 0.0297429 −37.1054

n1/2
B ln(T 2

Ha/4πnB) = −n1/2
B ln(4πnB/T 2

Ha ) is positive in the
low-density range.] The linear pattern is violated when higher
virial coefficients become relevant. Note that both v2(T ) and
v3(T ) are known for the UEG according to Eq. (7). Corre-
sponding plots for three isotherms are shown below in Sec. IV.

We will apply this method of the virial plot to PIMC
simulations vPIMC(T, n) to obtain the values veff,PIMC

2 (T, n)
according to Eq. (8). It is clear that this method of extracting
virial coefficients requires a high precision of the calculated
data, since we are analyzing the difference of large numbers.
This is because the lower virial coefficients, such as the Debye
term, dominate the low-density limit of the potential energy
density v(T, n).

III. PIMC SIMULATIONS FOR THE UEG

A. PIMC simulations at high temperatures and small densities

To compare with the virial expansion, we have to con-
sider high temperatures THa � 1 (corresponding 27.3 eV)
and n1/2

B ln(T 2
Ha/4πnB) � 0.1 THa (respectively n � 2.25 ×

1021 cm−3 for THa = 1) so that the contributions of higher-
order virial coefficients are sufficiently small. This requires
us to go beyond the conditions that had been explored in
Ref. [28]. Clearly, the fermion sign problem [37] does not
pose an obstacle as quantum degeneracy effects become neg-
ligible in the limit of high temperature. Instead, the biggest
challenge is given by finite-size effects in the simulation data,
which are substantial in this regime. This is illustrated in the
left panel of Fig. 1, where we show raw PIMC simulation
results for the interaction energy per particle V/N at rs = 2

and  = 217.204 (for rs,, see Appendix A). Indeed, the
dependence on the system size is of the order of 100%. To
overcome this bottleneck, we employ the finite-size correction
scheme developed in Ref. [35], which constitutes a finite-
temperature version of the approach originally introduced
by Chiesa et al. [50]. We refer the interested reader to the
overview in Ref. [19] for a more detailed discussion. The thus
corrected interaction energies are shown as the red circles in
Fig. 1 and exhibit a drastically reduced dependence on the
system size; the residual error is of the order of ∼0.1%. In
the right panel, we show a magnified segment around these
corrected values, and the solid black lines show empirical
fits based on simple linear and constant functional forms. In
practice, we give the final result based on the linear extrapo-
lation, and the associated uncertainty is computed from the
difference between the two solid lines, see the blue cross
in Fig. 1. All PIMC results shown in this work have been
obtained based on this procedure.

B. Calculations with PIMC simulation results

We show PIMC simulation results for the UEG as pub-
lished in Ref. [28] in Table I. For our analysis, we need high
accuracy data because we consider small differences of large
numbers. We focus only on results for rs = 20,  = 128, and
 = 64. There, the virial coefficients are relatively large, and
higher orders of the virial expansion are not too dominant.

The virial plots for the corresponding two isotherms are
presented in Fig. 2, where veff,PIMC

2 (T, n) is shown as func-
tion of n1/2

B ln(T 2
Ha/4πnB). Isotherms are presented because

the virial coefficients describe the expansion with respect to

(a) (b)

FIG. 2. Isotherms for THa = 0.589 (16.03 eV) and 0.295 (8.03 eV). In both subfigures the effective second virial coefficients veff
2 (T, n),

Eq. (8), are plotted as function of n1/2
B ln(T 2

Ha/4πnB). The blue full line shows the isotherms according to the interpolation formula (13) for
the respective two temperatures, taking vGDSMFB

XC (T, n) instead of v(T, n). The exact contribution of v2(T ) and v3(T ) is given by the dashed
line [virial 2+3: Eq. (9)]. The red squares corresponds to veff,PIMC

2 (T, n). See Tables I and II. (Atomic units used. Left panel: Abscissa 0.1
corresponds n = 5.4 × 1021 cm−3, right panel: Abscissa 0.06 corresponds n = 4.1 × 1021 cm−3.)
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TABLE II. New PIMC data, corresponding parameter values, and effective second virial coefficients (atomic units, see Appendix A).

No. rs  THa nB vPIMC[Ha] n1/2
B ln(T 2

Ha/4πnB ) veff,PIMC
2 [Ha]

1 40 512 0.589307 3.7301 × 10−6 −0.00434040 ± 0.0000086 0.01721 −8.4189922
2 40 256 0.294653 3.7301 × 10−6 −0.00597188 ± 0.00001116 0.01453 −46.4374891
3 2 217.2 100 2.9842 × 10−2 −0.03085446 ± 0.00006612 1.76049 −0.0095033
4 12.5 50 0.589307 0.0001222 −0.02338182 ± 0.00000916 0.0599 −6.9717057
5 12.5 25 0.294653 0.0001222 −0.03060253 ± 0.00000913 0.0446 −28.0189907
6 1 54.3 100 0.238739 −0.08899252 ± 0.00027539 3.9634 −0.0112818

density n at fixed T . For comparison, the benchmarks v2(T ) +
v3(T )n1/2

B ln(4πnB/T 2
Ha ), Eq. (9), are also shown. There is a

nice agreement. Deviations may be explained by the contribu-
tion of higher virial coefficients for the analytical results. In
addition, the PIMC data have also uncertainties expressed by
error bars.

To demonstrate the limiting behavior given in the virial
plot by the linear relation (9), neglecting higher-order terms
O[n1/2], more PIMC simulation data would be of interest.
In this work, we performed high precision PIMC simulations
for additional six parameter values. The results are shown in
Table II.

In Table II, Nos. 1 and 2 belong to the isotherms of Table I,
Nos. 1 and 2, but at lower density, Nos. 4 and 5 to higher den-
sities. As seen in Fig. 2, the PIMC simulations are consistent
with the virial expansion. However, the error bars are quite
large so that the extrapolation limn→0 veff

2 (T, n) to extract the
second virial coefficient from PIMC simulations has a large
error, too.

In Table II, No. 3 belongs to the isotherm THa = 100
to study the high-temperature limit. As shown in Fig. 3,
the PIMC simulation data are also consistent with the virial
benchmark. However, the error bars are large as well.

FIG. 3. Effective second virial coefficient veff,GDSMFB
2 (T, n),

Eq. (8), plotted as function of n1/2
B ln(T 2

Ha/4πnB ), shown in blue full
line. The exact value v2(100) = −0.0114705 is also shown [virial
2+3: Eq. (9)]. The slope according to v3(T ), Eq. (7), becomes
very small at high temperatures. In addition, PIMC simulations
according Table II, No. 3, are presented. A linear extrapolation
−0.0128 + 0.000289

√
nB log(T 2

Ha/4πnB ) is also shown (dash-dotted
line). (Atomic units used. THa = 100 corresponds 2730 eV, the ab-
scissa 7 corresponds n = 7.7 × 1024 cm−3.)

IV. INTERPOLATION FORMULAS FOR
THERMODYNAMIC PROPERTIES OF THE UEG

The PIMC simulations are computationally very expen-
sive. Instead of performing time-consuming calculations
for each parameter value, interpolation formulas have been
worked out which allow to reproduce the results for each
parameter value within a given accuracy. Because the limiting
behavior of the free energy is known at low and at high den-
sity, Padé expressions can be used to good effect [47,51,52].
We can also test these interpolation formulas with respect to
their accuracy and the parameter range where they can be
used. In particular, we study whether they can be used instead
of PIMC simulations to extract a value for the virial coefficient
such as v2(T ) or v4(T ).

The GDSMFB interpolation formula for the XC free en-
ergy density of the spin-unpolarized UEG is [47]

f GDSMFB
XC (rS,) = − 1

rs

a() + b()
√

rs + c()rs

1 + d ()
√

rs + e()rs
. (10)

The coefficients a, b, c, d , and e are again Padé formulas with
respect to temperature given in the Supplemental Material to
Ref. [47] (see also Appendix B).

The exact relationship between the exchange-correlation
free energy and the potential energy is given as [53]

fXC(rs,) = 1

r2
s

∫ rs

0
dr′

s r′
sv(r′

s,), (11)

so that

v(rs,) = 2 fXC(rs,) + rs
∂ fXC(rs,)

∂rs

∣∣∣∣


. (12)

We find

vGDSMFB
XC (rS,)

= − 1

rs

a + b
√

rs + c rs

1 + d
√

rs + e rs

+ 1

rs

[(ad − b)/2]
√

rs + (ae − c)rs + [(be − cd )/2] r3/2
s

(1 + d
√

rs + e rs)2
.

(13)

This expression will be used to calculate veff,GDSMFB
2 (T, n)

according to Eq. (8). The corresponding results are shown in
Figs. 2 and 3 as blue lines.

Is it possible to extract the virial coefficients from the
Padé formula (13)? It is obvious that the interpolation formula
shows strong deviations in the low-density limit. The reason is
that the Padé formula (13) is not constructed to reproduce the
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v2(T ) so that the analytical behavior of the Padé formula in the
low-density limit is not consistent with the virial expansion.
This discrepancy shows a limit of applicability of the inter-
polation formula. However, because in the low-density region
the lowest-order virial terms (e.g., the Debye shift) dominate,
the error of the interpolation formula becomes small if these
lowest orders are correctly included.

In Fig. 3 we show the values for the effective second virial
coefficient veff,GDSMFB

2 (T, n), Eq. (8), for the isotherm THa =
100, see also Appendix C. It is clearly shown that in the low-
density limit [below n1/2

B ln(T 2
Ha/4πnB) = 1] the benchmark

of the second virial coefficient is not reached. It is also shown
that there the value of the interpolation formula lies outside
the error bars of the PIMC simulation.

We see that the limiting value limn→0 veff,GDSMFB
2 (THa =

100, n) will not match the exact value v2(100) =
−0.0114705. Because the Padé interpolation formula did
not reproduce the second virial coefficient, strong deviations
become dominant in the limit of low densities. A linear
extrapolation of the values for n1/2

B ln(T 2
Ha/4πnB) > 2 gives a

limiting value −0.0128 which deviates from the exact value
by about 10%.

In conclusion, from Figs. 2 and 3 we see that PIMC sim-
ulations become difficult in the low-density region and the
error bars become large. The low-order virial coefficients may
be considered as a benchmark for the simulation. The inter-
polation formula (13) describes the virial plot for veff

2 (T, n)
in a certain approximation only in an intermediate parameter
range. At high densities, higher orders of the virial expansion
become important. At very low densities, the analytical be-
havior of the interpolation formula is not able to reproduce
the exact virial coefficients. However, they may be estimated
in certain approximation if a linear behavior can be seen in the
virial plot; see Fig. 3.

V. THE FOURTH VIRIAL COEFFICIENT

A. High-temperature limit and PIMC simulation data

Analytical expressions for v4(T ) are not yet known. Ap-
proximations considering special classes of diagrams have
been obtained within Green’s function approaches. For in-
stance, considering the diagrams of lowest order with respect
to interaction, in Refs. [33,54], the following contribution to
the fourth virial coefficient has been given [in atomic units,
see Eqs. (6) and (7)],

v4(T ) ≈ 3

2

π2

T 2
Ha

− 10

3

π3/2

T 5/2
Ha

. (14)

This result leads to a high-temperature behavior
limT →∞ v4(T ) ∝ T −2 if no other diagrams contribute to
this limit.

We follow the method explained for the second virial co-
efficient. At fixed T , in the low-density limit, the lowest virial
coefficient will dominate because of the analytical behavior
near n = 0. Thus, subtracting the (k − 1) lowest virial coef-
ficients from the thermodynamic quantity, the remaining part
allows to determine the next virial coefficient vk (T ) [49]. We

use a virial plot for veff
3 (T, n) defined as

veff
3 (T, n) = [

v(T, n) − v0(T )n1/2
B − v1(T )nB ln

(
4πnB/T 2

Ha

)
− v2(T )nB

]
/
[
n3/2

B ln
(
4πnB/T 2

Ha

)]
. (15)

In the low-density limit, the density dependence of veff
3 (T, n)

is given according to Eq. (6) as

veff
3 (T, n) = v3(T ) + v4(T )

1

ln
(
4πnB/T 2

Ha

) + O[n1/2]. (16)

Thus, in the virial plot where veff
3 (T, n) is shown as a function

of 1/ ln(T 2
Ha/4πnB), isotherms should meet the coordinate at

v3(T ), and the slope is −v4(T ).
We discuss here the high-temperature region because we

expect that the odd virial coefficients become small in this
limit T → ∞, as seen for the lowest virial coefficients (7), see
also Appendix C. We expect a wider range of the linear rela-
tion (16) if the higher virial coefficients, in particular v5(T ),
are small. As example, we consider THa = 100, see Fig. 4(a).
The dash-dotted curve denotes the virial expansion with the
exact value for v3(100), Eq. (7), and the approximation (14)
for v4(100). In addition, a PIMC simulation is also shown
(Nos. 3 and 6 from Table II). Within the error bars, the result
agrees with the virial expansion. However, for this approach to
extract virial coefficients from PIMC simulations, more data
in the low-density region with higher accuracy are required
which are not yet available.

B. Fourth virial coefficient from interpolation formulas

Because the full T dependence of v4(T ) is not yet known
from the Green’s function approach, it would be of interest
to obtain results from simulations. As shown for v2(T ) in
the previous section, see also Ref. [28], high-accurate PIMC
simulations may be used to extract this quantity. However,
they are not yet available.

To make some estimations with respect to v4(T ), we
may use the interpolation formula (13) instead of the exact
approach using PIMC simulations. Because this GDSMFB
interpolation formula is only an approximation, significant
deviations may occur.

Using vGDSMFB(T, n) (13) as input for v(T, n), we calcu-
late veff,GDSMFB

3 (T, n) according Eq. (15); see Appendix C.
These values are plotted in Fig. 4(a) as a function of
1/ ln(T 2

Ha/4πnB). As discussed above, in the high-temperature
region considered here, the odd virial coefficients give only
small contributions.

From this curve, the linear extrapolation is possible for the
values at larger densities. The value of v4(100) is estimated to
be close to 0.0005. The values at smaller densities cannot be
used for the extrapolation because the interpolation formula is
an approximation, and deviations yield large effects for small
densities as already seen for veff,GDSMFB

2 (T, n) in Figs. 2 and 3.
In Fig. 4(a), we also show the approximation (14) with the

value v4(THa = 100) = 0.001 295. Compared with the PIMC
values of Table II also shown in Fig. 4(a), we find that both
results are consistent. The GDSMFB interpolation formula
is not consistent with PIMC simulations in this parameter
region.
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(a) (b)

FIG. 4. Isotherms for THa = 100. (a) The effective third virial coefficient veff,GDSMFB
3 (T, n), Eq. (15), plotted as a function of

1/ ln(T 2
Ha/4πnB ). The slope of veff

3 (T, n) determines v4(100). The linear relation Eq. (16) with v3(100) = −8.352 × 10−7 is denoted as
virial 3 + 4. The dash-dotted curve corresponds to v4(100) = 0.00129, Eq. (14). (b) The effective second virial coefficient veff,GDSMFB

2 (T, n),
Eq. (8), plotted as function of n1/2

B . From analytical approaches [Eqs. (7) and (14)] follows veff
2 (100) ≈ −0.01147 + 0.00129n1/2

B (shown as a
dash-dotted line). The dashed line represents a linear fit. (Atomic units used.)

C. Generalized virial plots

The virial plots use an abscissa which gives a linear relation
for the next higher virial coefficient so that this next virial
coefficient is extracted from the slope of the isotherms at zero
density. It may happen that the virial expansion contains terms
which are very small so that these terms are not relevant.
For instance, at high temperatures, v3(T ) becomes very small
because it behaves ∝ T −7/2 according Eq. (7), see also Ap-
pendix C. As shown in Fig. 3, the slope of virial 2 + 3 is near
to zero, but the interpolation formula indicates a significant
increase with density. This is the contribution of higher-order
virial coefficients. We assume that in the high-temperature
limit, the virial term v3(T ) can be neglected so that the dom-
inant contribution to the virial expansion in the low-density
range follows from v4(T ).

To extract this leading virial coefficient v4(T ) from
veff

2 (T, n), Eq. (9),

veff
2 (T, n) = v2(T ) + v3(T )n1/2

B ln
(
4πnB/T 2

Ha

) + v4(T )n1/2
B

+ O[n1/2 ln(4πn/T 2)], (17)

we introduce a generalized virial plot where the abscissa is
n1/2. If we observe a linear behavior, then the slope determines
v4(T ). The third virial coefficient gives a contribution only for
very low densities, leading to an offset of the linear extrapola-
tion limn→0 veff

2 (T, n), but may be neglected if v3(T ) is small.
In Fig. 4(b), we show this generalized virial plot

for veff
2 (T, n). The dashed line corresponds to v2(T ) +

v3(T )n1/2
B ln(4πnB/T 2

Ha ) + v4(T )n1/2
B with the approxima-

tion (14) for v4(T ). Because v3(100) is very small, the offset
at very low densities is not seen. For comparison, the interpo-
lation formula is also shown, and a linear behavior is seen. The
extrapolation limn→0 veff

2 (T, n) misses the exact value v2(100)
as also discussed above. There it was argued that the interpola-
tion formula does not contain this benchmark by construction.
However, if we assume that the interpolation formula gives
a reasonable approximation in a wide range of parameter
values, then the linear behavior in the generalized virial
plot is clearly seen. The extracted slope vGDSMFB

4 (100) =

0.00135 is in good agreement with the value 0.00129 from the
approximation (14).

In addition to the isotherm THa = 100, we studied also
other isotherms ranging from THa = 50 to THa = 400. The
extracted slope vGDSMFB

4 (T ) show the 1/T 2 behavior in
accordance with Eq. (14).

D. The n5/2 term

The investigation of the uniform electron gas is of interest
not only for the discussion of the exchange-correlation term of
the energy-density functional in DFT calculations, for which
analytical formulas have been derived by Groth, Dornheim,
and Bonitz [19,51]. It is also a prerequisite for the treatment
of the more interesting case of a two-component plasma, e.g.,
the hydrogen plasma. For instance, the equation of state at
low densities is of interest in helioseismology [43] where the
fourth virial coefficient v4(T ) is relevant [44]. In this context,
the high-temperature limit of v2(T → ∞) and the relation to
v4(T ) has been discussed in Refs. [28,55]. For a discussion of
the fourth virial coefficient v4(T ) of the hydrogen plasma see
also Alastuey and Ballenegger [45,46]. The correct determi-
nation of the fourth virial coefficient v4(T ) of the UEG is an
important prerequisite for finding expressions for the fourth
virial coefficient F4(T ) in the free energy (2) associated with
the density power n5/2. However, we leave the discussion of
this question to future work.

VI. CONCLUSIONS

Quantum statistics gives us exact expressions for ther-
modynamic and transport properties of plasmas in terms of
equilibrium correlation functions, but their evaluation is a
complex problem in many-particle physics. Numerical sim-
ulations are becoming more accurate as computer capacity
increases. However, they need to be checked for their limita-
tions, such as size effects, but also for fundamental problems
such as the correct description of electron-electron collisions
in the framework of DFT or strategies to deal with the sign
problem in PIMC simulations. PIMC simulations are ex-
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TABLE III. Table for the parameters for the Padé coefficients,
e.g., the value in the first row and third column corresponds to b1,
and so on.

Sub a b c d e

1 0.75 0.343690 0.875944 0.727009 0.253882
2 3.04363 7.821595 −0.230131 2.382647 0.815795
3 1.7035 0.300484 0.302212 0.064684
4 8.31051 15.844347 4.393477 15.098462
5 5.1105 2.350479 0.729951 0.230761

pected to provide an adequate description of electron-electron
interactions but are currently unable to solve complex plasmas
such as multiply charged ions at low temperatures.

The use of analytical results for the virial expansion of ther-
modynamic properties as a benchmark for PIMC calculations
for the uniform electron gas is demonstrated. In particular,
we show that high-precision PIMC simulations are consistent
with the form of the virial expansion that has been recently
discussed [28]. It also seems possible to obtain numerical val-
ues for higher virial coefficients, in particular the interesting
virial coefficient v4(T ) for the order n5/2 of the free energy.
These values can be considered as exact results in plasma
physics.

Analytical theory gives us exact results in limiting cases as
benchmarks. These can be used to obtain results for parameter
ranges where numerical simulations are not efficient, e.g., in
the range of low densities. Virial expansions are used to con-
trol theories and numerical simulations. They are of interest
for the construction of interpolation formulas.

The UEG is a comparatively simple case where PIMC
simulations are possible with high accuracy. It will be
interesting to extend the present considerations to a two-
component system like the hydrogen plasma [27,40,41,41,42],
the positronium plasma or the electron-hole plasma.
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APPENDIX A: PARAMETER VALUES AND UNITS

It is convenient to introduce dimensionless variables in-
stead of T, n. We use atomic units with the Hartree energy

EHa =
(

e2

4πε0

)2
m

h̄2 = 27.21137 eV = 2 Ry, (A1)

and the Bohr radius

aB = 4πε0

e2

h̄2

m
= 5.2918 × 10−11 m. (A2)

The density in atomic units is usually represented by the
radius of a sphere containing an electron,

rs =
(

3

4πn

)1/3 1

aB
. (A3)

The temperature is related to the energy kBT , so that 1 eV
corresponds to 11604.6 K. We denote TeV as kBT measured in
units of eV, THa in units of EHa, and TRy in units of Ry so that

THa = kBT

EHa
= 2TRy = 27.21137 TeV. (A4)

Another well-known choice of dimensionless parameters is

� = e2

4πε0kBT

(
4π

3
n

)1/3

,  = 2mkBT

h̄2 (3π2n)−2/3.

(A5)

TABLE IV. Density-dependent GDSMFB data, corresponding parameter values and virial coefficients (atomic units), THa = 100.

rs  THa nB vGDSMFB n1/2
B 1/ ln(T 2

Ha/4πnB) v2(THa ) veff,GDSMFB
2 veff,GDSMFB

3

10 5430.11 100 0.000239 −0.002739 0.015451 0.066580 −0.01147 −0.014702 1.39248 × 10−2

4 868.817 100 0.003730 −0.010825 0.061075 0.081495 −0.01147 −0.012858 1.85162 × 10−3

2 217.204 100 0.029842 −0.030937 0.172747 0.098124 −0.01147 −0.012273 4.55733 × 10−4

1.6 139.011 100 0.058284 −0.042791 0.241421 0.105023 −0.01147 −0.012102 2.75842 × 10−4

1 54.3011 100 0.238732 −0.089082 0.488603 0.123278 −0.01147 −0.011658 4.73957 × 10−5

0.8 34.7527 100 0.466274 −0.12578 0.682843 0.134367 −0.01147 −0.011356 −2.26029 × 10−5

0.5 13.5753 100 1.90986 −0.263072 1.38198 0.165775 −0.01147 −0.010437 −1.24015 × 10−4
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TABLE V. Virial expansion: The total contribution of different orders (in [Ha]) to the virial expansion of the potential energy v, THa = 100.

rs THa vGDSMFB [Ha] v0n1/2
B v1nB ln

(
4πnB/T 2

Ha

)
v2nB v3n3/2

B ln
(
4πnB/T 2

Ha

)
veff,GDSMFB

4 n3/2
B

10 100 −0.002741 −0.002739 5.6323 × 10−7 −2.73838 × 10−6 4.62741 × 10−11 −7.71503 × 10−7

4 100 −0.010866 −0.010825 7.1898 × 10−6 −4.27872 × 10−5 2.33496 × 10−9 −5.17859 × 10−6

2 100 −0.030937 −0.030619 4.7771 × 10−5 −3.42297 × 10−4 4.38806 × 10−8 −2.39862 × 10−5

1.6 100 −0.043409 −0.042791 8.7174 × 10−5 −6.6855 × 10−4 1.11908 × 10−7 −3.69355 × 10−5

1 100 −0.089082 −0.086602 3.0419 × 10−4 −2.73838 × 10−3 7.90308 × 10−7 4.56357 × 10−5

0.8 100 −0.12578 −0.121031 5.4509 × 10−4 −5.3484 × 10−3 1.97918 × 10−6 5.15803 × 10−5

0.5 100 −0.263072 −0.244949 1.8097 × 10−3 −2.1907 × 10−2 1.32984 × 10−5 1.96121 × 10−3

The plasma parameter � characterizes the ratio of potential
to kinetic energy in the nondegenerate case, and the electron
degeneracy parameter  characterizes the range in which
the electrons are degenerate (the relation to conventional
quantum degeneracy parameter χ = λ3n is discussed, e.g.,
in Ref. [56]). Different sets of dimensionless parameters are
related. Thus, PIMC calculations are performed for specific
parameter values of rs,, the corresponding plasma parame-
ters n, T are determined as follows:

n = 3

4π

1

(rsaB)3
, kBT = EHa

1

2

(
9π

4

)2/3


r2
s

(A6)

with EHa/kB = 315777.1 K.

APPENDIX B: PARAMETER VALUES FOR THE GDSMFB
INTERPOLATION FORMULA (13)

The coefficients a, b, c, d , and e are again Padé formulas
with respect to temperature given in the Supplemental Mate-
rial to Ref. [47]. We give the expressions for the unpolarized
case (ξ = 0),

a() = 0.610887 tanh

(
1



)
a1+a2

2−0.092273+a3
4

1 + a42 + a54
,

b() = tanh

(
1√


)
b1 + b2

2 + b3
4

1 + b42 + b54
,

c() = (c1 + c2e−1/)e(),

d () = tanh

(
1√


)
d1 + d2

2 + d3
4

1 + d42 + d54
,

e() = tanh

(
1



)
e1 + e2

2 + e3
4

1 + e42 + e54
. (B1)

The paramters involved in those Padé formulas are summa-
rized below in Table III.

APPENDIX C: FOURTH VIRIAL COEFFICIENT
FROM INTERPOLATION FORMULA

We give some values for the virial expansion (7) and
the effective virial coefficients (9) and (15), derived from
the GDSMFB interpolation formula, in Table IV. The to-
tal contributions of different orders to the virial expansion
of the potential energy v(T, v) are shown in Table V. The
high-temperature range is considered, THa = 100. The contri-
butions of the odd orders virial terms containing v1 and v3 at
high temperatures are small compared with the even terms v0,
v2, and v4.
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