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Near-critical behavior of the Zhong-Zhang model
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The Zhong-Zhang (ZZ) model is a one-degree-of-freedom dynamical system describing the motion of an
insulating plate of length d floating on the upper surface of a convecting fluid, with locking at the boundaries.
In the absence of noise, the system away from the boundaries is described by linear differential equations with a
delay time τ . The d, τ plane consists of two domains separated by a critical curve. For asymptotically long times,
subcritical orbits approach a nontrivial periodic attractor, while the supercritical ones tend to a stationary state at
the origin. We investigate near-critical behavior using a modified fourth-order Runge-Kutta integration scheme.
We then construct a piecewise analytic decomposition of the periodic attractor, which makes possible a far
higher level of accuracy. Our results provide solid evidence for an asymptotic power-law approach to criticality
of several observables. The power laws are fed back to determine the piecewise-analytic structure deep into
the near-critical regime. In an Appendix, we explore the effect of introducing noise using modified order-3/2
Kloeden-Platen-Schurz stochastic integration, following several observable quantities through the near-critical
parameter domain.
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I. INTRODUCTION

To investigate the effects of a mobile insulating plate
on turbulent Rayleigh-Benard convection, with an eye
to obtaining a better understanding of the geophysical
phenomenon of continental drift, Zhang and Libchaber [1]
and Zhong and Zhang [2,3] conducted a series of small-scale
experiments set up as in Fig. 1. In the absence of the plate,
a uniform temperature difference �T is maintained between
the bottom and top of the fluid in a rectangular container of
length D, producing a turbulent flow with two counter-rotating
convective rolls. An insulating plate on the top fluid surface
distorts the heat flow, giving rise to asymmetric frictional
forces and motion of the plate.

The asymptotic long-time behavior of the coupled plate-
fluid system in the experiments of Refs. [1–3] was found
to depend in a simple way on the length d of the plate in
units where D = 1. For d less than a critical value dcrit , there
were approximately periodic sojourns at the boundaries of
the cell, while for larger d , the motion rapidly tended to rest
at the center of the cell. In a subsequent paper [4], Zhong
and Zhang developed a simple one-degree-of-freedom system
which accounts for the principal experimental results. In this
model, hereafter referred to as the ZZ model, the state of the
system is given by a pair (x, y), where x is the distance of the
plate center from the center of the cell, and y represents the
position of the convective upwelling (see Fig. 1).

When the plate is away from the boundary, i.e., |x| < L =
(1 − d )/2, the system obeys a pair of linear first-order delay
differential equations (DDE),

ẋ(t ) = a[x(t ) − y(t )] − bx(t − τ ),

ẏ(t ) = c[x(t ) − y(t )], (1)

*john.lowenstein@nyu.edu

where

a(d ) = [2 v0 + θ (1 − d )]/(d + g),

b(d ) = d θ/(d + g),

c(d ) = d β,

and v0, g, β, θ , and τ are empirically determined constants.
When the plate is stationary at one of the boundaries, i.e., x =
±L, the upwelling position y continues to evolve according to
the second of the equations.

In Eqs. (1), v0 and θ parametrize the assumed linear depen-
dence of the convective flow speed on the uncovered surface
area, while g is the ratio of the thickness λ of the viscous
boundary layer adjacent to the plate to the width w of the
latter, multiplied by a geometric factor γ . The velocity of the
upwelling position is assumed to be proportional, by a factor
dβ, to its displacement from the center of the plate. Finally,
the delay time τ is the response time of the fluid circulation
speed to a change in the exposed surface area. For a precise in-
terpretation of the constants and their empirical determination,
the reader is referred to Sec. III and Appendix A of Ref. [4].

Following Ref. [4], we fix v0, g, β, θ at the values (with
times expressed in seconds, lengths in units of D)

v0 = 0.015, θ = 0.075, g = 1.8, β = 0.017, (2)

and consider d and τ as the parameters of the model. Speci-
fication of x(t ) as a continuous function of t for times −τ �
t � 0, as well as y(0) leads to a unique solution (x(t ), y(t ))
for all nonnegative times. Numerical explorations for different
values of d and τ reveal the existence of a convex critical
curve C in the d, τ plane which separates it into two regions,
a subcritical region I in which the system alternates between
unlocked and locked motion, and a supercritical region II in
which the motion, after a threshold time depending on the
initial conditions, the motion is entirely free of locking. In
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FIG. 1. Side view of the experimental setup of Refs. [1–3]. An
insulating plate of length D moves on the surface of a convective
fluid with two rolls. The horizontal positions of the plate center and
the fluid upwelling are assigned coordinates x and y, respectively.

each region the asymptotic motion converges to an attractor.
In I this is a topological circle, while in II it is a single point,
namely (0,0). On the critical curve, there are infinitely many
concentric elliptical attractors. A phase diagram derived from
the model equations in Sec. III is shown in Fig. 2.

As pointed out in Ref. [4], the initial value problem for the
linear DDE for boundary-free motion in the ZZ model can be
solved using Laplace transforms [5]. This analysis reveals the
critical behavior at d = dcrit for given delay parameter τ , and
allows one to study the asymptotic approach to the fixed point
at the origin for dcrit < d < 1. The principal aim of the current
investigation is to obtain an equally thorough understanding of
the subcritical solutions of the ZZ model equations, especially
with regard to the approach to criticality.

The need for a more precise study of the subcritical or-
bits stems from the fact that their asymptotic behavior is
not accurately described, even for short time intervals, by
the asymptotic elliptical arcs of the boundary-free DDE. The
DDE certainly apply between visits to the boundaries, but
the initial conditions are reset with each such visit. This puts
into question the existence and precise characterization of an

FIG. 2. Phase diagram in the d, τ parameter plane, with critical
curve C, derived in Sec. III below. The corresponding plot (Fig. 11)
in Ref. [4] is not accurate for d > 0.8D.

FIG. 3. Plots of x(t ) (black) and y(t ) (red) for τ = 10, 0.3 <

d < 0.8. In each case, the plate is released from rest at x = L with
y(0) = 0.

attracting periodic orbit for subcritical parameter values, even
though the experimental and numerical results of Ref. [4]
strongly suggest that such an attractor exists.

Our investigation begins with a concise review, in Secs. II
and III, of some of the main results of Ref. [4], with some im-
portant refinements needed for later sections. In particular, we
introduce an efficient numerical integration scheme, namely
fourth-order Runge-Kutta updating adapted to the presence
of delay terms and locking/unlocking transitions, which is
designed to provide sufficient accuracy for the study of ex-
tremely long orbits near criticality. The plots of x(t ) and y(t )
in Figs. 3–6 are obviously not new, but are included to give
the reader an adequate introduction to further, more abstract,
developments.

The discussion of solutions of the boundary-free DDEs
in Sec. III also covers ground already treated in Ref. [4],
again with the motivation of providing an introduction to
key features. An important result here is the phase diagram
of Fig. 2, which differs from that derived in Ref. [4] in the

FIG. 4. Plots of x(t ) vs y(t ) for τ = 10, 0.3 < d < 0.8. Several
different initial conditions were used for d = dcrit . For other values,
x(t ) = L, −τ � t � 0, and y(0) = 0.
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FIG. 5. Plots of x(t ) (black) and y(t ) (red) for d = 0.8,
10 < τ < 45.

large-d regime. This section also contains a description, going
beyond that of Ref. [4], of the limit-cycle behavior of the
strictly critical orbits, taking into account the subtleties of the
initial-value problem in the presence of nonzero delay.

Our main results are found in Secs. IV– VI below, where
we explicitly construct piecewise analytic periodic attractors
for all but a zero-measure set of resonant τ, d values in region
I. Each piece is of duration less than or equal to the delay time
τ , and consists of a finite linear combination of expressions
t k and t je(a−c)t , with coefficients linked to those of other
pieces by linear recursion and continuity relations. Having
obtained accurate approximate solutions using our numerical
integrations, we then use the results as the starting point for a
high-precision construction of the piecewise analytic attractor.
This method gets us sufficiently close to the critical curve
that we can determine with some confidence the asymptotic
behavior of the oscillation period and the locking time as we
approach the critical bifurcation. This is sufficient to ascertain
the piecewise analytic structure of the attractor in the extreme
near-critical regime.

While the main results of the article concern the determin-
istic ZZ model, it is also of interest to explore how the intricate
near-critical behavior is transformed by the introduction of
noise, consistent with the actual conditions in the laboratory

FIG. 6. Plots of x(t ) vs y(t ) for d = 0.8, 10 < τ < 45.

experiments. Not surprisingly, the noisy model, simulated
in Appendix C using a modified order-3/2 Kloeden-Platen-
Schurz stochastic integration scheme [6], has no sharp critical
bifurcation. Rather one finds a broad critical zone in which
various observables associated with boundary-locking tend
continuously to zero.

Similar results were previously obtained by Huang, Zhong,
Zhang, and Mertz [7,8] for a stochastic ZZ model without time
delay and with the parameter g in Eqs. (1) set equal to zero.
With these assumptions, the authors were able to reformulate
the model within the powerful framework of stochastic varia-
tional inequalities, originally developed by Bensoussan et al.
[9,10] to model elastoplastic oscillators. Applied to the ZZ
model with noise, the authors were able to derive and solve
Kolmogorov equations for the transition probabilities and thus
calculate a number of statistical properties of the observables.

The success of the ZZ model in capturing some of the key
features of partially covered Rayleigh-Benard convection has
been followed up by a number of recent advances in achieving
a deeper understanding of the phenomenon and its relation
to geophysical continental drift. While the present work, as
well as that of Refs. [7,8], has concentrated on the ZZ model
itself, others [11–13] have been able to obtain a more nuanced
description of the plate-fluid coupling and of the evolution of
the turbulent fluid with more general assumptions about its
size and geometry, and with closer attention to the observed
features of plate tectonics.

II. NUMERICAL SOLUTION OF THE
EQUATIONS OF MOTION

We begin our study of the ZZ model by examining numer-
ical solutions of the DDE for various values of plate length d
and time-delay τ , with the parameters v0, θ , β, and g fixed at
the values (2). We break up the integration range into intervals

In = [nτ, (n + 1)τ ], n = −1, 0, 1, 2, . . . N − 1,

and then subdivide each In into M time steps of duration
�t = τ/M. To obtain a unique solution for t � 0, we specify
y(0) and x(t ) for all times of I−1. For each successive In, n =
0, 1, 2, . . . , N − 1, we calculate the x, y orbit using fourth-
order Runge-Kutta updating with time increment �t , treating
the x values of In−1 as a forcing function.The Runge-Kutta
algorithm requires the delayed x values at interval midpoints,
and these are supplied using five-point Lagrange interpolation.

We now carry out two sequences of numerical integrations
of the ZZ system to illustrate the features discussed qualita-
tively in the previous section. First, we fix the delay time at
τ = 10 (a horizontal line in Fig. 2) and consider a sequence of
plate length d increasing from d = 0.3 in region I to d = 0.8
in region II, crossing the critical curve C at d = 0.57607 . . ..
Plots of x(t ) and y(t ) are displayed in Fig. 3, while the corre-
sponding orbits in the x, y plane are shown in Fig 4. In both
the subcritical and critical examples, the initial portion of the
orbit reflects arbitrarily chosen initial conditions, while the
long-time behavior shows convergence to a unique attractor.
In the critical case, the elliptical attractor is nonunique.

Our second sequence of examples starts at d = 0.8, τ = 10
and proceeds along a vertical line in the diagram, from τ = 10
in region II to τ = 45 in region I, crossing C at τ = 36.5378.
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The results are shown in Figs. 5 and 6. The qualitative behav-
ior seen in the first sequence is once again observed, in the
opposite order.

As a preliminary check on the precision of our numerical
integrations, we measured the asymptotic locking time (dur-
ing which the plate is locked at a boundary) and flight time
(during which it is in motion between boundaries) for fixed
τ = 10, d = 0.3 and varying choices of the time step �t and
total time ttot. We found that for fixed ttot the error scaled as
(�t )4, as expected. However, for fixed �t , convergence to
an attractor was quite rapid. For example, with �t = 0.0025,
the difference in the f or l values between ttot = 1000 and
ttot = 500 000 was smaller than 10−90. Note, however, that
this attractor is not identical to the exact attractor, although
it presumably converges to it for �t tending to zero. For ttot =
20 000, the values of f and l coincide with those obtained
analytically in Sec. V in their first 19 digits. Reducing �t by
a factor of 32 improves the precision to 24 digits.

In Ref. [3], the change in dynamical behavior occurring
as d passes through dcrit is described as a Hopf bifurcation, a
well known scenario in low-dimensional nonlinear dynamical
system theory (see Ref. [14], Sec. 2.8). For such a system, as
a control parameter λ approaches its critical value λcrit from
(say) above, one has an attracting fixed point at the origin and
a repelling periodic orbit surrounding it, while after λ passes
through λcrit the origin becomes a repellor with an attracting
periodic orbit surrounding it.

The behavior of the ZZ system near d = dcrit bears a cer-
tain resemblance to a Hopf-bifurcating system, specifically in
the change of stability of the origin precisely at criticality.
However, there are important differences. For example, the
supercritical ZZ system is essentially linear, with no unstable
periodic orbit present. Moreover, the amplitude of the stable
attractor of the Hopf system tends smoothly to zero while ap-
proaching the bifurcation from below, whereas the amplitude
of the x-oscillation of the ZZ system remains constant at L
right up to d = dcrit . The precise asymptotic behavior of the
attractor will become apparent only after our detailed analysis
of Secs. IV– VI.

III. BOUNDARY-FREE MOTION FOR LONG TIMES

Before proceeding to our analysis of the approach to crit-
icality, it is essential to establish the phase diagram of Fig. 2
and specifically the bifurcation curve C with high precision.
Following Ref. [4], we will exploit the convenient circum-
stance that the phase diagram, the critical curve, and the
region-II long-time behavior of the ZZ model all coincide with
those of the simpler linear model in which the DDEs (1) apply
to the entire x, y plane. The nonlinear, boundary dependent,
behavior in Region I requires a completely different approach,
as we will see in Secs. IV– VI.

Again following [4], we note that DDEs (1) are relatively
simple examples of a broad class of linear DDEs analyzed
by Bellman and Cooke [5], and we will make use of their
results in the following. The key idea is to expand in terms
of exponential solutions

(x(t ), y(t )) = (x0(z), y0(z))ezt .

FIG. 7. Zeroes of χ (z) for τ = 10, d = 0.3 (subcritical). Curves
where Re(χ (z)) = 0 are shown in black, those where Im(χ (z)) = 0
in red. The approximate roots from Eq. (5) are included as cyan dots.

The DDE implies the eigenvalue equation(
z − a + be−τ z a

−c z + c

)(
x0(z)
y0(z)

)
= 0.

For a nontrivial solution, the complex number z = η + iξ
must satisfy the characteristic equation

χ (z) = z2 + (c − a)z + b(z + c)e−zτ = 0,

that is,

η2 − ξ 2 + (c − a)η + b e−τη[(η + c) cos τξ + ξ sin τξ ] = 0,

(3)

2η ξ + (c − a)ξ + b e−τη[−(η + c) sin τξ + ξ cos τξ ] = 0.

(4)

Figure 7 locates the zeros of χ (η + iξ ) in the η, ξ plane
for d = 0.3, τ = 10. They lie at the intersections of the curves
Re(χ (z)) = 0 (black) and Im(χ (z)) = 0 (red). To resolve the
zeros near the origin, we zoom in with Fig. 8.

We note that the two roots near the origin have positive real
parts, corresponding to spiraling outward in the x, y plane. The
remaining roots are well separated from the origin, forming
complex conjugate chains with all real parts less than some
negative bound, corresponding to exponential contraction.
The approximate locations of these roots can be obtained [5]
by keeping only the leading large-z terms in the characteristic
equation,

zeτ z + b = 0,

that is,

z = τ−1 ln(−b/z).
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FIG. 8. Zoom of the central portion of Fig. 7. The imaginary axis
η = 0 is a thin blue line.

Asymptotically, the roots zn form complex-conjugate chains
with

Im(zn) = ±τ−1
(π

2
+ 2πn

)
,

Re(zn) = τ−1 ln

(
bτ

π
2 + 2πn

)
, n = 1, 2, . . . (5)

The location of the infinitely many roots of the character-
istic function for τ = 10, d = 0.3, is typical for region I in
Fig. 2. The critical case for τ = 10, lying on the critical curve
C, is shown in Fig. 9, while supercritical and subcritical ex-
amples for d = 0.8 are presented in Fig. 10. In each case, the
two dominant roots near the origin determine the asymptotic
behavior.

To calculate the critical curve C with high precision, we set
η = 0 in Eqs. (3) and (4),

−ξ 2 + b(d )[c(d ) cos τξ + ξ sin τξ ] = 0,

(c(d ) − a(d ))ξ + b(d )[−c(d ) sin τξ + ξ cos τξ ] = 0,

solving numerically for d and ξ . For τ = 10, shown in Fig. 9,
this yields

d = dcrit = 0.57607078340452299,

ξ = ±i ω, ω = 0.014667757818838299.

The asymptotic long-term behavior of a typical solution with
critical d is thus motion on an ellipse with angular frequency
ω. The nonleading part of the solution falls off exponentially,
with the rate dominated by the root of the characteristic equa-
tion on the negative real axis. This can be obtained by setting
ξ = 0 in Eq. (3),

η2 + [c(d ) − a(d )]η + b(d )e−τη[η + c(d )] = 0,

to obtain

η = −0.28386336427345445.

FIG. 9. Zeroes of χ (z) for τ = 10, d = 0.5760707834045229
(critical) lie at intersections of the black and red curves on the
imaginary axis (blue).

The asymptotic behavior thus emerges rapidly during a single
oscillation period 2π/ω.

The position η of the subdominant root on the negative real
axis can be calculated for arbitrary τ and d using the above
equation. The results for selected τ values is shown in Fig. 11.

In Ref. [5] it is shown that for arbitrary continuously differ-
entiable x(t ) on the initial interval −τ � t � 0, a solution of
the DDE exists for all t � 0 in the form of a convergent sum of
exponential solutions, ezkt , zk a root of the characteristic func-
tion. To illustrate, let us imagine a thought-experiment for the
case τ = 10, d = dcrit . To set up simple initial conditions, we
start with the upwelling close to y = 0 and hold the plate fixed
at x = x0, 0 < x0 � L by placing a bar across the fluid surface
at x = x0. The plate presses against the bar until some time
t > τ when y reaches the value (1 − b/a)x0, at which point ẋ
decreases through zero and the plate starts moving toward the
boundary at x = −L. The bar is now removed, having served
only to set up the initial conditions. The solution of the DDE is

FIG. 10. Zeroes of χ (z) for d = 0.8 and (a) τ = 20 (supercriti-
cal) and (b) τ = 45 (subcritical) lie at intersections of the black and
red curves, with negative and positive real parts, respectively.
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FIG. 11. Position of subdominant root of the characteristic equa-
tion on the negative real axis, for 0.01 � d � 0.99, τ = 5 n, n =
1, 2, . . . , 9.

now a superposition of exponentials exp znt , where zn are the
roots of the characteristic function χ (z). For asymptotically
long times, only the contributions from the conjugate roots on
the imaginary axis, z±1, are relevant.

Using the Laplace transform method of Ref. [5] applied to
our release-from-rest initial conditions, we find the asymptotic
solution (

xas(t )
yas(t )

)
= F (z+1)ez+1t + F (z−1)ez−1t ,

where F (z) is given by

x0e−τ z

χ ′(z)

(
z + c −a

c z − a + be−τ z

)(
1 − b

z (1 − e−τ z )
1 − b

a

)
.

The asymptotic orbit is an ellipse with maximum x coordinate
given by

xmax = xas(tmax), tmax = 1

|z+1| [arg F (z+1) + jπ ], j ∈ Z.

Inserting τ = 10, d = dcrit , we get

xmax = 0.9991135304636472 . . . x0.

The initial conditions of our thought-experiment were used,
with four different x0 values, to generate the critical orbits
shown in Fig. 4. In one case, we chose x0 = L, where the
asymptotic ellipse comes close (but not quite!) to grazing the
boundary.

The same method used in our critical example also al-
lows for an exact calculation of the asymptotic x, y orbits for
any τ, d with d � dcrit (τ ), provided one uses the prescribed
release-from-rest initial conditions. The same cannot be said
for subcritical orbits. Such a system may never actually ex-
perience the complex-exponential asymptotic behavior, since
locking with the boundaries will periodically reset the initial
conditions of the DDE. For such parameter values, a different
sort of analysis will be given in the next section.

IV. PERIODIC ATTRACTOR FOR LOCKING TIME l � τ

We now begin a systematic study of motion on the sub-
critical periodic attractor. For given τ , we define d∗ as the

value of d such that the residence time at x = ±L, the locking
time l , is precisely the delay time τ . For arbitrary d � d∗,
at the moment of unlocking at x = ±L, the ẋ = 0 condition
implies y = (1 − b/a)L. This allows us to construct explicitly
the part of the orbit which travels from x = L to x = −L as a
piecewise analytic periodic function of time. As we will see
in Secs. V and VI, this characterization persists for almost all
d values between d∗ and dcrit , but the construction acquires
considerable additional complexity. Before taking that on, we
proceed with the details of the construction for d � d∗.

We begin by computing the orbit for the first τ seconds of
its flight, where Eqs. (1) take the forms

ẋ(t ) = a(x(t ) − y(t )) − b L, ẏ(t ) = c(x(t ) − y(t )),

with initial conditions

x(0) = L, ẋ(0) = 0, y(0) =
(

1 − b

a

)
L.

One easily verifies the solution

x1(t ) = x1,0 + x1,1t + xe
1,0eαt ,

y1(t ) = y1,0 + y1,1t + ye
1,0eαt , α = a − c,

where

x1,1 = y1,1 = bcL

α
, ye

1,0 = −bc2L

aα2
, xe

1,0 = a

c
ye

1,0,

y1,0 = (1 − b/a)L − ye
1,0, x1,0 = y1,0 + 1

c
y1,1.

Extending the orbit all the way to arrival, at time f , at the
left-hand boundary, x = −L, we find a continuous solution of
the DDE of the following form. For

(n − 1)τ � t � nτ, n = 0, 1, . . . N, (N − 1)τ < f � Nτ,

we have, writing s = t − (n − 1)τ ,

x(t ) = xn(s) =
n∑

k=0

xn,k sk +
n−1∑
k=0

xe
n,k skeαs,

y(t ) = yn(s) =
n∑

k=0

yn,k sk +
n−1∑
k=0

ye
n,k skeαs.

In what follows we will refer to linear combinations of terms
sk, k = 0, . . . , n, and skeαs, k = 0, . . . , n − 1, as basis func-
tions of degree n. Starting with

x0(s) = L, y0(0) = (1 − b/a)L, (6)

the basis function coefficients for successive segments of the
flight are obtained by recursive application of a sequence of
linear equations. For n = 1, 2, . . . , N , we have

xn,n = yn,n = b c

nα
xn−1,n−1, (7)

ye
n,n−1 = − b c

(n − 1)α
xe

n−1,n−2, (n �= 1), (8)

xe
n,n−1 = a

c
ye

n,n−1, (n �= 1). (9)
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Moreover, for fixed n � 2 and k = n − 1, . . . , 1,

yn,k = 1

kα
[b c xn−1,k−1 + k(k + 1)yn,k+1], (10)

xn,k = yn,k + k + 1

c
yn,k+1, (11)

and for fixed n � 3 and k = n − 2, . . . , 1,

ye
n,k = − 1

kα

[
b c xe

n−1,k−1 + k(k + 1)ye
n,k+1

]
, (12)

xe
n,k = a

c
ye

n,k + k + 1

c
ye

n,k+1. (13)

All of the above relations are consequences of the DDE,
rewritten in the form

ÿn(t ) = α ẏn(t ) − b c xn−1(t − τ ), (14)

xn(t ) = yn(t ) + 1

c
ẏn(t ), n = 1, . . . , N. (15)

To complete the recursion, the constant terms are fixed by
continuity of x(t ) and y(t ) at t = (n − 1)τ :

ye
n,0 = c

α

[
xn(0) − yn(0)) − 1

c

(
yn,1 + ye

n,1

)]
, (16)

xe
n,0 = a

c
ye

n,0 + 1

c
ye

n,1, (17)

yn,0 = yn(0) − ye
n,0, (18)

xn,0 = yn,0 + 1

c
yn,1. (19)

Note the recursive structure of the above relations: each
coefficient is a linear combination of previously calculated
coefficients. In the following we will denote the sequence of
recursion Eqs. (7)–(19) as

ξn = R
(
ξn−1, ξn(0)

)
, (20)

where

ξn(s)
def= (

xn(s), yn(s)
)
.

Note that, from Eq. (7), the n = 1 recursion uses only
x0,0 = L.

Continuity relations for time-derivatives at the points t =
nτ can easily be derived from the DDE and the continuity
of x(t ), y(t ), and ẋ(t ) at t = 0. Specifically, at t = nτ , the
first n + 1 derivatives of x(t ) and the first n + 2 derivatives
of y(t ) are continuous. While remaining piecewise analytic,
the orbit becomes progressively smoother as time progresses,
until the collision with the wall at the flight time f produces a
discontinuity in ẋ(t ).

To illustrate our construction, we plot, in Fig. 12, the four-
segment continuous, piecewise analytic, orbit for τ = 35, d =
0.3, and 0 � t � f .

Now let us follow the orbit beyond the arrival at

x = xN ( f ) = −L, y = yarr = yN ( f ). (21)

While the right-hand side of the ẋ DDE remains negative, the
plate remains locked at the boundary, with x(t ) = −L and the
upwelling center moving leftward according to

ẏ = −c(L + y),

FIG. 12. Flight portion of the orbit for τ = 35, d = 0.3. The
flight starts from rest at x = L = 0.2 and ends with the sudden
locking at x = −L = −0.2 (black dot). Red dots are placed where
t = 0, τ, 2τ, 3τ .

with the solution

y(t ) + L = (yarr + L)e−c(t− f ).

After a locking time

l = 1

c
ln

a(L + yarr )

bL
, (22)

the upwelling center reaches y = −(1 − b/a)L, where the
right-hand side of the ẋ DDE changes sign, signaling unlock-
ing of the plate. Since the unlocking values of x and y are just
the negatives of the initial departure coordinates, and since
the DDE’s are invariant under inversion in the x, y plane, we
see that the return trip of the plate from x = −L to x = L
is just the calculated orbit for 0 � t � f inverted through
the origin. The plate collides (and locks) at the right-hand
boundary at t = 2 f + l and the upwelling center continues
rightward according to

ẏ = c(L − y).

The orbit returns to its initial point at time

T = 2 f + 2 l, (23)

and then repeats the cycle periodically. To calculate f , l , and T
for given d � d∗, we solve Eq. (21) numerically and substitute
into Eqs. (22) and (23). The results for τ = 10 are plotted in
Figs. 13 and 14.

FIG. 13. Flight time f and locking time l for τ = 10, d � d∗ =
0.57453138926606815.
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FIG. 14. Period T of the attractor for τ = 10, d � d∗.

To calculate d∗ as a function of τ , we solve the equation

l (τ, d∗) = τ

numerically for d∗, using the secant method. We have
achieved 40-digit precision for all the quantities f , d∗, l, T .
This level of precision is made possible by the use of analytic
recursion relations, thus avoiding the truncation errors of nu-
merical integration techniques. The function d∗(τ ) is plotted
in Fig. 15. A new phase diagram in the d, τ plane is shown in
Fig. 16, where the subcritical region I has been separated into
two regions, Ia and Ib, by the curve C ′ on which d = d∗(τ ).

V. FIRST STEP BEYOND d = d∗

Having studied in detail the piecewise analytic periodic
orbits of region Ia, let us now venture into the more complex
region Ib where d∗ < d < dcrit . The numerical experiments
of Sec. II suggest that the qualitative behavior as a nonlinear
dynamical system does not change drastically as one enters
this region from below. We continue to have two periodic
orbits, a repellor fixed at x = y = 0 and a nontrivial periodic
attractor composed of alternating flights and locking intervals.

FIG. 15. Plate lengths d∗(τ ) for 0 � τ � 100. The red dots in-
dicate the points where the number of analytic pieces of the orbit
increases by one, starting with the jump from two to three at the
rightmost dot.

FIG. 16. New phase diagram in d, τ parameter space. The curve
C ′ corresponds to d = d∗(τ ), for which the locking time l is equal to
the delay time τ .

Our goal is an explicit piecewise-analytic decomposition of
the attracting orbit.

To begin our discussion, let us consider the case τ = 35,
chosen because of its relatively short flight time (less than 4τ ).
The relevant range of d values is

(d∗, dcrit ) = (0.6135270200322760, 0.7645997799038989).

For d < d∗, one can show that, as in the example of
Fig. 12, the flight contains successive time intervals Sn =
[(n − 1)τ, nτ ], n = 1, 2, 3, 4, on which the orbit is repre-
sented by a pair of basis functions (xn(s), yn(s)) of degree n,
linked by the recursion function R and continuity relations.
We want to explore the possibility that the periodic attrac-
tor for d just above d∗ also has a piecewise basis-function
decomposition. Once again, the basis functions for intervals
S1, S2, S3, S4 would be linked by R, but now there would be
interspersed intervals S5, S6, S7, S8 of length δ1 = τ − l (as in
Fig. 17). We conjecture that these, too, correspond to basis-
function solutions of the DDE of degrees 5,6,7,8, respectively,
with coefficients related by R. We seek a self-consistent solu-
tion of the ZZ equations based on this assumption.

FIG. 17. Plot of the attractor for τ = 35, d = 0.63, with seg-
ments ξ j labeled ±0, ±1, . . . , ±8. With decreasing d , the segments
5,6,7,8 shrink, vanishing at d = d∗ = 0.6135 . . ..
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Further assumptions are continuity, which implies the rela-
tions

x5(0) = x0(l ), x1(0) = x5(δ1), x6(0) = x1(l ), etc.,

and inversion symmetry of the periodic orbit. The latter re-
quires that the return flight, from x = −L to x = L, is just the
inverted image of the outgoing flight, with a corresponding
decomposition into time intervals S−n, with basis-function co-
efficients equal to the negatives of their outgoing counterparts.

The above prescription does not yet pin down a complete
solution to the ZZ equations. In particular, we need to link seg-
ments S4 and S5, coordinate the set of interlocking continuity
relations, and, finally, bring into play the locked motion which
connects the outgoing and return flights at both ends. The fact
that S4 is of length δ2 < l is not a problem, the coefficients of
x4(s), y4(s) are still obtained from those of x3(s), y3(s) via R.
However, solving the DDE for S5 requires knowledge of x(t )
in an interval of length δ1 contained in S−4 of length δ2 > δ1.
Thus, before applying R, we must shift the origin of the local
time variable by δ2 − δ1.

Let us denote by (X̂n, Ŷn) the upper endpoints of orbit
segments ξn, n = 0, 1, . . . 8. We fix δ1, δ2, and l = τ − δ1, as
well as

X̂0 = L, X̂4 = −L,

and solve Eqs. (1) for the initial locking interval,

ξ0(s) = (L, L − (L + Ŷ4)e−c s). (24)

We then calculate, in order, all ξn as linear functions of the
unknown (X̂n, Ŷn):

ξ j = R
(
ξ j−1, (X̂ j+5, Ŷj+5)

)
, j = 1, 2, 3, 4,

ξ5 = R
(
Tδ2−δ1 (−ξ4), (X̂0, Ŷ0)

)
,

ξ j = R
(
ξ j−1, (X̂ j−5, Ŷj−5)

)
, j = 6, 7, 8,

where the translation operator T�s performs the substitution
s → s + �s.

Defining the length of interval Sn as

wn =
⎧⎨
⎩

l n � 3,

δ1 5 � n � 8,

δ2 n = 4,

we find that the 16 equations,

xn(wn) = X̂n, yn(wn) = Ŷn, n = 1, . . . , 8,

provide a 16-dimensional matrix equation for the unknown X̂n

and Ŷn. Note that this list includes Ŷ0, but not X̂4. If the matrix
relation is nonsingular, which we must verify for our given
δ1, δ2, we can solve for all segment endpoints. Plugging back
into the recursion relations gives numerical values for all the
basis-function coefficients. To calculate δ1 and δ2, we need to
solve two additional equations,

ε1(δ1, δ2) = y0(l ) = L − (L + Ŷ4)e−cl − Ŷ0 = 0,

ε2(δ1, δ2) = ẋ5(0) = a (L − Ŷ0) + b x4(δ2 − δ1) = 0.

The first of these applies Eq. (24) to connect the initial point,
(L,−Ŷ4), on the locked interval to the final point, (L, Ŷ0).
The second equation uses the first equation of Eqs. (1) to
set ẋ to zero at the moment of unlocking. Together these

equations allow us to determine uniquely the values of δ1 and
δ2, hence l = τ − δ1, and thereby complete the self-consistent
construction of the periodic attractor.

We carried out the above scheme for d = 0.63 using
Mathematica R© to implement the eight successive recursion
operations and to solve the matrix equation for the segment
endpoints. This allowed us to calculate ε1 and ε2 for any given
input δ1 and δ2. We then systematically reduced the errror
function

√
ε2

1 + ε2
2 by making small changes in δ1 and δ2.

Using 16-digit precision, we obtained 7-digit values for δ1 and
δ2, while for 40- and 100-digit precision, we obtained values
correct to 27 and 51 digits, respectively,

δ1 = 2.41266836668223750021815303199 . . . ,

δ2 = 13.1251394179853464079249424144 . . . .

We then computed all of the basis-function expressions for the
orbit, plotted in Fig. 17.

VI. PERIODIC ORBIT CONSTRUCTION FOR ALL d AND τ

Our numerical explorations of Sec. II give strong evidence
for the existence of a nontrivial periodic attractor for each
possible plate length d and delay time τ in regions I a and
I b of the phase diagram. For I a, and on the boundary curve
C ′, the locking time l is at least as long as the delay time τ , the
outgoing flight is a chain of time intervals Sn of length δ1 = τ ,
plus one of length δ2 < δ1 if the flight time is not a multiple
of τ . The orbit on each Sn is a basis function ξn of degree n,
related to that on Sn−1 by the recursion operation R.

For I b, with l < τ , the situation is more complicated, as we
confirmed for τ = 35, d = 0.63 (see Fig. 17). For that case,
the temporal order of intervals Sn of lengths l, δ1, and δ2 on the
outgoing flight was easy to guess, specified by the itinerary

(0, 5, 1, 6, 2, 7, 3, 8, 4).

By assuming inversion symmetry and a basis-function form,
we were able, for given interval lengths δ1 and δ2, to determine
all coefficients using the recursion operation R. Precise values
of δ1 and δ2 were then obtained by solving simultaneously
the ẏ equation for locked phases and the unlocking condition
ẋ = 0.

We can follow the same pattern generally on I b, starting
with a systematic determination of the itinerary. We shall
see that the itinerary lengths increase without bound as one
approaches the critical line, with l tending to zero. A simi-
lar phenomenon will be seen to occur as one approaches a
“resonant” case where the half-period r and delay time τ are
rationally related.

A. Construction of the attractor

Let us now go through our procedure for constructing the
complete periodic attractor for all nonresonant subcritical τ

and d values. In following the details, the reader may find
helpful the illustrative example of Appendix B.

We begin with a Runge-Kutta simulation which we need
to obtain reliable values of the flight and locking times, good
enough to produce the relevant itinerary ι with a high degree
of certainty. An efficient algorithm for extracting the itinerary
is presented in Appendix A.
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Having calculated the itinerary, we then seek a solution
of the DDE on the outgoing flight portion of the orbit, as a
precise function of δ1 and δ2. We begin by treating the upper
endpoints (X̂n, Ŷn) of the N + 1 segments ξ0, ξ1, . . . , ξN as
unknowns, with the exception of X̂0 = L and X̂ι(N ) = −L. We
then construct, for n = 1, . . . , N , the basis-function ξn(s) by
applying the R function on ±ξn−1(s), with the minus sign for
tn < τ . The segment ξι(1) requires an additional origin shift,
since its partner segment under inversion results from the
truncation of the τ translate of ξι(1)−1. This is taken care of
by replacing s by s + σ in the expression for −ξι(1)−1, before
applying R, with σ = δ2 − δ1 if ι(N ) < ι(1) and σ = l − δ1

otherwise. The resulting ξn(s) depend linearly on the 2N un-
known endpoint coordinates. By setting

ξn(wn(δ1, δ2)) = (X̂n, Ŷn), n = 1, . . . . , N,

we obtain a 2N-dimensional matrix equation for the endpoint
coordinates.

As in the example of Sec. V, the final stage in the construc-
tion is to pin down the values of δ1 and δ2 through numerical
solution of the simultaneous equations

L − (L + Ŷι(N ) )e
−cl − Ŷ0 = 0, a(L − Ŷ0) + b xι(1)−1(σ )= 0,

(25)
with σ = δ2 − δ1 if ι(N ) < ι(1) and σ = l − δ1 otherwise.
With δ1 and δ2 in hand, we can complete the calculation all
X̂ j, Ŷj and ξ j (s), j = 0, . . . , N .

B. Sequence of itineraries for τ = 35

We now survey the sequence of itineraries encountered
as one continuously increases d from d∗ to its critical value
with the delay time τ held fixed at 35. Over the interval
d∗ = 0.613527 . . . � d � 0.764595 . . ., we performed over
80 fourth-order Runge-Kutta simulations of the ZZ equations,
using a time step �t = 0.01 = τ/3500 to extract accurate
values of the per-cycle flight time f , locking time l , and
half-period r = l + f on the attractor. Floating-point error
was avoided by using 100-digit precision and in each case
enough iterations were executed to ensure convergence to a
periodic attractor.

For d values approaching dcrit , the Runge-Kutta simu-
lations become excessively time-consuming. At that point
we make use of extrapolation to obtain values of f , l ,
and r. We find empirically that for 0.764 < d � 0.764595,
the Runge-Kutta based values of r can be accurately ap-
proximated by a fourth-degree polynomial in d − dcrit ,
while those for f and l are well fit by fourth-degree
polynomials in (d − dcrit )1/2. Specifically, with d̂ = dcrit −
d � 0.0006, dcrit = 0.7645997799038989, and rcrit = fcrit =
127.43079937722544,
r − rcrit

= 50.338381124842314 d̂ + 28989.66960524308 d̂2

− 3.6287890695628986 × 107 d̂3

+ 2.239854160114137 × 1010 d̂4,

f − fcrit

= −94.12242121842485
√

d̂ + 168.47472707701996 d̂

− 47.82488059320736d̂3/2+24.315355198260377d̂2,

l = 94.12220602939439
√

d̂ − 120.30313203961904 d̂

+ 544.8441322617502d̂3/2−1416.6075307376366d̂2.

Using the Runge-Kutta values for d � 0.764595 and the
extrapolated results for 0.764595 < d < dcrit , we have used
the algorithm of Appendix A to calculate the itineraries up to
d = 0.76459977902, within 10−9 of the critical value. Over
that range, the locking time decreases monotonically, while
the flight time (respectively, cycle period) increases (respec-
tively, decreases) monotonically. The d intervals of constant
itinerary are conveniently grouped into families, on each of
which the half-period r decomposes as

r = r0 l + (r1 + n r0) δ1 + r0 δ2 (26)

or

r = r0 l + r0 δ1 + (r2 + n r0) δ2, (27)

where n ranges over a finite or infinite sequence of nonneg-
ative integers. Each family is bounded by special d values
which we call resonances and cross-overs. At a cross-over,
either δ1 or δ2, having tended to l from below, discontinuously
drops to zero. The itinerary of the cross-over point is well
defined, namely that of the successor family. At a resonance,
there is a rational relation between r and τ , with δ1 = δ2 = 0.
At such a point, the orbit cannot be assigned an itinerary,
not even a countably infinite one. Only the τ -translates of
the boundary interval of length l are basis functions, and
these alternate with non-basis-function pieces of the orbit. The
results of our calculations are displayed in Table I.

An interesting feature of the itinerary families is the extent
to which the content of Table I is constrained by number-
theoretic considerations. This is most obvious in the case of
resonances, where there is a rational relation between the two
main time scales of the attractor, the cycle half-period r and
the delay time τ . The possibly resonant values of r/τ can be
read off from the list of continued-fraction approximants to
the critical ratio rcrit/τ = 127.43079937722544/35, namely

3

1
,

4

1
,

7

2
,

11

3
,

40

11
,

51

14
,

91

25
,

142

39
,

517

142
,

659

181
,

4471

1228
,

5130

1409
,

30121

8273
,

35251

9682
,

276878

76047
, . . .

Due to the monotonic decrease of r(d ), only those fractions
greater than the critical ratio are available for the resonances,
i.e., 4, 11/3, 51/14, 142/39, 659/181, etc. These numbers
can easily be interpreted in terms of our “slider” model of
Appendix A: an m/n resonance occurs if the slider arrives
precisely at the target segment ( f , r) in m steps of size τ ,
having traversed n half-cycles of length r, provided that it
has not overlapped the target interval previously. Looking
at Table I, we see that resonances indeed occur for ra-
tios 4/1, 11/3, 659/181, 5130/1409, 35251/9682, but not for
51/14 and 142/39, for which there are previous overlaps at 40
and 51 steps, respectively. We note also that the numerators of
the rational approximants also play a role for the decompo-
sitions of r of the various families: the coefficient r0 is from
that set, since it is equal to the number of steps required for
the slider to overlap the target segment for the first time, a
near-resonant event.
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TABLE I. Itinerary families for τ = 35.

d Itinerary family

0.613527 . . . d∗ for τ = 35 : l = τ, δ1 = 0
r = 4 l + 4 δ1 + (4 n + 1) δ2,

τ = l + δ1 + n δ2,

n = 0, 1, . . . ,

0.679683 . . . Resonance:r = 4τ, δ1 = δ2 = 0
r = 4 l + (4 n + 7) δ1 + 4 δ2,

τ = l + (n + 2) δ1 + δ2,

n = . . . , 1, 0.

0.748004 . . . Cross-over: δ1 = 0
r = 11 l + 11 δ1 + (11 n + 4) δ2,

τ = 3 l + 3 δ1 + (3 n + 1) δ2,

n = 0, 1, . . .

0.75424 . . . Resonance:3r = 11τ, δ1 = δ2 = 0
r = 11 l + (11 n + 29) δ1 + 11 δ2,

τ = 3 l + (3 n + 8)δ1 + 3 δ2,

n = . . . , 1, 0
0.763809 . . . Cross-over: δ1 = 0

r = 40 l + 40 δ1 + 11 δ2,

τ = 11 l + 11 δ1 + 3 δ2

0.764091 . . . Cross-over: δ2 = 0
r = 51 l + 40 δ1 + 51 δ2,

τ = 14 l + 11 δ1 + 14 δ2

0.764507 . . . Cross-over: δ1 = 0
r = 91 l + 91 δ1 + 51 δ2,

τ = 25 l + 25 δ1 + 14 δ2

0.764508 . . . Cross-over: δ2 = 0
r = 142 l + (142 n + 91) δ1 + 142 δ2,

τ = 39 l + (39 n + 25) δ1 + 39 δ2,

n = 0, 1, 2, 3
0.764595 . . . Cross-over: δ1 = 0

r = 659 l + 659 δ1 + (659 n + 142) δ2,

τ = 181 l + 181 δ1 + (181 n + 39) δ2,

n = 0, 1, . . .

0.76459700 . . . Resonance:181 r = 659 τ, δ1 = δ2 = 0
r = 659 l + (659 n + 3812) δ1 + 659 δ2,

τ = 181 l + (181 n + 1047)δ1 + 181 δ2,

n = . . . , 1, 0, 1
0.764599711 . . . Cross-over: δ1 = 0

r = 5130 (l + δ1) + (5130 n + 659) δ2,

τ = 1409(l + δ1) + (1409 n + 181) δ2,

n = 0, 1, . . .

0.7645997280 . . . Resonance:1409 r = 5130 τ, δ1 = δ2 = 0
r = 5130 (l + δ2) + (5130 n + 24991) δ1,

τ = 1409(l + δ2) + (1409 n + 6864 δ1,

n = . . . , 1, 0, 1
0.7645997284 . . . Cross-over: δ1 = 0

r = 35251 (l + δ1) + (35251n + 5130) δ2,

τ = 9682 (l + δ1) + (9682 n + 1409) δ2,

n = 0, 1, . . .

0.76459977902 . . . Resonance:9682 r = 35251 τ, δ1 = δ2 = 0

C. Application to τ = 10

The value τ = 35 was chosen for illustrative purposes,
making possible explicit high-precision constructions of the
subcritical periodic attractors as well as a detailed account of

TABLE II. Near-critical values of d , l , and r for τ = 10.

d l r

0.57605 1.2574117154 214.1816426056
0.576055 1.0971675561 214.1820799154
0.57606 0.9082388155 214.1825300724
0.5760625 0.7967248754 214.1827607752
0.576065 0.6664084711 214.1829959212
0.5760707834 0 214.1835645497

the piecewise analytic behavior as one approaches the crit-
ical curve in parameter space. Now we want to apply what
we have learned to a delay time encountered in the actual
ZZ experiments, namely τ = 10. As before, we carry out a
number of modified Runge-Kutta simulations, with five-point
interpolation employed to capture accurately the contacts with
the boundaries at x = ±L. These give us, for each d , reliable
values for the locking time l and half-period r, with the flight
time f given by r − l . We display the d , l , and r values,
rounded to 10-digit accuracy (comparable to the truncation
accuracy of the numerical integration), in Table II.

This information is fed into our auxiliary “slider” model
of Appendix A to calculate the itinerary patterns. The Runge-
Kutta simulations become increasingly time-consuming as we
approach the critical value of d , and so we fit our data with
low-degree polynomials in d̂ = d − dcrit for r and in d̂1/2 for
l and f . In the τ = 35 example, this worked well, and it turns
out to be at least as effective for τ = 10 in exploring the
near-critical regime. Specifically, using l as our independent
variable, tending to zero at criticality,

r(l ) = 214.1835645496504767 − 0.0012991199446723 l

+0.0000532869912895 l2,

d (l ) = 0.5760707834045230 − 0.0000129857320455 l2

−1.0095082304893257 × 10−7 l4.

The function r(l ) − rcrit , fitting the values of Table II, is
shown in Fig. 18.

The successive itinerary families for d∗ < d < dcrit

are shown in Table III. The last entry corresponds to

FIG. 18. The function r(l ) − rcrit with the points of Table II
shown as red dots.
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dcrit − d (10−5) = O(10−15). As explained in Appendix A, the
family itineraries can easily be extracted from the listed de-
compositions of r and τ .

The pattern once again reflects the sequence of continued-
fraction convergents of the critical r/τ ratio, namely

21, 43
2 ,

,
107

5 , 150
7 , 257

12 , 921
43 , 1178

55 , 2099
98 , 17 970

839 , 20 069
937 , 12 601 233

588 338 ,

12 621 302
589 275 , 37 843 837

1 766 888 , 50 465 139
2 356 163 , 88 308 976

4 123 051 , 138 774 115
6 479 214 , 227 083 091

10 602 265 , . . .

Possible resonant values are the alternating convergents
21,

,
107
5 , 257

12 , . . ., none of which is realized in Table III, in
striking contrast to the τ = 35 example. There is, however,
an interesting new feature. The convergent 20 069/937 is
remarkably close to the critical value, so close that the nu-
merator of the next convergent is over 600 times 20 069. This
reflects the appearance in the continued fraction expansion of
an unusually large denominator,

12 601 233

588 338
= 21 + 1

2 + 1
2+ 1

1+ 1
1+ 1

3+ 1
1+ 1

1+ 1
8+ 1

1+ 1
627

.

As one decreases l from 0.0105 to .000017, almost three
orders of magnitude, the size of the intervals δi decreases
steadily, just as one might expect for a resonance. The latter
is not possible, of course, since 20 069/937 is slightly greater
than the critical ratio. We have verified that the family termi-
nates at n = 627, and have found a member of the next family,
listed at the end of Table III.

VII. CONCLUSIONS

The model used by Zhong and Zhang [4] to successfully
describe the motion of an insulating plate on the surface of
a convecting fluid turns out to be an interesting dynamical
system in its own right.

As shown in Ref. [4] and revisited in Sec. II above, the
system obeys linear differential equations with delay time τ

for the plate length larger than a critical value dcrit . These
equations can be solved analytically, providing an accurate
phase diagram in the d, τ plane and a relatively simple de-
scription of the approach to dcrit from above.

In contrast, the subcritical behavior is far from simple.
Given unavoidable locking at the boundaries, the system is
nonlinear, with orbits which are piecewise analytic. From
high-precision numerical integration we have verified empiri-
cally that the orbit, for a given d � dcrit tends asymptotically
to a periodic orbit which alternates between locked and un-
locked motions. For d approaching criticality, the locking
phase shortens, and convergence to the periodic attractor is
nontrivial, requiring good control over both the time incre-
ment �t and the overall time t of the numerical integration.

TABLE III. Itinerary families for τ = 10.

r = 21 l + 21 δ1 + (1 + 21n) δ2,

τ = l + δ1 + (0 + n) δ2, n = 0, 1,

r = 43 l + (21 + 43n) δ1 + 43 δ2,

τ = 2 l + (1 + 2n) δ1 + 2 δ2, n = 0, 1,

r = 107 l + 107 δ1 + 43 δ2,

τ = 5 l + 5 δ1 + 2 δ2,

r = 150 l + 107 δ1 + 150 δ2,

τ = 7 l + 5 δ1 + 7 δ2,

r = 257 l + 257 δ1 + (150 + 257n) δ2,

τ = 12 l + 12 δ1 + (7 + 12n) δ2, n = 0, 1, 2,

r = 921 l + 257 δ1 + 921 δ2,

τ = 43 l + 12 δ1 + 43 δ2,

r = 1178 l + 1178 δ1 + 921 δ2,

τ = 55 l + 55 δ1 + 43 δ2,

r = 2099 l + (1178 + 2099n) δ1 + 2099 δ2,

τ = 98 l + (55 + 98n) δ1 + 98 δ2, n = 0, 1, . . . , 7,

r = 17 970 l + 17 970 δ1 + 2099 δ2,

τ = 839 l + 839 δ1 + 98 δ2,

r = 20069 l + (17 970 + 20 069n) δ1 + 20 069 δ2,

τ = 937 l + (839 + 937n) δ1 + 937 δ2, n = 0, 1, . . . , 627,

r = 12621302 l + 12 601 233 δ1 + 12 621 302 δ2,

τ = 589275 l + 588 338 δ1 + 589 275 δ2

Fortunately, the subcritical orbits can be determined analyt-
ically, making use of the computational algebra and arbitrary
precision arithmetic available with Mathematica. The algo-
rithm was derived in Secs. IV–VI above, with applications
to the values τ = 35 and τ = 10. Each orbit is inversion
symmetric and has two locking intervals alternating with
two flights. Each flight consists of n segments, with each
segment a linear combination of terms of the form (t − t0)k
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or (t − t0)ke(a−c)t , k = 0, . . . , kmax � n. Recursion and conti-
nuity relations provide an algorithm for determining all the
numerical coefficients with arbitrary precision.

A combination of numerical and analytical results allowed
us to obtain empirical power-series for the the flight and lock-
ing intervals as d approaches dcrit . A rigorous mathematical
derivation of these results is lacking at the present time. If
future investigations can establish these formulas, our analysis
shows how a rigorous description of the evolution of the
piecewise analytic structure of the orbits would follow.

It is interesting to compare the near-critical behavior of
the deterministic ZZ model with that of the same model with
noise added. We deal with this in Appendix C.
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APPENDIX A: ALGORITHM FOR
DETERMINING ITINERARIES

For given τ and d∗ � d < dcrit , we can easily determine
the itinerary using the following algorithm, provided we have
in hand (e.g., from a numerical simulation) accurate values
of the locking time l and flight time f . Consider a reentrant
line segment L = {t : 0 � t � r = f + l} with a 1D slider of
length w initially having w = l . We translate the slider along
the t axis in steps of length τ modulo r. At the nth step, the
slider covers a half-open interval Sn of length wn and lead-
ing endpoint tn. If the slider overlaps the interval ( f , r), the
overlap portion is “eaten” and the remaining piece proceeds
forward. Eventually, the truncated slider enters ( f , r) fully and
the process halts. At that point, the reentrant time axis L has
been completely covered by the intervals Sn and their temporal
order is the itinerary. A precise statement of the algorithm is
the following:

(1) Step 0: t0 = 0,w0 = l .
(2) Step n:

(i) If tn + τ <= f , set tn+1 = tn + τ,wn+1 = wn.
(ii) If tn + τ � r + wn, set tn+1 = tn + τ − r,wn+1 =

wn.
(iii) If r < tn + τ < r + wn, set tn+1 = wn+1 = δ1 =

tn + τ − r.
(iv) If f < tn + τ < f + wn, set tn+1 = f ,wn+1 =

δ2 = f − tn − τ + wn.
(v) If f + wn � tn + τ � r, record N = n and halt.

(3) Output the sequences of wn and tn, as well as the
itinerary, the permutation ι of {0, 1, . . . , N} such that tι(n+1) =
tι(n) + wn+1.

It is not difficult to prove that the closed intervals of length
w1, . . . ,wN completely cover the flight, sharing only their
mutual endpoints. Moreover, there are only two truncation
events, producing intervals of lengths δ1 and δ2 at positions
1 and N of the itinerary, respectively. These events can occur
in either order.

The identities

r =
N∑

n=0

wn, τ = t1 =
M∑

k=1

wι(k), M = ι−1(1), (A1)

allow us to decompose f , r, and τ as integer linear combina-
tions of l , δ1, and δ2. The itinerary can be recovered from a
knowledge of N and M alone:

ι−1(k) = kM mod (N + 1).

APPENDIX B: EXAMPLE OF ORBIT CONSTRUCTION
FOR REGION I b

In this Appendix we illustrate the attractor orbit con-
struction with a step-by-step description of the case τ = 35,

d = 0.7.

1. Numerical integration of the ZZ equations

The first stage of the construction is a numerical integration
of the ZZ equations of motion using the modified Runge-Kutta
scheme of Sec. II, with 100-digit working precision, time step
0.01s, and a total time of 2000 τ = 70 000. By the end, the
orbit has converged to a periodic attractor, an approximation
to the exact attractor we hope to construct, with values for the
locking time l , flight time f and half-period r

l = 21.5620605711388, f = 114.504570386893, (B1)

r = 136.066630958031. (B2)

2. Partition of the time axis

Using the numerically generated values of l, f , and r, the
“slider” algorithm of Appendix A generates the partition of
the time axis displayed in Fig. 19, with the itinerary and its
inverse,

ι = (0, 4, 8, 12, 16, 1, 5, 9, 13, 17, 2, 6, 10, 14, 18,

3, 7, 11, 15),

ι−1 = (0, 5, 10, 15, 1, 6, 11, 16, 2, 7, 12, 17, 3, 8, 13,

18, 4, 9, 14),

and constitutive relations

r = f + l = 4l + 11δ1 + 4δ2, τ = l + 3δ1 + δ2. (B3)

From the numerical integration and partition of the time
axis, we can now display, in Fig. 20, the attractor partitioned
into 38 segments

ξ± j (s) = (
x± j j(s), y± j (s)

)
, 0 � s � w j, j = 0, . . . , 18.

3. Recursive solution

Our recursion begins with formulas for the locked portions
of the orbit,

ξ±0(s) = ±(
L, L − (L + Ŷ15) e−cs

)
.
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FIG. 19. Partition of the time axis into intervals Sn of length wn ∈ {l, δ1, δ2}. In the figure, Sn is represented by its integer subscript, boxed,
placed below the time axis, with the width wn placed directly above. Also noted are the event times t = 0 (flight launch), τ, 2τ, 3τ, f (flight
arrival), and r (half-period). The order and widths of the segments are determined by the slider model of Appendix A.

Recall that the arrival point of the incoming flight is
(−X̂15,−Ŷ15), where X̂15 = −L and Ŷ15 = y15(w15). The latter
quantity is unevaluated at this stage.

The remaining orbit segments are obtained by sequential
application of the operator R of Eq. (20), embodying the
sequence of linear updates in Eqs. (7)–(19). In particular,
defining the predecessor function

π ( j)
def= ι(ι−1 − 1),

we have

ξ j = R
(
ξ j−1, (X̂π ( j), Ŷπ ( j) )

)
, j = 1, 2, 3,

ξ4 = R
(
Tl−δ1 (−ξ3), (X̂π (4), Ŷπ (4) )

)
,

ξ j = R
(
ξ j−1, (X̂π ( j), Ŷπ ( j) )

)
, j = 5, 6, 7,

ξ8 = R
( − ξ7, (X̂π (8), Ŷπ (8) )

)
,

ξ j = R
(
ξ j−1, (X̂π ( j), Ŷπ ( j) )

)
, j = 9, 10, 11,

ξ12 = R
( − ξ11, (X̂π (12), Ŷπ (12))

)
,

ξ j = R
(
ξ j−1, (X̂π ( j), Ŷπ ( j) )

)
, j = 13, 14, 15,

ξ16 = R
( − ξ15, (X̂π (16), Ŷπ (16))

)
,

ξ j = R
(
ξ j−1, (X̂π ( j), Ŷπ ( j) )

)
, j = 17, 18.

Note the shortening and origin shift of segment −ξ3 prior
to application of R to obtain ξ4. The recursive construction
outputs each ξ j, j = 1, . . . , 18 as a basis function of degree
j, i.e.,

x j (s) =
j∑

k=0

sk (x j,k + xe
j,keαs), xe

j, j = 0,

y j (s) =
j∑

k=0

sk (y j,k + ye
j,keαs), ye

j, j = 0,

FIG. 20. Partition of the attractor into 38 segments ξ± j , labeled
by their respective subscripts. The endpoints (X̂ j, Ŷj ) are indicated by
red dots. Time t = 0 corresponds to the upper endpoint of ξ0.

where x j,k, xe
j,k, y j,k, ye

j,k are linear in X̂k, Ŷk, k = 0, . . . , 18
and, for j � 4, can depend on δ1 and δ2. For example, round-
ing off the floating-point numbers to six digits,

xe
4,1

= e−4αδ1−αδ2
{ − 9.76792 + 15.3608 X̂16

+ 1.13137 X̂17 + 0.153779 X̂18 + δ2
1[−0.00100012

+0.00288923 (X̂16 − Ŷ16)] + δ2
2[−0.0000625074

+0.000180577 (X̂16 − Ŷ16)] − 19.8615 Ŷ16

+δ1[−0.162006+0.309269X̂16+0.0298095X̂17

+δ2(−0.000500059+0.00144462X̂16−0.00144462Ŷ16)

−0.378061 Ŷ16 − 0.0298095 Ŷ17] + δ2(−0.0405016

+0.0773174 X̂16 + 0.00745238 X̂17 − 0.0945152 Ŷ16

−0.00745238 Ŷ17) − 1.48625 Ŷ17 − 0.153779 Ŷ18
}
.

4. Calculation of the segment endpoints

Setting

X̂0 = L, X̂15 = −L,

the segment endpoints X̂ j, j = 1, . . . 17, Ŷj, j = 0, . . . 18
can now be calculated as functions of δ1 and δ2, by solving
the 36 simultaneous linear equations

X̂ j = x j (w j ), Ŷj = y j (w j ), j = 1, . . . , 18.

Substituting into our expressions for x j (s) and y j (s) we can
now construct the entire piecewise analytic orbit for any given
δ1 and δ2.

5. Calculation of δ1 and δ2

The precise determination of δ1 and δ2 requires numerical
solution of Eqs. (25), namely

ε1(δ1, δ2) = L − (L + Ŷ15)e−c(35−3δ1−δ2 ) − Ŷ0 = 0,

ε2(δ1, δ2) = a(L − Ŷ0) + b x3(35 − 4δ1 − δ2) = 0,

with the appropriate substitutions for Ŷ0, Ŷ15, and x3(s). We
obtained values of δ1 and δ2 with 46-digit precision, namely
(with rounding)

δ1 = 3.933369038524113, δ2 = 1.637832312159231,

so that

l = 35 − 3δ1 − δ2 = 21.56206057226843,

r = 4l + 11δ1 + 4δ2 = 136.0666309614759.
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We note that the values of these quantities in Eqs. (B1)
and (B2), obtained via our modified Runge-Kutta integration,
agree with these values in their first 11 digits.

6. Complete solution

Substituting the self-consistent values of δ1 and δ2

back into our expressions for x j (s) and y j (s), j =
±0,±1, . . . ,±18, we obtain a complete high-precision
piecewise-analytic representation of the attracting orbit.

Throughout our self-consistent construction we have used
100-digit floating point arithmetic. We have checked that the
already impressive precision of δ1 and δ2 applies to x j (s) and
y j (s) as well.

APPENDIX C: THE STOCHASTIC
ZHONG-ZHANG MODEL

In this Appendix we consider a version of the Zhong-
Zhang model in which the motion of the fluid upwelling is
subjected to white noise [7]. We are especially interested
in seeing how the near-critical behavior of the deterministic
model is affected.

The x, y equations of motion become stochastic delay dif-
ferential equations (SDDE) in each of the modes, locked and
unlocked. When the plate is free of the boundaries, |x| < L,
we have

ẋ(t ) = a [x(t ) − y(t )] − b x(t − τ ),

ẏ(t ) = c [x(t ) − y(t )] + ẇσ (t ),

where a(d ), b(d ), and c(d ) are the same as in the deterministic
model, and wσ is the Wiener process with standard deviation
σ . When the plate is locked at one of the boundaries, x = ±L,
the equations reduce to

x(t ) = ±L, ẏ(t ) = c [±L − y(t )] + ẇσ (t ).

When the plate, initially free, reaches the boundary x = ±L
from the left (respectively, right), it is locked in place until the
quantity a(x(t ) − y(t )) − b x(t − τ ) changes sign from posi-
tive to negative (respectively, negative to positive), at which
point the unlocked motion resumes.

The plate length d is controlled by the experimenter, while
the delay time τ and noise factor σ are extracted by fitting
the data. This differs from the assumptions of Ref. [7], where
the simplifying assumptions τ = 0 and g = 0 are made, and
σ is assumed to be independent of d , taking the value 0.001 in
metric units (0.00288842 in our preferred units where D = 1)
based on an experimental fit for d = 0.8.

The overall structure of our solution of the stochastic ZZ
model equations is the same as for the deterministic version.
First, we break up the integration range into intervals

In = [nτ, (n + 1)τ ], n = −1, 0, 1, 2, . . . N − 1,

with each In subdivided into M time steps of duration �t =
τ/M. The dynamical evolution is described as a random pro-
cess (Ito process) linking x and y coordinates at time t + �t
to those at time t by means of a step accurate to order �t3/2.
The method, devised by Kloeden, Platen, and Schurz [6] (see
below for details), has been modified to accommodate a delay

term in the differential equation for x(t ). As in the determin-
istic case, we integrate the SDDE for each In in succession,
n = 0, 1, 2, . . . , N − 1, treating the x values of In−1 as a forc-
ing function. The values of x for all times of I−1, together with
the value of y at t = 0, are supplied as our initial condition. In
our theoretical simulations, the initial condition is arbitrary,
but its choice presumably will not affect long-time statistical
results relevant to the experimental data.

For the numerical integration prescription of the unlocked
motion, we adopt a relatively simple one with a moderate
amount of accuracy, namely the (strong) order-3/2 method
of Kloeden, Platen, and Schurz [6]. Suppose xn and yn are
the x and y coordinates at time n�t , where �t = τ/ν, ν ∈
Z is our chosen time increment. The xn are specified for
n = −ν . . . ,−1, 0, together with y0. For n = 0, . . . . , N , we
introduce coefficients

a1 = a(a − c)

2
, a2 = ab

6
, c1 = c(a − c)

2
, c2 = cb

6
,

and calculate

xn+1 = xn + (a �t + a1�t2)(xn − yn)

−a2(2xn+1−ν + xn−ν )�t2

−b

2
(xn+1−ν + xn−ν )�t − a �Zn,

yn+1 = yn + (c �t + c1�t2)(xn − yn)

−c2(2xn+1−ν + xn−ν )�t2 − c �Zn + �Wn,

with

�Wn = �t1/2r1, �Zn = 1

2
�t3/2

(
r1 + 1√

3
r2

)
.

Random numbers r1 and r2 are, for each n, independently sam-
pled from a normal distribution N (0, σ ). The terms involving
the delayed coordinates xn−ν and xn+1−ν arise from integrals
over x(t ) using the trapezoidal approximations,∫ tn−ν+1

tn−ν

x(t )dt ≈
(

x(tn−ν ) + x(tn−ν+1)

2

)
�t,

∫ tn−ν+1

tn−ν

∫ t

tn−ν

x(s) ds dt ≈
(

2x(tn−ν+1) + x(tn−ν )

6

)
�t2.

For the locked motion, we can use the same recursion formula
for yn, while holding xn fixed at ±L. The times of the locking
and unlocking events are determined using a standard root-
finding procedure (secant rule).

As in the deterministic case, it will be useful to explore the
nature of the solutions for different parameter values. First,
we fix τ = 10 and σ = 0.003, close to the empirical values
assumed in Ref. [7], and vary d over the range 0.2–0.99.
Plots of x(t ) and y(t ), for 390 000 � t � 400 000 are shown
in Fig. 21.

Far from the critical value d = 0.576 . . . of the noise-free
model with τ = 10, and leaving aside for the moment the
extreme values d � 0.9, the orbits are recognizable as noisy
versions of the deterministic long-term attracting orbits. There
is clearly a subcritical zone where the orbit, with probability
near unity, visits the boundaries in alternating fashion, and
a supercritical zone where the x-orbit is a kind of bounded
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FIG. 21. Plots of x(t ) (black) and y(t ) (red) for d = 0.2, . . . , 0.99.

random walk with almost zero probability of reaching either
boundary. Between these is a narrow critical zone.

In Fig. 22 we plot the x(t ) and y(t ) orbits in the critical zone
for τ = 10. This extends approximately from d = 0.5 to d =
0.64. At the lower end of this interval, with probability 0.992,
every half-cycle (first return to x = 0) includes residence time
at one of the boundaries x = ±L. The average locking time
decreases monotonically as d increases, and at d = 0.64 the
locking probability per half-cycle is down to 0.00161. These
probabilities are based on a 2 × 108-step simulation using the
algorithm described in the preceding section, with time step
0.002. Event recording was initiated at t = 40 000 to eliminate
dependence on the initial conditions. The orbits plotted in the
figure cover the final 10 000 s of the simulation.

Determining precise boundaries of the critical zone is not
possible, given the infinite tails of the white noise probability
distributions. For practical purposes, empirically determined
probability estimates such as those of the preceding paragraph
are certainly adequate.

FIG. 22. Plots of x(t ) (black) and y(t ) (red) for d = 0.5, . . . , 0.64.

To complete our qualitative discussion, we need to return
briefly to the extreme values d � 0.9, for which the plate is
close to covering the convecting liquid completely. For such
d values, the x coordinate varies within an interval −0.05 �
x � 0.05, while the y excursions are not so constrained. This
leads to frequent noise-induced collisions with the boundaries
with accompanying locking intervals, as shown in the plot of
Fig. 23. This is an interesting departure from the essentially
boundary-free motion for smaller supercritical d , but there is a
real question to what extent it can be explored experimentally.

As output of our numerical simulations we record the times
of relevant events as they occur. The events are of three types:
passage through x = 0 (code 0), arrival at x = ±L (code 1),
and departure from x = ±L (code 2). We store the sequence
of event codes, for example,

0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 0, 0, 0, 1, 2, 1, 2, 0, 1, 2,

1, 2, 1, 2, 0 · · · .

FIG. 23. Plot of x(t ) for d = 0.99.
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FIG. 24. Fraction of points with |x| = ±L as a function of d for
τ = 10. The red calculated points have been connected by straight
line segments to aid the eye.

Note that the sequence contains a subsequence 0,0,0,0, corre-
sponding to the plate returning to x = 0 several times without
making contact with the boundary. This would be typical of a
d value in the critical zone.

A first return corresponds to a subsequence 0, (1, 2)k, 0
or 0,0. Each subsequence (1,2) is a locking interval, and the
subsequence (1, 2)k of k successive locking times sandwiched
between two code 0 events is what we will call an effective
locking interval. In the presence of noise, the departure from
the boundary with zero x velocity is not as simple as in the
deterministic model: typically there are noise-induced small
excursions from the boundary leading up to a final definitive
departure. In such cases, k > 1 and the durations of the excur-
sions are included in the effective locking time.

FIG. 25. Plots of locking probability, flight probability, and lock-
ing fraction in the critical zone for τ = 10.

In our numerical simulations we measure the fraction of
time during which the plate is locked at either of the bound-
aries. The locking fraction as a function of d is plotted in
Fig. 24, based on simulations with 2 × 108 time steps of size
0.002.

Figure 25 shows three quantitative measures of the de-
creased locking in the critical zone. The fall-off of the total
locking fraction reflects that the residence times at the bound-
aries become shorter as well as less frequent as one progresses
into the critical zone. The probability that the plate locks at a
boundary during any single return to x = 0 is also plotted. The
probability of a flight occurring during a single zero-return
drops even faster, since a flight, by definition, requires locking
during two successive returns.
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