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Impact of hydraulic tortuosity on microporous and nanoporous media flow
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Using two-dimensional porous structures made up of homogeneously arranged solid obstacles, we examine
the effects of rarefaction on the hydraulic tortuosity in the slip and early transition flow regimes via extended
lattice Boltzmann method. We observed that modification in either the obstacle’s arrangement or the porosity
led to a power-law relation between the porosity-tortuosity. Along with this, we also found that in the slip-flow
regime, the exponent of this relation contains the effect of finite Knudsen number (Kn). In addition, we observed
that on properly scaling Kn with porosity and hydraulic tortuosity, a generalized correlation can be obtained for
apparent permeability.
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I. INTRODUCTION

Numerous scientific and engineering applications, includ-
ing water percolating through soils, gas transportation, CO2

sequestration, oil extraction with or without polymer flooding,
and a host of others can benefit from an understanding of the
transportation mechanisms and fluid flow across porous media
[1–4]. Porous media are made up of a solid matrix of material
that is filled by a network of void spaces (pores) containing
fluid and are connected by throats that are significantly smaller
in size. One of the main physical properties of interest is the
permeability of a porous material which measures its ability
to allow fluids (gas or liquid) to flow through it. Apart from
porosity, which is defined as the percentage of a porous sam-
ple that is occupied by pore space, permeability also depends
on the geometry and structure of the pores [1,5,6].

Depending on the geometry and the location of the pores,
the actual path taken by the fluid can be very complicated or
tortuous. Therefore, a parameter, hydraulic tortuosity (T) was
introduced to take care of complicated transport paths in a
comprehensive manner [1,7]. Hydraulic tortuosity can be un-
derstood as the ratio of the average length of true flow routes
to the system’s length in the direction of the macroscopic flow.
The optimal way to calculate this ratio would be to take the
mean flow length from a weighted average of the streamline,
however, if the geometry is too complicated, it would not be
feasible [2,8]. To overcome this limitation, Koponen et al. [7]
and Duda et al. [9] proposed a straightforward formula for
T as a ratio of the mean pore-scale velocity magnitude over
the mean of the pore-scale velocity along the main flow direc-
tion, which is extremely helpful in the situation of arbitrary
geometry.
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Furthermore, the emergence of unconventional energy
sources, like ultratight gas reservoirs within shale rocks, have
shown great potential towards mitigating the world energy
crisis [10,11]. Shale rocks are highly tortuous and are made up
of fine-grained material which contains pores in the nanoscale
size range. At this scale, where the mean-free path of gas
molecules becomes equal to or greater than the characteris-
tic flow length within ultratight rocks, the rarefaction effects
starts to emerge. The Knudsen number Kn, or the ratio of the
mean-free route of gas molecules to the typical flow length,
indicates the degree of rarefaction. The fluid behavior can be
separated into four primary categories based on the Kn value:
continuum flow regime with Kn < 0.001, slip flow regime
with 0.001 < Kn < 0.1, transition flow regime with 0.1 <

Kn < 10, and free molecular flow regime with Kn > 10. Con-
trary to what is predicted by Darcy’s law in continuum flow
regime, rarefaction effect cause gas permeability (apparent)
to increase as the pore size decreases. Klinkenberg claimed
that this increase is caused due to the rise in gas slippage at
the solid-fluid interface [12]. Therefore, to precisely predict
the reservoir’s production capacity and longevity, it becomes
unquestionably crucial to investigate the effect of rarefaction
on physical parameters like permeability and tortuosity of
ultratight porous media.

The goal of this paper is to provide a deeper understand-
ing of the gas transport characteristics and Kn dependency
of various physical properties of porous media, including
tortuosity, in carefully designed porous media. The setup is
designed in a simple way where the circular obstacles are
arranged homogeneously between two parallel plates. The
porosity is varied by changing the diameter of the obsta-
cle and the tortuosity is altered by changing the location of
next-nearest obstacle. As a simulation technique, we used the
lattice Boltzmann (LB) method which has not only proven to
be a useful tool for simulating Newtonian continuum hydrody-
namics [13–17] but also been successfully extended for flows
beyond Navier-Stokes in the past few years, particularly to
nonequilibrium (finite Kn) flows. The extended LB method
utilizes either a regularization (REG) procedure [18–20]
or an appropriate multirelaxation time model [21,22] in
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(a) (b) (c)

FIG. 1. Schematic of representative porous media designed as an array of circular obstacle in two dimensions. (a) θ0, φ = 0.75, (b) θ6, φ =
0.75, and (c) θ6, φ = 0.90.

combination with the kinetic boundary condition (KBC)
[23–26]. We also conducted a thorough parametric study with
the goal of determining a consistent way to account for the
impact of porosity and tortuosity on gas permeability.

Starting from a brief overview of tortuosity and its evalu-
ation technique in Sec. II, the rest of the paper is organized
as follows: In Sec. III, the representative porous media setup
is detailed and a reference has been made to the simulation
technique, the extended LB method, which is detailed later
in the Appendix. This is followed by the Kn-dependent flow
investigation in Sec. IV where, starting by investigating the
local flow profile at various physical parameters like poros-
ity and porous arrangement, we studied the effect of Kn on
tortuosity-porosity relation in Sec. IV A. Further, the effect
of tortuosity and porosity on gas permeability was studied in
Sec. IV B. Finally, the work is summarized and some future
aspects of the work are discussed in Sec. V.

II. TORTUOSITY

Hydraulic tortuosity (T) is the ratio of elongation of fluid
streamlines due to the presence of obstacles (porous media) to
the system size in the case of free flow [2,8]. Therefore, if λ

is the mean distance covered by the fluid element and L is the
system size in the direction of flow, the hydraulic tortuosity is
defined as

T = λ

L
. (1)

By this definition, hydraulic tortuosity is always greater than
or equal to 1 (T � 1). It means in a plane channel flow,
T = 1 since streamlines face no hindrance in the absence of
porous material. The value of T rises when tortuosity grows
because fluid has to travel farther through porous media.
Since T is defined as deviation of the fluid path, it can be
calculated using velocity field. Some of the methods used
to calculate T focus on the calculation of weighted averages
of discrete streamlines [27,28]. Most of these methods will
be difficult to apply in complex geometries. However, in the
works of Koponen et al. [7] and Duda et al. [9], the authors
came up with a simple approach for the incompressible and

nonreentrant flow to calculate T by using the appropriate
averages of pore-scale velocity vector (u) in the following
manner:

T = 〈|u|〉
〈|u · ex|〉 , (2)

where ex is the unit vector in the main direction of the flow.
Hereafter, in the present paper, we will be using the above-
mentioned definition [Eq. (2)], which is now being routinely
used to define T [29–33]. A detailed pedagogical review about
the approach used in Ref. [9] can be found in Ref. [34].

III. PHYSICAL POROUS MEDIA

In the present paper, we used simple two-dimensional
homogeneous geometries constructed by placing circular ob-
stacles in seven rows and seven columns between two parallel
plates to study the effect of tortuosity (see Fig. 1). The LB
method is used to solve the flow equations. In the recent past,
the LB method has emerged as a powerful tool to solve the
continuum hydrodynamics [13,15] and, with some physics-
inspired refinements, has shown to capture fluids dynamics
beyond Navier-Stokes equations [24,25,35]. The details of
this refined method are presented in the Appendix.

In the aforementioned geometrical setup, the lattice node
which falls on or inside the solid is marked as nodeS and
the ones occupied by fluid are marked nodeF. Hence, the
calculation of the porosity (φ), defined as the volume (area
in two dimensions) of void to the total volume (area), is
straightforward and is given as

φ =
∑

nodeF∑
nodeF + ∑

nodeS
. (3)

At this point, it is worth introducing Kn, which is the ratio
of the molecular mean-free path with respect to character
macroscopic length. The Kn can also be represented in terms
of kinematic viscosity, η, as Kn = η/(dcs) where we chose
d to be the smallest pore-throat diameter present as the red
double arrow in Fig. 1, and cs is the speed of sound which
is explained later in the Appendix, where the LB method is
elaborated on alongside with a REG mechanism which filters
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FIG. 2. Tortuosity as a function of porosity for various arrange-
ments in porous media. Solid lines are the best fit to T − 1 = pn(1 −
φ)γn , where n(0, 1, . . . , 6) defines the alignment.

out the nonhydrodynamic moments and the KBC, which is
based on the diffusively reflecting wall. In the recent past, it
has been observed that REG and KBC are the crucial ingredi-
ents required in the standard LB for the simulation of finite Kn
flow [24,25]. The simulations were performed with 500 grid
points in each direction, which resulted in 24-38 number grid
points representing each pore throat.

Before studying the Kn-dependent rarefaction effects, we
focused on the continuum regime to establish the relation
between the porosity and tortuosity. Consequently, starting
from uniform geometry where distance between the next-
nearest circle placed in a row is the same as that of the one
placed in a column [Fig. 1(a)], the simplest way to alter
tortuosity is to change the arrangement by placing the next-
nearest circle at a distance defined by the angle θ as shown
in Fig. 1(b). This allowed us to do a controlled study and
have insight into how tortuosity increases or decreases with
the arrangement of obstacles in the media. We choose the
following values of alignments: [θ0, θ1, θ2, θ3, θ4, θ5, θ6] =
[0, 5.5◦, 9.162◦, 10.45◦, 14.47◦, 17.88◦, 21.96◦, 25.82◦]. The
streamlines passing through the pore throat, present nearly at
the middle of the domain, marked with a red double arrow,
shows that keeping the porosity the same, tortuosity appears
to increase with θ [see Figs. 1(a) and 1(b)]. In Fig. 1(c),
we kept the alignment (θ ) the same as that of Fig. 1(b) but
increased the porosity which resulted in an obvious decrease
in tortuosity. Recall, as defined earlier, the larger the average
length of streamlines, the larger the tortuosity. To calculate the
absolute tortuosity, T∞, for each porous configuration in the
limit of Kn → 0, we extrapolated the tortuosity (T) calculated
within the range of Kn = 10−1 to Kn = 10−3 and chose the
value at Kn = 10−7 as T∞.

Figure 2 represents the absolute tortuosity (T∞) as a
function of porosity for large to medium porosity ranging
from 0.90 to 0.75 for all seven alignments (θ0 to θ6). First, the
figure shows the obvious trend that with increase in porosity,

tortuosity decreases for every configuration. Second, the
log-log plot between T∞ − 1 and 1 − φ clearly shows
a power-law behavior with the exponent as [γ 0, γ 1, γ 2,

γ 3, γ 4, γ 5, γ 6] = [0.1286, 0.3153, 0.4199, 0.4902, 0.5706,

0.6530, 0.7279] and constants as [p0, p1, p2, p3, p4, p5, p6]
= [0.0233, 0.0412, 0.0702, 0.1084, 0.1606, 0.2243, 0.2866]
(see Fig. 2). This is an empirical relationship, however, it is
in agreement with the two-dimensional flow with randomly
distributed square obstacles as used by Duda et al. [9] for large
porosity (<0.8), which also showed a power-law behavior as
T − 1 ∼ (1 − φ)γ , however, their exponent (γ ) was 1/2.

IV. FLOW AT FINITE KNUDSEN NUMBER

Tortuosity and permeability are two important properties
that influence the passage of fluid through a porous media.
In the subsequent sections, we will investigate the effect of
rarefaction on these two properties. However, first it would
also be interesting to observe the behavior of the local velocity
in different porous arrangements. Therefore, in Fig. 3, we
plotted steady-state streamlines at different Kn for porosities,
φ = 0.75 and φ = 0.90, and at pore alignments, θ0 and θ6.
The scale for the magnitude of streamlines in all cases has
been kept the same to show a relative difference between all
the considered arrangements. From Fig. 3, we can make the
following observations:

(1) For a given porosity (φ), the flow takes a more tortuous
path as the uniformity of the obstacles decreases (i.e., from θ0

to θ6) at every Kn.
(2) In the current configuration, when porosity rises, the

pore throat widens, facilitating fluid flow across the porous
medium. As a result, the velocity inside the pore-throat in-
creased as the φ value increased.

(3) However, due to Knudsen diffusion, there is a nonzero
fluid velocity at solid barriers, which causes the velocity inside
the pore throat to grow with increasing Kn in all situations.

A. Effect of finite Kn on tortuosity

Hydraulic tortuosity (T) is the measure of the average fluid
streamline length in a porous medium versus system length of
obstacle-free flow and, as defined in Eq. (1), can be calculated
using appropriate averages of the velocity field component.
This makes T a flow-dependent observable. Therefore, any
effects of rarefaction that appear on the velocity field, such
as increment of slip velocity with Kn, also have a significant
effect on T.

To investigate this effect, we computed the value of T
as a function of porosity, φ, with different Kn for all the
arrangements of the porous medium, θ0-θ6 which again shows
a power-law behavior, however, with a different exponent (Kn
dependent), as shown in Fig. 4. When Kn rises, the slip veloc-
ity makes it easier for fluid to move through the pores, which
causes a concomitant decrease in the hydraulic tortuosity. This
behavior is clearly reflected in Fig. 4. To fully contain the
Kn dependency of hydraulic tortuosity in the exponent of the
power-law behavior, we plotted the T − 1 and 1 − φ with the
best fitted lines to the function T − 1 = pn(1 − φ)(γn+fn (Kn))

in Fig. 4, where n (0, 1, 2, . . . , 6) dictates the pore arrange-
ment. Here, the values of γn and pn are the same as those
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FIG. 3. Steady-state velocity streamlines for porosity, φ = 0.75 and φ = 0.90, porous arrangement, θ0 and θ6, and at Kn = 0.01, Kn = 0.1,
and Kn = 1.0.

assessed in Sec. III (Fig. 2). Changing Kn while maintaining
the same configuration demonstrates that fn is an increasing
function of Kn because, as Kn rises, the exponent of the power
law rises as well. Figure 4 also shows that the exponent in
the early-transition phase (bottom few lines in each figure)
appears to change less profoundly with changing Kn as the
nonuniformity between the pores increases from Fig. 4(a) (θ1)
to Fig. 4(b) (θ3) and eventually to Fig. 4(c) (θ6). This shows
that when Kn is increased at high nonuniformity, there is less
of an effect on physical attributes. In other words, the effect of
rarefaction in early transition regime is diminished by higher
nonuniformity. But this can also be a result of a technical
problem associated with the method. It has been shown in
earlier research that a LB model with REG and a diffuse

wall KBC (as used in the current paper) performs admirably
well in the slip-flow regime and near the early-transition flow.
However, to take into account the flow beyond this limit,
one must utilize a higher order lattice (HOL), according to
Ref. [24].

Furthermore, to investigate the behavior of fn with re-
spect to Kn, we plotted fn as a function of Kn (see Fig. 5)
which firstly indicate that fn is indeed an increasing func-
tion of Kn for all the porous arrangements. However, in the
slip regime (0.001 < Kn < 0.1), fn ∼ Kn0.6 (see the inset
of Fig. 5). This suggests that there exists a consistent de-
pendence of Kn on the tortuosity-porosity relation, at least
in the slip flow regime for the porous setup used here, as
T − 1 ∼ (1 − φ)(γn+Kn0.6 ).

(a) θ1 (b) θ3 (c) θ6

FIG. 4. Tortuosity as a function porosity at pore alignment θ1, θ3, and θ6 with varying Kn. Dashed lines are the best fit to the function
T − 1 = pn(1 − φ)(γn+fn (Kn)), where the value of n(0, 1, 2, . . . , 6) depends on the porous arrangement.
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FIG. 5. The Kn-dependent addition in the exponent of power-law behavior, fn, for various Kn. Here n(0, 1, . . . , 6) describes the alignment
of porous arrangement. The inset magnifies the slip-flow regime, which shows that f (Kn) ∼ Kn0.6.

B. Effect of finite Kn on permeability

One of the physical quantities of interest for the flow inside
highly permeable porous media is the absolute permeability
(κ∞), which is obtained by calculating the flux (Q) at different
pressure drops (or by adjusting the body force values) in the
following manner:

κ∞ = Qη

ρg
, (4)

where η is the dynamic viscosity, g is the body force, and ρ

is the density of the fluid. Permeability is a crucial element in
determining the transport capacity of porous media. However,
in unconventional reservoirs, such as ultratight pores of shale
rock, despite the presumption of absolute permeability being
very low, experiments observed that apparent gas permeability
(AGP) (κ) is much higher than κ∞. Furthermore, the idea that
the rise in gas slippage at the solid-fluid interface is to blame
for the increased permeability was put forward by Klinken-
berg, who suggested the permeability correction factor (PCF),
which is defined as the ratio of apparent permeability (κ) to
absolute permeability (κ∞), to be a linear function of Kn as

κ

κ∞
= 1 + 4Kn. (5)

Beskok and Karniadakis [36] further proposed a second-order
correlation that can be used to describe all four fluid flow
regimes and is given as

κ

κ∞
= [1 + α(Kn)Kn]

(
1 + 4Kn

1 − bKn

)
, (6)

where slip coefficient b equals −1 for slip flow and α(Kn) is
the rarefaction coefficient. The expression for α(Kn) is some-
what complex, but Civan [37] later suggested one (Beskok and
Karniadakis-Civan’s correlation) that is considerably more

straightforward:

α(Kn) = 1.358

1 + 0.170Kn−0.4348 . (7)

In addition, Civan [37] suggested that in the slip-flow regime,
α(Kn) can also be neglected, making PCF take the following
form:

κ

κ∞
=

(
1 + 4Kn

1 + Kn

)
. (8)

Since up-scaled equations that predict the gas output and
longevity of gas wells heavily rely on the AGP at the repre-
sentative elementary volume scale, it is essential to accurately
evaluate AGP. For this reason, we first presented the PCF
of different porous mediums by varying the alignment at
fixed porosity (Fig. 6) and then varied the porosity while
keeping the alignment unchanged (Fig. 7). To calculate the
absolute permeability (κ∞) for each setup, we extrapolated the
permeability calculated within the range from Kn = 10−3 to
Kn = 10−1 and chose the value at Kn = 10−7 as κ∞. When
the porosity is low (φ = 0.75), as shown in Fig. 6(a), the setup
with more nonuniformly distributed porous media shows a
slightly higher value of PCF over the range of Kn. However,
as the porosity is increased to higher values as shown in
Figs. 6(b) (φ = 0.83) and 6(c) (φ = 0.90), the PCF starts to
overlap onto each other for all the alignments. Likewise, in
Fig. 7, we kept the alignment [uniformity (nonuniformity)]
of distributed porous media fixed and varied the porosity. In
this case, we observed that as Kn is increased (especially in
the early transition regime) in all the alignments, the PCF
for low porosity has a higher value in comparison to the
one with higher porosity. Additionally, this difference be-
comes more prominent as the dispersion of porous media
is further increased from θ3 to θ6. One reason for this be-
havior at the macroscale level could be that in less porous
media, the disturbance caused by one barrier propagates over
a smaller distance and interacts with other obstacles before
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(a) (b) (c)

FIG. 6. The permeability correction factor (PCF) as a function of Kn at fixed porosity and varying alignments. (a) φ = 0.75, (b) φ = 0.83,
and (c) φ = 0.90.

getting completely dispersed. The hydrodynamic disturbance
may, however, tend to fade out or average out in highly porous
media before encountering another barrier. This causes differ-
ent kinds of fluid-solid interactions in addition to slip effect,
which could change the magnitude of the velocity field. At
the molecular level, large pores with high porosity have a
lower rarefaction impact than smaller pores with low poros-
ity because, after colliding inside one pore’s throat, the gas
molecule must travel a greater distance before colliding with
another obstruction in highly porous medium as compared to
one with small porosity. Overall, Figs. 6 and 7 led us to the
conclusion that, in the current porous setting, porosity has a
greater impact on PCF than does nonuniformity (alignment)
of porous material, which is one of the factors in determining
the tortuosity of the material.

In recent studies, the direct simulation Monte Carlo
approach was employed to demonstrate that even for compli-
cated porous structures, the apparent permeability of a porous
media can be predicted through the Klinkenberg correlations
using fundamental and measurable descriptors of the pore
structure [38–41]. This can be accomplished by scaling Kn
with an appropriate function of porosity and tortuosity, as
suggested by Wu et al. [39], or by using an effective pore
size that is determined by porosity and tortuosity [40], as it
was noticed that using such arguments, the PCF for different
porosity and pore structures is found to collapse onto one
curve. In a similar manner, we identified one such empirical
function, g = φ/T 2, to determine an effective Knudsen num-
ber (Kn
) for the current collection of porous media, given
as Kn
 = Kn/g. This can be inferred indirectly as rescaling
of the pore size using parameters related to pore structure,
porosity, and pore scale flow, hydraulic tortuosity (T). In

Fig. 8, the PCF is plotted with respect to the effective Knudsen
number Kn
. The figure shows that for all the geometries
(chosen at random), the PCF lies almost entirely along a single
line. Figure 8 further demonstrates that the PCF and the three
proposed correlations—Klinkenberg [Eq. (5)] [12], Beskok
and Karniadakis-Civan [Eq. (6)] [36,37], and Civan [Eq. (8)]
[37]—are in fair agreement up until the slip-flow regime.
However, in the early transition regime, the best agreement
is with Civan [37], which was initially suggested for the flow
close to slip regime. Figure 3 illustrates that a generalized
correlation can be obtained up until the early transition regime
with an appropriate effective Knudsen number. It is worth
mentioning at this point that in most of the experiments in-
cluding Klinkenberg’s [12], the general expression for the
AGP is obtained by employing a straightforward setup, such
as flow through a straight capillary by ignoring the effect
of tortuosity. Consequently, in intricately organized porous
media, one should expect a departure from these predictions.
Nevertheless, a technical issue could also be the cause of
the divergence of these predictions at high Kn number flow.
We want to reiterate that it has been postulated that at-least
three primary components are required to extend a simple
Bhatnager-Gross-Krook (BGK) approximation based LB be-
yond Navier-Stokes: KBC, REG, and HOL [24]. However, in
this paper, we made use of the fact established by Ref. [25]
that the combination of REG and KBC works effectively in
two-dimensional flow up until the early transition regime,
without invoking HOL. It is expected that when the Kn rises
beyond the transition regime, the HOL will become more
significant. Therefore, we plan to do a thorough investigation
to ascertain the appropriate order of lattices required for the
given setup for very high-Kn flows.

(a) (b) (c)

FIG. 7. The permeability correction factor (PCF) as a function of Kn at fixed alignment and varying porosity. (a) θ0, (b) θ3, and (c) θ6.
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FIG. 8. The permeability correction factor (PCF) as a function
of an effective Kn
 at randomly selected porous media configuration.
The first-order correlation by Klinkenberg [Eq. (5)] [12], the second-
order correlation given by Beskok and Karniadakis-Civan [Eq. (6)]
[36,37], and the correlation in the slip flow regime suggested by
Civan [Eq. (8)] [37] are also presented as a reference.

V. CONCLUSION AND OUTLOOK

We investigated the gas-transport characteristics flowing
across two-dimensional porous medium containing micro-
and nanopores for moderate to high porosities of 0.75 < φ <

0.90 from the continuum to early-transition regimes in a sys-
tematic manner using the extended LB method with a focus
on two physical parameters of the flow namely, tortuosity and
permeability. A priori, it is not obvious that tortuosity and
porosity, in general, have a universal relationship. However,
such correlation can arise, at least for some porous material
types. With this aim, we explored the gas transport in homo-
geneously arranged porous media, which showed an empirical
power-law behavior between the two as T − 1 ∼ (1 − φ)γ .
An further investigation across various Kn shows that, in the
slip-flow regime, the Kn dependency alters the exponent of
the power as T − 1 ∼ (1 − φ)γ+ fn with f n ∼ Kn0.6, giving a
generalized relation between the two.

In addition, we discovered that PCF with respect to Kn,
which appears as a result of rarefaction, falls nearly on
one single line up until early transition regime, indicating a
generalized correlation, with appropriate scaling of Kn with
parameters like porosity and hydraulic tortuosity. Moreover,
how the Kn should be properly scaled using φ and T in a
heterogeneous and tortuous environment may also be crucial
to examine other phenomena such as the dispersive transport
of a scalar through complex media with pore size ranging
from micro- to nanometers [42]. It should be emphasized that
the implementation of the diffuse wall boundary condition,
which requires wall normals, was simple due to the simplicity
of the current 2D setup formed by arranging circular obstacles
in a homogeneous pattern at different orientations. In most
cases, the flow characteristics of three-dimensional flows are
only partially represented by two-dimensional flow in porous
media. On top of that, the distribution of pores in a real rock is
highly heterogeneous and tortuous. Therefore, it will be inter-
esting to observe how the aforementioned exponent varies not
only in two-dimensional flow inside heterogeneously struc-
tured porous media but also in analogous three-dimensional
flow. Therefore, in the future, we will explore the fluid flow in

a realistic low-porosity geometry of natural rock imaged by a
multislice micro-CT scanner [43,44] by utilizing a boundary
condition that was more practical for such a scenario and does
not require calculating wall normals as proposed in Ref. [25].
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APPENDIX: LATTICE BOLTZMANN METHOD

The conventional LBM framework is based on the Boltz-
mann equation with the single relaxation approximation, also
known as the BGK approximation [45]. The discrete form
of such an equation requires a set of discrete populations
f = { fi} and corresponding to which there exists a predefined
discrete velocities ci (i = 1, . . . , N ) [13,15] and has the fol-
lowing form:

fi(x + c�t, t + �t ) = fi(x, t ) + �i( f ) + �tFi. (A1)

Here, Fi corresponds to the ith component of external force
and the BGK collision approximation, �i( f ), given as

�i( f ) = �t

τ

(
f eq
i − fi(x, t

)]
, (A2)

dictates the relaxation of distribution function to an equilib-
rium Maxwell-Boltzmann function, f eq, as given in Eq. (A3),
at the rate of τ−1.

f eq
i = wiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2 c4
s

− (u · u)

2 c2
s

]
. (A3)

The two-dimensional model (D2Q9) which is chosen for the
present paper has the following nine discrete velocities:

ci =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0) if i = 0(
cos (i−1)π

4 , sin (i−1)π
4

)
if i = 1, 2, 3, 4

√
2
(
cos (i−1)π

4 , sin (i−1)π
4

)
if i = 5, 6, 7, 8,

(A4)

with the corresponding weights as

wi =

⎧⎪⎪⎨
⎪⎪⎩

4
9 for i = 0
1
9 for i = 1, 2, 3, 4
1
36 for i = 5, 6, 7, 8.

(A5)

The lattice sound speed cs that appeared in Eq. (A3) is
related to the magnitude of discrete velocity as c2 = 3c2

s . As
mentioned earlier, the Kn for the flow is η/(dcs), with the
kinematic viscosity being defined as η = c2

s (τ − δt/2) and d
being the smallest pore-throat diameter. Hence, the Kn can
be controlled by varying the viscosity through the relaxation
time τ for a given setup. The relevant hydrodynamic
macroscopic moments, like density (ρ), momentum density
(ρu), and momentum flux (�) can be obtained by linear
weighted sums as ρ(x, t ) = ∑

i fi, ρ(x, t )u(x, t ) =∑
i fici, and �(x, t ) = ∑

i fi(cici − c2
s δ), respectively,

with δ being the identity matrix. Finally, the term Fi in
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Eq. (A1), which is the ith component of the body force, is
given as [46]

Fi = wiρ

[
g · ci

c2
s

+ (gu + ug)

2c2
s

:
(
cici − c2

s δ
)]

, (A6)

where g is the constant acceleration vector. In the subsequent
section, we will briefly discuss a REG scheme which was
introduced to filter out the nonphysical effect from finite Kn
flow.

1. Regularization scheme

Initially proposed to resolve the issue of stability of high
viscous flows, the REG process, as introduced by Chen and
coworkers [18,19] and Latt and Chopard [20], turns out be
one of the major ingredients for the finite Kn flow [24] in
the LB framework. In the REG process, nonhydrodynamic
(ghost) modes are filtered out by dividing the poststreaming
distribution function into two parts as

fi = f eq
i + f neq

i . (A7)

The information about the hydrodynamic modes is contained
in f eq

i and to remove the information of nonhydrodynamic
modes from f neq

i , it is converted into a new distribution func-
tion f Reg

i which is then defined in terms of hydrodynamic
moments (ρ, u,�) and has the following discrete form:

f Reg
i = wi

2c4
s

(
cici − c2

s δ
)

: �neq, (A8)

where �neq is the nonequilibrium part of momentum flux and
is given as �neq = ∑

i f neq(cici − c2
s δ). The streaming step of

LB method takes the following form after the REG process:

fi(x + c�t, t + �t ) = f eq
i +

(
1 − �t

τ

)
f Reg
i + �tFi. (A9)

2. Kinetic boundary condition

The no-slip boundary conditions based on a bounce-back
mechanism, where the directions of the incoming distribution
functions are simply reversed when it encounters the boundary
node, as the name suggests, fails to uncover the slip velocity at
the boundary at finite Kn. To overcome this shortcoming of the
method, a diffusively reflecting solid wall boundary condition
was introduced by Ansumali and Karlin [23]. Based on kinetic

(a) (b)

FIG. 9. Unit normals at the solid boundaries.

theory interpretation, this boundary condition redistributes the
population coming towards the wall in such a way that mass
balance and normal-flux conditions are fulfilled. In the dis-
crete sense, the distribution function at the boundary (wall)
takes the following form:

fi(xw, t ) = K f eq
i (ρ, uw ), (A10)

where subscript w denotes the wall and

K =
∑

ci·n<0 |(ci − uw ) · n| fi∑
ci·n>0 |(ci − uw ) · n| f eq

i (ρ, uw )
, (A11)

with n being the unit normal direction. The term K can be
understood as the ratio of outgoing flux from the wall and
incoming equilibrium flux coming towards the wall. When the
boundaries are stationary (uw = 0), the term K can be written
as

K =
∑

Ai<0 |Ai| fi∑
Ai>0 |Ai| f eq

i

, (A12)

with Ai = cixnx + ciyny. To implement this boundary con-
dition, one needs the information of unit normals at the
boundaries. Figures 9(a) and 9(b), respectively, represent the
unit normals in the x direction, nx, and the same in the y di-
rection, ny [25,26] for a circular obstacle. In the present paper,
the normals for an individual circle with center (xcen, ycen ) are
calculated as

n̂ = x − xcen

|x − xcen| . (A13)
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