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Developed turbulent motion of fluid still lacks an analytical description despite more than a century of active
research. Nowadays, phenomenological ideas are widely used in practical applications, such as small-scale
closures for numerical simulations of turbulent flows. In the present paper, we use a shell model of turbulence to
construct a closure intended to have a solid theoretical background and to capture intrinsic probabilistic features
of turbulence. Shell models of turbulence are dynamical deterministic systems used to model energy cascade
and other key aspects of the Navier-Stokes such as intermittency. We rescale the variables of the Sabra model
in a way which leads to hidden symmetries and universal distributions. We then use such fine distributions to
write closures, i.e., missing expressions for some of the Sabra variables. Our closures rely on approximating
probability density functions using a Gaussian mixture model, which makes them probabilistic by nature and
allows us to write time-correlated closures. We also provide a framework where other machine learning tools
can be employed with reduced black-box aspects.
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I. INTRODUCTION

A fully resolved simulation of a developed turbulent flow,
which contemplates all scales of motion up to Kolmogorov’s
viscous scale, is unfeasible for many real-world flows. In
the context of the Navier-Stokes equation, dealing with clo-
sure problems is essentially handling the fact that there
are more degrees of freedom than there are equations we
are able to solve. Many approaches for closure prob-
lems in Navier-Stokes turbulence rely on phenomenologial
predictions or averaging of fluctuations like, e.g., Reynolds-
averaged Navier-Stokes equations and large eddy simulations
[1–3]. Some works, such as Ref. [4], put effort into the mod-
eling error at small scales, while Refs. [5,6] go into more
general approaches in the proposing of subgrid models. The
overall idea is to introduce an effective small scale (cutoff),
such that only the larger scales are resolved while smaller
scales are modeled by the closure.

Even though approximate schemes may be satisfactory
for practical applications, little is clear about a fundamen-
tal question: Can one formulate a small-scale closure that
provides an accurate description of the flow at all resolved
scales? The major obstacle for answering this question in
turbulence is the intermittency phenomenon [7] because inter-
mittent velocity fields are not statistically self-similar at small
scales. Thus, a proper closure must reproduce multifractal
properties of the flow at and beyond a cutoff scale. Another
important, though less evident condition, is related to the
observations that solutions for the Navier-Stokes equations at
very large Reynolds numbers are expected to evolve as a
stochastic process triggered by a small-scale noise [8–13],
i.e., the solutions are spontaneously stochastic [14–18]. This
implies that even tiny small-scale noise cannot be ignored
in equations of motion when simulations aim for finite-time
predictions, while this aspect becomes less important for

long-term statistics. As a consequence, a proper closure must
be probabilistic, reproducing the intrinsic stochastic nature of
small-scale turbulence. We conclude that the existence of ac-
curate closure depends on the two phenomena: intermittency
and spontaneous stochasticity, both still not well understood
theoretically.

A similar problem can be formulated for shell models
of turbulence [19–21], which are more tractable than the
Navier-Stokes equation while preserving its key aspects, such
as intermittency, energy cascade, and spontaneous stochas-
ticity. The attempt of formulating an accurate closure for a
shell model was done in Ref. [22], where a probabilistic ap-
proach was combined with the use of Kolmogorov multipliers.
The Kolmogorov multipliers are ratios of velocity fluctua-
tions at adjacent scales, which appear to have a universal
(not intermittent) single-time statistics in the inertial interval
of developed turbulence [23–25]. As reported in Ref. [22],
accuracy of the proposed closures was limited. One possible
reason is that multitime multiplier correlations are not taken
into account in these closures. The multitime multiplier corre-
lations, however, are again intermittent, i.e., do not possess a
universal statistics.

In this paper, we develop the formalism for probabilistic,
time-correlated closures in the Sabra shell model of tur-
bulence [26]. This formalism describes the closures which
are potentially accurate in both of the key properties: in-
termittency and stochasticity. To overcome the problem that
velocity fluctuations have multifractal statistics across the in-
ertial interval, we apply the space-time rescaling proposed
in Refs. [27,28]. This rescaling recovers the hidden scale
invariance of the multitime and multiscale statistics. As a
consequence, the resulting closure becomes universal, scale
independent, and can be properly conditioned to the resolved
scales not only at a current time but also to a prehistory of
computations.

2470-0045/2024/109(2)/025101(12) 025101-1 ©2024 American Physical Society

https://orcid.org/0009-0000-0083-6631
https://orcid.org/0000-0003-1437-6204
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.025101&domain=pdf&date_stamp=2024-02-01
https://doi.org/10.1103/PhysRevE.109.025101


J. DOMINGUES LEMOS AND A. A. MAILYBAEV PHYSICAL REVIEW E 109, 025101 (2024)

For a practical realization of our formalism, we employ the
probability density estimation with Gaussian mixture models
[29]. This approach is convenient for data generation because
the estimated density is computed as a weighted sum of
Gaussian components, which can easily generate conditional
samples of new, unseen instances of data. On the other hand,
this method demonstrates limitations in the learning process,
especially in cases where the density estimation translates into
an optimization problem in a space of high dimension. Nu-
merical tests were performed leading to a satisfactory but not
systematically improving performance of the models. These
tests indicate that more elaborate tools of machine learning
must be combined with our formalism to achieve the accurate
closure.

We discuss the Sabra shell model in Sec. II and its
rescaled version with the hidden scaling symmetry in Sec. III.
Section IV describes the closure problem. In Sec. V, we
discuss the process of density estimation and conditional sam-
pling. We present numerical results in Secs. VI for single-time
closures and in Sec. VII for closures with time conditioning.
We summarize the results and discuss further perspectives in
the discussion of Sec. VIII. The Appendix contains supple-
mentary computations and tables.

II. SHELL MODEL

Shell models are infinite-dimensional systems of ordinary
differential equations which rely on a discretization of the
phase space that considers a sequence of wave numbers as a
geometric progression: |k| = kn = k0λ

n. Typically, λ = 2 and
k0 = 1. The Sabra model [26], which we are considering in
this paper, is given by the following set of equations:

dun

dt
= i

(
kn+1un+2u∗

n+1 − 1

2
knun+1u∗

n−1 + 1

2
kn−1un−1un−2

)

− νk2
nun + fn, (1)

where un ∈ C is a complex-valued variable describing a ve-
locity fluctuation at shell n, ν is the viscosity coefficient, and
fn is the forcing term. In this paper, f1 is a nonzero constant,
and fn = 0 for n � 2. The Reynolds number is defined as
Re = UL/ν, with the integral scale L = 1/k0 and the char-
acteristic large-scale velocity U = √| f1|/k0.

The system of equations (1) mimics important properties
of developed hydrodynamic turbulence such as the energy
cascade to small scales and intermittency [7,21]. The regime
of fully developed turbulence corresponds to very large
Reynolds numbers. In this case, one distinguishes a wide
range of scales called the inertial interval, for which both
forcing and dissipative terms can be neglected. Within the K41
approximation [7], the inertial interval extends to the wave
numbers 1 � k/k0 � Re3/4; this estimate is rough, but only
because of the anomalous corrections [30,31]. The forcing
range corresponds to the wave numbers kn/k0 ∼ 1 at which
the energy is produced by the work of large-scale forces. This
energy is transported through the inertial interval until it dissi-
pates at wave numbers of the dissipation range, k/k0 � Re3/4.

In the context of shell models, the closure problem involves
first setting a finite number of resolved scales n = 1, . . . , s
to be computed by solving the equations of motion, while
the remaining unresolved scales with n > s are to be pro-

vided by the closure model. Considering equation (1) with
n = 1, 2, . . . , s leaves us with missing expressions for shell
velocities us+1 and us+2, which are complex numbers. If the
total amount of resolved scales is large enough to cover forc-
ing range, inertial range and dissipation range, then one can
set us+1 = us+2 = 0. In this situation, the simulation is consid-
ered to be fully resolved. The goal of the closure, however, is
to set s to a much larger scale (smaller wave number), namely,
we consider ks to be a wave number in the inertial interval.
Then the closure consists of writing expressions for the shell
speeds us+1 and us+2, which are the only variables missing in
Eq. (1) for n = s − 1 and s.

III. RESCALED VARIABLES AND HIDDEN SYMMETRY

The major problem in defining closures for turbulence
models is the intermittency. As a consequence, statistics col-
lected in time are not universal with respect to the choice of s,
since velocity fluctuations are getting more intermittent with
the increase of ks. Similarly, there is a lack of universality
with respect to the forcing as well. It was noted, however, that
universal statistics are recovered for single-time ratios of ve-
locities [24,25,32], which are called Kolmogorov multipliers
following the ideas of the K62 theory [7,23]. It was shown
recently that this universality is a consequence of the hidden
scaling symmetry of the equations of motion [27,28], which
allows us to recover the full scale invariance in the inertial
range by using a properly rescaled velocities and time.

The rescaled variables are introduced by fixing a reference
shell m and setting the momentary temporal scale (turnover
time) for this shell as

Tm(t ) =
(

k2
0U 2 +

∑
n<m

k2
n |un|2

)−1/2

, (2)

where U is the characteristic velocity defined above. The
quantity Tm is always positive and the sum in the parenthesis
can be seen as accumulated enstrophy of shells up to (but not
including) m. We then introduce the rescaled time as

τ =
∫ t

0

dt ′

Tm(t ′)
. (3)

The nonlinear change from original time t to rescales time τ

acts in such a way that the long stretches of time when shell
velocities would be near zero are shrunk and short periods
where velocities would rapidly vary are stretched out. This
notion becomes clearer when we think of rescaled time in-
crements dτ as a rescaling of original time increments dt by
a turnover time Tm(t ). Next, we introduce the relative shell
number N = n − m and define rescaled velocities UN as

UN = kmTm(t )uN+m(t ). (4)

We can rewrite the Sabra system from Eq. (1) in its rescaled
version, which for the full (forced and viscous) system
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FIG. 1. PDFs of absolute values and phases of U−1,U0,U1 m = 8, . . . , 14. Statistics are collected in time and rescaled variables are
computed from one Sabra simulation.

becomes
dUN

dτ
= i

(
kN+1UN+2U∗

N+1 − 1

2
kNUN+1U∗

N−1

+ 1

2
kN−1UN−1UN−2

)

+ (
ξtotal − νk2

N+mTm
)
UN + T 2

m km fN+m, (5)

where

ξtotal = ξ + ξν + ξ f , (6)

ξ =
∑
N<0

k3
N Im

(
2U∗

NU∗
N+1UN+2 − 1

2
U∗

N−1U∗
NUN+1

− 1

4
U∗

N−1UNU∗
N−2

)
, (7)

ξν = νTmk2
m

∑
N<0

k4
N |UN |2, (8)

ξ f = −T 2
m

∑
N<0

kN+mkN Re (U∗
N fN+m), (9)

Tm = 1

k0U

(
1 −

∑
N<0

k2
N |UN |2

)1/2

. (10)

For the detailed derivation of Eqs. (5)–(10), see Appendix B.
The hidden scale invariance [27,33] is the independence

of the statistics of rescaled velocities UN (τ ) in the inertial
interval with respect to the choice of the reference shell m.
Thus, rescaled variables restore the universality broken by the
intermittency. This indicates that the presence of intermittent
fluctuations, which prevented Sabra’s statistics from being
universal, has been encoded in the change of variables from
Eqs. (3) and (4).

To observe hidden symmetry, we use the data from a sim-
ulation of fully resolved Sabra system with 30 shells, while
simultaneously solving for τ (t ) using Eq. (3). In this sim-
ulation, u0 = u−1 = 0, ν = 10−8, f1 = 1 + i and the initial
condition is taken from a stationary state. The results are
presented in Fig. 1(a) showing probability density functions
(PDFs) of absolute values for UN for n = −1, 0, 1. Colors

indicate different values of N , while a number of the curves of
the same color correspond to the reference shell varied in the
inertial interval as m = 8, . . . , 14. The collapse of the curves
of the same color verifies the hidden scale invariance.

Likewise, we can look at PDFs of the phases of rescaled
variables. The simplest nontrivial (non-uniform) PDF corre-
sponds to the phase differences of the form [24,25]

�N = arg(UN ) − arg(UN−1) − arg(UN−2). (11)

PDFs for these phases are presented in Fig. 1(b). Again, each
of �−1, �0, and �1 is represented by a different color, and the
curves of the same color collapse, verifying the hidden scale
invariance.

IV. CLOSURE FOR A TRUNCATED RESCALED SYSTEM

In the context of the Sabra model, because the coupling
of scales is local, writing a closure for a reduced model with
s scales translates into writing expressions for the closure
variables us+1 and us+2. Because shell velocities are complex
numbers, we need to compute absolute values and phases of
each one. When s is a scale of motion in the inertial range, it is
unreasonable to set us+1 = us+2 = 0 because energy cascade
is still at play and the viscous term is overcome by the nonlin-
ear term and is, therefore, not strong enough to dissipate any
energy.

In terms of rescaled variables, we need to first choose a
reference shell. In this paper, we are committing to m = s + 1,
because this sets the new local temporal scale at shell s + 1,
which is one of the closure variables. With this setting, the
closure variables for the rescaled system are U0 and U1; see
Eq. (4).

There are two important aspects of the closures presented
in this paper. The first one is that they are probabilistic. Instead
of fixing estimates for absolute values and phases of the clo-
sure variables, we are estimating the PDFs of these quantities,
like the ones presented in Figs. 1(a) and 1(b), and sampling
new instances of data from the density estimation. The new
samples are used to evolve the reduced models in time.

The second one is the fact that the new instances of data
for absolute values and phases can be sampled conditioned to
the system’s prehistory, which should take into account the
fact that shell velocities are time-correlated. This raises the
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FIG. 2. Figures 2(a) and 2(b) show correlation coefficients between U0 and other delayed shells, and Figs. 2(c) and 2(d) show correlation
coefficients between U1 and other delayed shells for different values of �τ . Here, s = 12 and m = s + 1.

question of how long into the pre-history we should be look-
ing. It is important to recall that the representation in rescaled
variables UN (τ ) has universal multitime statistics [27], with
the exceptional role played by the rescaling of time. This
property is crucial for the formulation of prehistory-dependent
closures, which is the major advance of our formulation com-
pared to the previous ideas based on Kolmogorov multipliers
[22,24,25].

In Fig. 2, we plot correlation coefficients between U0 and
all other previous shells for different time delays �τ , as well
as correlation coefficients between U1 and all other previous
shells, also �τ delayed. What we can see is that correlation
decays as we progress into the past, as well as between differ-
ent scales as they grow further apart in space. This indicates
that the bulk of relevant information may be captured by
conditioning the sampling of new instances of data to neigh-
boring shells delayed some �τ ∈ [0, 10] approximately. Such
conditioning can be explicitly made in each time step and,
moreover, it is possible to condition to more than one value
at a time. We stress that maximum correlations are generally
attained at considerable (order-one) delays. This highlights
the importance of prehistory for the closures.

In the rescaled reduced system when the shell s corre-
sponds to a scale of motion in the inertial range, the viscous

terms are negligible. Recalling that we committed to m =
s + 1, the rescaled reduced system is given by

dUN

dτ
= i

(
kN+1UN+2U∗

N+1 − 1

2
kNUN+1U∗

N−1

+ 1

2
kN−1UN−1UN−2

)

+ (ξ + ξ f )UN + T 2
m km fN+m,

N = − s, . . . ,−1, (12)

where ξ , ξ f , and Tm are given by Eqs. (7), (9), and (10). These
equations can be solved numerically for N = −s, . . . ,−1 as
long as the closure provides values of U0 and U1 at each time
step. In our closures, instead of the complex values U0 and U1,
we find it more convenient to use their absolute values and
phases. Furthermore, instead of the phases of U0 and U1, one
can reformulate the closure in terms of phase differences �0

and �1 given by Eq. (11) [22].

V. GAUSSIAN MIXTURE MODELS

Before we start writing closures, we need to discuss how
the density estimation is performed. We are employing a
well-established method called the Gaussian mixture models
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(GMMs), which relies solely on data from the target distribu-
tion. In our case, the target distribution consists of absolute
values of U0 and U1, as well as the associated multipliers’
phases and any other values to which we wish to condition
them. The GMM works on the assumption that the distribution
can be approximated as a weighted sum of Gaussian com-
ponents. Given a PDF p and a positive amount of Gaussian
components K , we want to find means μk , variances �k , and
positive weights πk such that

p(z) =
K∑

k=1

πkN (z|μk,�k ). (13)

Here, N (z|μ,�) denotes the normal distribution of mean
μ and variance �, while z ∈ Rd for integer d � 1. The
parameters are computed as an iterative process using an
expectation-maximization algorithm, which is based on maxi-
mum likelihood estimates. We initialize with random guesses.
This process and algorithm have been detailed, for example,
in Ref. [29].

The amount of Gaussian components K is a parameter
that has to be decided beforehand. Theoretical results guar-
antee that we can find a suitable approximation [34], given
enough data and small overlapping of the Gaussian compo-
nents [35,36], which means there are systematical ways of
choosing this parameter. However, some knowledge of what
the data set looks like is surely beneficial to this process.

What we saw in this paper, though, was a relevant
struggle on the method’s performance when dealing with
high-dimensional data. This relates closely to the fact that
Euclidean distances between data points increase exponen-
tially with the dimension, which turns the data set into a sparse
one [37,38]. This can be mitigated by increasing the amount
of data samples fed to the density estimator, but only up to a
certain point, limited by finite data and RAM memory.

The choice of GMM for the density estimation relates
heavily to the sampling process. To evolve reduced models in
time, we need new instances of data from the densities being
approximated, and Gaussian generators are widely available.
Once we are in possession of an estimate, to obtain a new da-
tum we can use the weights πk to choose one of the Gaussian
components and then use any in-built Gaussian generator with
mean μk and variance �k to generate a new sample.

If we want to sample conditionally, once the Gaussian
component is selected, it is enough to recalculate the mean
and the variance of the selected component since any slice of a
Gaussian distribution is another Gaussian distribution [39].
Given a concatenated random variable Y = [y1, y2], Y ∼
N (μ,�), we write

μ = [μ1, μ2], � =
[
�11 �12

�21 �22

]
, (14)

with compatible dimensions. Then, p(y1|y2) = N (μ̄, �̄)
with [39]

μ̄ = μ1 + �12�
−1
22 (y2 − μ2), �̄ = �11 − �12�

−1
22 �21.

(15)

This process for generating a new data sample happens at
each time step in the process of evolving the reduced model in
time. We intend on sampling absolute values and multiplier’s
phases for U0 and U1, as presented in Figs. 1(a) and 1(b), while

conditioning them to the prehistory of shell velocities. Once
sampled, these values are used in Eq. (12) to close the system.

VI. SINGLE-TIME CLOSURES

As we described in Sec. III, the universal closure of the
shell model can be formulated in terms of rescaled variables.
These variables define scale invariant statistics for closure
variables U0 and U1, namely, PDFs of module and phase of
each one. Now we apply the method described in Sec. V to
estimate such densities and generate new data under the same
distributions to evolve reduced models in time. The reduced
models we simulate were discussed in Sec. IV and are given
by Eq. (12).

Below we formulate different closures given by expres-
sions for U0 and U1. Then, we evolve the reduced models and
compare statistics to the baseline fully resolved Sabra model.
For the comparison, we look at PDFs of energy flux 	n from
shell n to n + 1, which is given by

	n = Im
(
kn+1un+2u∗

n+1u∗
n + 1

2 knun+1u∗
nu∗

n−1

)
, (16)

as well as moments of order p defined as

Sp(kn) = 〈|un|p〉, (17)

where the averaging is with respect to time. Also, we compare
normalized PDFs of real parts of velocities. The summary
of all closures, including other choices for slightly different
closures not reported in the main text, is given in Appendix A.
In this section, we consider a simpler class of single-time
closures, while the more elaborated closures with multi-time
conditioning are studied in the next section.

It is important to note that while the reduced models and
closures are written for rescaled variables, the simulations are
all run for the original velocities in rescaled time. In each
time step, we switch to rescaled variables to compute the
closure variables and then switch back to original variables to
evolve it in time. This was a friendlier alternative to computing
rescaled variables in rescaled time, both numerically and for
comparison purposes, and it is done noting that

dun

dτ
= dun

dt

dt

dτ
= dun

dt
Tm. (18)

Each simulation was run until the rescaled time τ = 30 000
with time step 10−4 using an Adams-Bashforth scheme [40].

In the simplest closure, called MJoint, we consider the
absolute values of the rescaled variables |U0| and |U1| only,
while their phases will be fixed by the maximum energy
flux condition. For determining distribution of these absolute
values, we feed to the GMM a data set consisting of pairs
(log2 |U0|, log2 |U1|) = (z0, z1) using three two-dimensional
Gaussian components. Then, once we have an estimation
g for the density of the random vector z = (z0, z1), for
each time step we can sample one z and use it to evolve
the reduced model in time. This closure is written as
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FIG. 3. Cutoff shell is s = 12. Figures 3(a)–3(c) present normalized PDFs of real parts for the closure with modules modeling (MJoint)
and the closure with modules and phases modeling (PJoint), while Figs. 3(f)–3(h) show energy flux PDFs. All are compared to Sabra statistics
in black. Figures 3(d) and 3(e) show moments of orders 2 up to 6 for the closure with module modeling and with phase modeling, respectively.
Both are compared to Sabra moments in solid lines.

follows:

U0 = 2z0 ei( π
2 +α−1+α−2 ), (19)

U1 = 2z1 ei( π
2 +α0+α−1 ), (20)

z = (z0, z1) ∼ g(z). (21)

where αN = arg(UN ). This closure only takes into account the
modules and fixes multipliers phases in π/2, which is the
value of highest dissipation [22].

An analogous but more elaborate closure, called PJoint,
includes both absolute values and phases of the rescaled
variables |U0| and |U1|. In this case, we feed the density
estimator data of the form (log2 |U0|,�0, log2 |U1|,�1) =

(z0, z1, z2, z3), using six Gaussian components to compute the
approximation. Then the closure is formulated as

U0 = 2z0 ei(z1+α−1+α−2 ), (22)

U1 = 2z2 ei(z3+α0+α−1 ), (23)

z = (z0, z1, z2, z3) ∼ g(z). (24)

For a cutoff shell of s = 12 we can see in Figs. 3(a)–3(c)
the PDFs for real parts of velocities in shells 12 through 14.
Figure 3(d) shows moments of order 2 up to 6 of the closure
with module modeling, given by Eqs. (19)–(21). Figure 3(e)
shows moments of order 2 up to 6 for the closure with modules
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and phases, given by Eqs. (22)–(24). In Figs. 3(f)–3(h), we see
energy flux PDFs for shells 9 through 12.

Both closures reproduce statistics to some degree of fi-
delity, especially moments. It is important to note that the
closure without any phase modeling does not present negative
flux of energy in the cutoff shell, which is due to the fixing
of the phases at a value that strictly dissipates energy. On
the other hand, including phases in the modeling introduces
negative flux with higher probability than required.

VII. CLOSURES WITH TIME CONDITIONING

Using the conditional sampling method we introduced in
Sec. V, we can write closures that take the prehistory of the
reduced model into account. Here the use of rescaled variables
is crucial because only in these variables can one recover the
universal multitime statistics. To that end, we train the density
estimator on a data set containing the modules and phases
of the closure variables, which are to be sampled, and all
the variables in which we wish to condition. Both closures
in this section use six Gaussian components in the density
estimation.

Given that the correlation between shell velocities decays
in time and in space, the first closure in this section will sam-
ple only modules of the closure variables conditioned to the
modules of the last three shells of the reduced model. These
are the ones representing the most significant correlation in
space. Different values of delays �τ yield different results in
the conditioning process due to the fact that when the delay is
either too small or too long, the correlation is either too high
or essentially nonexistent. Recalling Fig. 2, we remark that
different values of �τ were initially tested to select a suitable
delay and are reported in Ref. [41]. The delay selected for
our simulations below is �τ = 2.4. Then the closure, called
3Most, can be written as

U0 = 2z0 ei( π
2 +α−1+α−2 ), (25)

U1 = 2z1 ei( π
2 +α0+α−1 ), (26)

z = (z0, z1) ∼ g(z| log2 |U−3(τ − �τ )|, log2 |U−2(τ − �τ )|,
× log2 |U−1(τ − �τ )|), (27)

The last expression signifies that the closed variables are
selected randomly with a given distribution, which is condi-
tioned on the three larger-scale absolute velocities taken at
time t − �τ .

Another type of conditioning can be performed by taking
into account information of the closure variables themselves,
allowing them to evolve conditioned to their own prehistory.
In this self-conditioning closure, we are also sampling (and
conditioning to) multipliers phases and the delay used in the
conditioning is also �τ = 2.4. We can write this closure,
called self, as

U0 = 2z0 ei(z1+α−1+α−2 ), (28)

U1 = 2z2 ei(z3+α0+α−1 ), (29)

z = (z0, z1, z2, z3) ∼ g(z| log2 |U0(τ − �τ )|,�0,

× log2 |U1(τ − �τ )|,�1). (30)

It is important to mention that, for both closures, the expres-
sions above make sense for τ � �τ . In the initial stage of
simulation, when 0 < τ < �τ , one can employ some deter-
ministic closure like the one described in Ref. [22].

It is relevant to note that even with time conditioning,
omitting the modeling of phases still produces drastic dif-
ferences in statistics. The lack of backscattering in energy
flux PDFs is, again, characteristic of the fixing phases to
strictly dissipating values for the model (25)–(27). On the
other hand, the inclusion of phases in the model (28)–(30)
introduces negative energy flux events, but in an exaggerated
manner.

The crucial achievement in the formulation of our approach
is its universality with respect to the cutoff scale s, because
the statistics of the rescaled variables are universal through
the inertial interval. Once we change the cutoff shell s, we just
need to change the reference shell m accordingly. We refer to
Fig. 1 to recall that the densities for U0 and U1 do not change
when we change the reference shell. To better see this, we will
use the density estimations used in the simulations with the
cutoff s = 12 to run another simulations with cutoff shell s =
9. The results are presented in Fig. 5, which correspond to the
history conditioned closure in Eqs. (25)–(27), as well as the
closure in Eqs. (28)–(30). Comparison of Figs. 4 and 5 shows
that the performance of these closures is indeed independent
of the cutoff scale s. One can see from Figs. 4(d) and 5(d) that
the behavior of closures near the cutoff have similar details,
e.g., the same bump in the graphs of the moments at shells 9
and 6, respectively. Such a detailed coincidence was related in
Ref. [31] to the extended hidden scale invariance of closures
in shell models.

In summary, we observe that all proposed closures lead
to a satisfactory performance per se, but the addition of the
extra information such as conditioning on extra variables and
previous times, do not lead to a noticeable improvement: some
of the characteristics improve while others get worse. We
discuss now the possible causes for such a behavior and the
ways how it can be improved.

VIII. DISCUSSION

In this paper, we addressed the question of whether it is
possible and how to formulate a small-scale closure for the
shell model of turbulence in such a way that it accurately
reproduces the dynamics at all resolved scales of motion.
The problem of formulating this closure is related to two
important properties of turbulent solutions: intermittency [7]
and spontaneous stochasticity [14]. We argue that the proper
closure that satisfies these properties must be probabilistic and
time-correlated to prehistory. Working with the Sabra model,
we apply a space-time rescaling that reveals the hidden scaling
symmetry and, hence, restores universality of multiscale and
multitime correlations. We then use a density estimation pro-
cess to approximate the density of rescaled closure variables
and apply this approximation to (conditionally) sample new
instances of data from this density. Lastly, use these new
instances to evolve reduced models in time.

The performance of the closures tested numerically in
this paper varied, but in general managed to recover at least
some statistics of Sabra model with reasonable accuracy. Even
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FIG. 4. Cutoff shell is s = 12. Figures 4(a)–4(c) present normalized PDFs of real parts for the closure with time conditioning to the three
closes shells (3Most) and the closure with time conditioning to the closure variables (self), while Figs. 4(f)–4(h) show energy flux PDFs. All
are compared to Sabra statistics in black. Figures 4(d) and 4(e) show moments of orders 2 up to 6. Both are compared to Sabra moments in
solid lines.

though we succeeded in including the modeling of phases
in our closures, we still detect persistent difficulties in ob-
taining a tight fit of PDFs of real parts and energy flux
through the final shells. However, the fact that these closures
work on data alone, without any direct adjustment or learn-
ing towards phenomenological predictions, can be seen as a
success.

Our closures performed similarly to the ones reported in
Ref. [22]. Other works, such as Ref. [42], present quite sharp
numerical results in their closure models, which are built
using a deep neural network. It provides great insight and
a powerful working tool, albeit lacking the information on
small-scale universality and intrinsic stochasticity of the dy-
namics.

We note that the limited performance of our models can be
related to the choice of the GMM density estimator, which has
difficulties in reproducing the statistics at high dimensions. As
presented in Appendix A, a wide variety of different quantities
with different delays in time conditioning was tested, and
those were reported in detail in Ref. [41]. The density esti-
mation problems for closures lower in Table I are to be solved
in considerably high dimension, which is surely a struggle for
GMM. This cannot be ignored as a source of inaccuracy in
numerical results. Other approaches or time conditioning on
different quantities could be an important direction to follow.
For example, one could improve from GMM to any other
machine-learning tool that scales better as the dimension of
the optimization problem grows [42,43].
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FIG. 5. Cutoff shell is s = 9. Figures 3(a)–3(c) present normalized PDFs of real parts for the closure with time conditioning to the three
closes shells (3Most) and the closure with time conditioning to the closure variables (self), while Figs. 5(f)–3(h) show energy flux PDFs. All
are compared to Sabra statistics in black. Figures 5(d) and 5(e) show moments of orders 2 up to 6. Both are compared to Sabra moments in
solid lines.

The main contribution of this paper is developing a system-
atic framework for the closures based on the hidden scaling
symmetry. The latter provides a universal scale-invariant
statistical description both at present and past times, which
is not possible in the standard formulation due to the intermit-
tency [22]. This framework opens possibilities for employing
machine-learning tools in closure problems for turbulence.
We stress that the strategy we used is not limited to shell
models but can potentially be generalized to the Navier-Stokes
turbulence. There, a similar rescaling procedure was pro-
posed, leading to the hidden scale invariance [28,33]. Such
an extension would face natural challenges due to the much
larger amount of information and the additional complexity
that the rescaled representation introduces. In this respect, the
similarity of the hidden symmetry formalism of Navier-Stokes

turbulence to shell models provides a useful playground for
new ideas.
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APPENDIX A: LIST OF ALL CLOSURES CONSIDERED

A wide variety of combinations between how many and
in which shells we could conditionally sample the closure
variables have been tested. Table I shows all closures tested,
with the ones reported in Sec. VI in bold letters. The first
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TABLE I. All closures written for this paper, with the ones in bold being the ones presented here.

|U0| |U1| �0 �1 Conditioning

Kolmogorov |U−1|λ−1/3 |U0|λ−1/3 π/2 π/2 ×
Half closure 2z0 |U0|λ−1/3 π/2 π/2 ×
Joint 2z0 2z1 π/2 π/2 ×
Simple cond 2z0 |U0|λ−1/3 π/2 π/2 |U−1| at τ − �τ

Joint cond 2z0 2z1 π/2 π/2 |U−1| at τ − �τ

3-Most 2z0 2z1 π/2 π/2 |U−3|, |U−2|, |U−1| at τ − �τ

3-Most 9 2z0 2z1 π/2 π/2 |U−3|, |U−2|, |U−1| at τ − �τ

Long 2z0 2z1 π/2 π/2 |U−s|, . . . , |U−1| at τ − �τ

Joint phases 2z0 2z2 z1 z3 ×
Joint cond phases 2z0 2z2 z1 z3 |U−1|, �−1 at τ − �τ

Self 2z0 2z2 z1 z3 |U0|, |U1|,�0,�1 at τ − �τ

Self 9 2z0 2z2 z1 z3 |U0|, |U1|,�0,�1 at τ − �τ

Global 2z0 2z2 z1 z3 |U−2|, |U−1|, �−2, �−1 at τ

|U−2|, |U−1|, |U0|, |U1|, �−2, �−1, �0, �1

at τ − �τ

Two times 2z0 2z2 z1 z3 |U−2|, |U−1|, �−2, �−1 at τ

|U−2|, |U−1|, |U0|, |U1|, �−2, �−1, �0, �1

at τ − �τ

|U−2|, |U−1|, |U0|, |U1|, �−2, �−1, �0, �1

at τ − 2�τ

line in the table refers to Kolmogorov’s closure [22]. It is the
deterministic closure given by the following expressions:

U0 = |U−1|λ−1/3ei( π
2 +α−1+α−2 ), (A1)

U1 = |U0|λ−1/3ei( π
2 +α0+α−1 ). (A2)

This closure is also used to cover the initial time steps in
simulations that require time conditioning. For more details
about the performance of closures from Table I we refer to the
Ph.D. thesis in Ref. [41]. Table II shows the closures reported
in Secs. VI and VII to clear the fact that they can be grouped
in more than one way, referring to whether they include time
conditioning or not and whether they include phase modeling
or not.

APPENDIX B: THE RESCALED SYSTEM

Here we derive the equations of motion in terms of intrinsic
time τ for the rescaled variables UN . From the definition of τ

in Eq. (3), we have

dUN

dτ
= dUN

dt

dt

dτ
. (B1)

The first factor can be computed deriving Eq. (4) with respect
to t , finding

dUN

dt
= dTm

dt
kmuN+m + Tmkm

duN+m

dt
. (B2)

TABLE II. The closures we presented in this paper.

Includes phases Only modules

Conditioning Self, Self 9 3-Most, 3-Most 9
No conditioning Joint phases Joint

and the second can be computed rewriting Eq. (3) as

dt

dτ
= Tm. (B3)

Equation (B1) then becomes

dUN

dτ
=

(
dTm

dt
kmuN+m + Tmkm

duN+m

dt

)
Tm. (B4)

We compute the derivative of Tm with respect to t as

dTm

dt
= −1

2

(
k2

0U 2 +
∑
n<m

k2
n |un|2

)−3/2 ∑
n<m

k2
n2 Re

(
u∗

n

dun

dt

)
.

(B5)

Using Eqs. (2) and (1) in the above expression, we find

dTm

dt
= − T 3

m

∑
n<m

k2
n Re

(
u∗

n

[
i

(
kn+1un+2u∗

n+1 − 1

2
knun+1u∗

n−1

+ 1

2
kn−1un−1un−2

)
− νk2

nun + fn

])
, (B6)

which is the same as

dTm

dt
= −

∑
n<m

Re

(
i

(
knTmu∗

nknTmun+2kn+1Tmu∗
n+1

− 1

2
knTmu∗

nknTmun+1knTmu∗
n−1

+ 1

2
knTmu∗

nkn−1Tmun−1knTmun−2

)

− νk4
nT 3

m u∗
nun + k2

nT 3
m u∗

n fn

)
. (B7)
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A direct manipulation, noting that kn = kn−mkm, k1 = 2,
k−1 = 1/2, rewriting the indexes as N = n − m and recalling
that n < m is the same as N < 0, yields

dTm

dt
= −

∑
N<0

Re

(
i

(
k3

N 2U∗
NUN+2U∗

N+1

− 1

2
k3

NU∗
NUN+1U∗

N−1 + 1

4
k3

NU∗
NUN−1UN−2

)

− νk2
N+mk2

N Tm|UN |2 + kN+mkN T 2
mU∗

N fN+m

)
, (B8)

which can be further reduced to the form

dTm

dt
=

∑
N<0

k3
N Im

(
2U∗

NU∗
N+1UN+2 − 1

2
U∗

N−1U∗
NUN+1

− 1

4
U∗

N−1UNU∗
N−2

)
+ νTm

∑
N<0

k2
N+mk2

N |UN |2

− T 2
m

∑
N<0

kN+mkN Re (U∗
N fN+m). (B9)

Splitting the sum above in several pieces, we write

dTm

dt
= ξ + ξν + ξ f = ξtotal, (6)

ξ =
∑
N<0

k3
N Im

(
2U∗

NU∗
N+1UN+2 − 1

2
U∗

N−1U∗
NUN+1

− 1

4
U∗

N−1UNU∗
N−2

)
, (7)

ξν = νTmk2
m

∑
N<0

k4
N |UN |2, (8)

ξ f = −T 2
m

∑
N<0

kN+mkN Re (U∗
N fN+m). (9)

We can now go back to computing the main system, plugging
Eqs. (6)–(9) back into Eq. (B4). This yields

dUN

dτ
=

(
ξtotalkmuN+m + Tmkm

duN+m

dt

)
Tm. (B10)

We then use Eq. (1), with b = −1/2 and c = 1/2, to write

dUN

dτ
= ξtotalTmkmuN+m + T 2

m km

(
i

(
kN+m+1uN+m+2u∗

N+m+1

− 1

2
kN+muN+m+1u∗

N+m−1+
1

2
kN+m−1uN+m−1uN+m−2

)

− νk2
N+muN+m + fN+m

)
, (B11)

which becomes, doing the change of variables from Eq. (4)
again:

dUN

dτ
= ξtotalUN + i

(
kN+1UN+2U∗

N+1 − 1

2
kNUN+1U∗

N−1

+ 1

2
kN−1UN−1UN−2

)
− νk2

N+mTmUN + T 2
m km fN+m.

(B12)

Reorganizing the terms, we have

dUN

dτ
= i

(
kN+1UN+2U∗

N+1 − 1

2
kNUN+1U∗

N−1

+ 1

2
kN−1UN−1UN−2

)

+ (
ξtotal − νk2

N+mTm
)
UN + T 2

m km fN+m. (5)

To write this system with no dependence on t , we must also
write Tm as a function of U instead of u. Recall the expression
for Tm in Eq. (2), expand the sum, and apply the change of
variables in Eq. (4):

Tm =
(

k2
0U 2 + k2

1

k2
mT 2

m

|U1−m|2 + k2
2

k2
mT 2

m

|U2−m|2

+ · · · + k2
m−1

k2
mT 2

m

|U−1|2
)−1/2

. (B13)

Regrouping the sum,

1

T 2
m

= k2
0U 2 + 1

T 2
m

∑
N<0

k2
N |UN |2. (B14)

It then follows that

Tm = 1

k0U

(
1 −

∑
N<0

k2
N |UN |2

)1/2

. (10)
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