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Interparticle normal force in highly porous granular matter during compression
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We perform a numerical simulation of compression of a highly porous dust aggregate of monodisperse spheres.
We find that the average interparticle normal force within the aggregate is inversely proportional to both the filling
factor and the average coordination number and we also derive this relation theoretically. Our findings would
be applicable for granular matter of arbitrary structures, as long as the constituent particles are monodisperse
spheres.
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I. INTRODUCTION

Granular materials are ubiquitous on earth and in
space [1–5] and understanding their physical properties is of
great importance in various fields of science and engineer-
ing [6–8]. Granular materials have been usually defined as
agglomerates of discrete particles and the interparticle contact
area is a function of the normal force acting between two
contact particles [9–11]. The interparticle contact area is a key
parameter which controls thermal and mechanical properties
of granular matter [12–16]. In addition, constituent particles
would be broken when the interparticle force exceeds the
threshold for failure [17–19]. Therefore, the interparticle force
in compressed granular matter has been intensively investi-
gated [20–22].

When constituent particles have large static frictions for
tangential motions, highly porous structure would be achieved
by compression with low pressure [23–25]. Indeed, highly
porous dust aggregates with filling factors below 10% might
exist in protoplanetary disks as building blocks of plan-
ets [26–30]. In disks, such porous aggregates could be formed
via pairwise collisional growth [31–33] and the initial struc-
ture of those aggregates would resemble that of fractal
aggregates formed by the ballistic cluster-cluster aggregation
process [34].

However, the interparticle force in compressed fluffy
aggregates has never been investigated. This is because prepa-
ration of initial fractal aggregates in laboratories is difficult
in nonzero gravity conditions [35]. The measurement of in-
terparticle force is also challenging when the force is small.
In contrast, numerical simulations are not affected by those
difficulties and we can investigate how the interparticle force
changes with increasing the filling factor of porous aggre-
gates.
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In this study, we perform a three-dimensional numerical
simulation using the soft-sphere discrete element method and
demonstrate the temporal evolution of the interparticle force
during omnidirectional compression. As a consequence, we
find that the average interparticle normal force, 〈F 〉, is given
by a simple function of the pressure, P, the filling factor, φ,
and the average coordination number, 〈Z〉. We also reveal
that this relation is directly derived from the definition of the
pressure in granular matter. Our findings would be widely
applicable when we evaluate the thermal or mechanical prop-
erties of fluffy aggregates.

II. NUMERICAL METHOD

We perform a numerical simulation of compression of a
highly porous dust aggregate of monodisperse spheres. The
number of particles in the simulation is N = 214 = 16 384 and
the constituent dust particles are made of water ice whose
radius is r1 = 0.1 µm. The material properties including the
elastic modulus and the surface energy are summarized in
Ref. [36]. The numerical code used in this study is identical
to that of previous studies [37,38]. We calculate the transla-
tional and rotational motions of each particle by solving the
Newton-Euler equations. We integrate these equations using
the leapfrog method, which is a second-order symplectic inte-
grator with a good accuracy of energy conservation.

In this study, we assume that the interparticle normal mo-
tion is described by a contact model for elastic cohesive
spheres called the JKR model [10]. The interparticle normal
force, F , is a function of the compression length between two
contact particles, δ. We define δ as

δ = 2r1 − d (1)

and d is the distance between the two particles’ centers. Two
contact particles make a circular contact area and the contact
radius, a, is also a function of δ.
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At the equilibrium state where F = 0, the contact radius is
a = a0 and the compression length is δ = δ0. Here a0 is given
by

a0 =
(

9πγ R2

E∗

)1/3

= 12.4 nm, (2)

where γ = 0.1 J m−2 [36] is the surface energy, E∗ is the
reduced Young’s modulus, and R is the reduced particle ra-
dius [10]. In this study, we assume that the two contact
particles have the same radius and composition and R and E∗
are given by

R = r1

2
(3)

and

E∗ = E

2(1 − ν2)
, (4)

where E = 7 GPa is Young’s modulus and ν = 0.25 is Pois-
son’s ratio [36]. The compression length at the equilibrium is

δ0 = a0
2

3R
(5)

and δ0 = 1.0 nm for r1 = 0.1 µm.
Here we introduce the normalized compression length, x,

as follows:

x = δ

δ0
. (6)

We also introduce a dimensionless function, y, which de-
scribes the contact radius:

y =
(

a

a0

)1/2

. (7)

The relation between x and y is given by Ref. [10] as follows:

3y4 − 2y − x = 0. (8)

We also derive an equivalent equation which explicitly ex-
presses y as a function of x as follows:

y = 1

2

(
−A(x) + 4

3
√

A(x)

)1/2

+
√

A(x)

2
, (9)

where A(x) is given by

A(x) = 21/3α(x)

3
− 25/3x

3α(x)
(10)

and α(x) is

α(x) = (
√

16x3 + 9 + 3)
1/3

. (11)

This is one of the real solutions of Eq. (8). The interparti-
cle contact breaks at x = −(9/16)1/3 and y = (1/6)1/3 at the
time. For the JKR model, y is a monotonically increasing
function of x. The explicit formulation derived here is useful
when we calculate y as a function of x [39].

We also define the normalized force acting between two
contact particles, z, as follows [10]:

z = F

Fc
, (12)

where Fc is the maximum force needed to disconnect the two
contact particles. In the contact model of Ref. [10], Fc is given
by

Fc = 3πγ R (13)

and Fc = 4.7 × 10−8 N for r1 = 0.1 µm. The relation between
y and z is given by [10,36]

z = 4(y6 − y3). (14)

By solving these equations, we can calculate z as a function
of x. In other words, F is given as a function of δ. We note
that F is positive when the repulsive force acts on two contact
particles.

The elastic force in the normal direction induces oscilla-
tion. However, in reality, the oscillation would be damped due
to viscoelastic energy dissipation [40–42]. In our simulation,
the damping force applied to each pair of two contact particles
is introduced. The detail of damping model is described in
Ref. [37] (see Appendix A).

The interparticle tangential interactions are modeled by
Ref. [36]. We consider three types of motions: rolling, sliding,
and twisting. When the displacements are small, the resis-
tances against these displacements are described by elastic
spring models, while inelastic motions take place when the
displacements exceed the critical values (see Figs. 2 and 3
of Ref. [36]). The detail of particle interaction models is
described in Ref. [36] (see Appendix B).

We prepare an initial dust aggregate by ballistic cluster-
cluster aggregation as in previous studies [24,37,38]. Then we
perform an isotropic compression simulation as investigated
by Refs. [24,38]. We adopt the periodic boundary condition
(Fig. 1) and a cubic box with a volume of L3 is considered as
the computational region. The box size decreases with time, t ,
as follows:

dL

dt
= −2CvL

tc
, (15)

where Cv = 1 × 10−7 is the strain rate parameter [24] and
tc = 1.93 × 10−10 s is the characteristic time of interparticle
normal interaction [36]. The volume filling factor at each time
step is defined as follows:

φ = 4πr1
3N

3L3
. (16)

III. RESULTS AND DISCUSSION

First, we show the frequency distribution of interparticle
normal force during compression [43]. Figure 2 shows the
cumulative frequency distribution of F within an aggregate.
Here fcum(< F ) is the fraction of particle connections whose
normal force is smaller than F . The differential frequency
distribution of F is shown in Appendix C as a reference.

We can see a jump of fcum(< F ) at around F = 0 in
Fig. 2(a) and a large fraction of particle connections is piled
up at F ≈ 0 when φ � 0.1. In contrast, no strong pileup at
F ≈ 0 is observed for φ = 0.25 [Fig. 2(b)]. This result reflects
the change of particle chain structures within the aggregate: a
large fraction of particles in highly porous aggregates are not
in backbone structure but in noncontributing deadends (see
also Fig. 6 of Ref. [44]).
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FIG. 1. Snapshots of the structure evolution of an aggregate dur-
ing compression in a cubic periodic boundary. The gray particles
are inside a cubic box. We also plot the yellow particles which are
in neighboring boxes to the box of gray particles. The box size
decreases with time and the filling factor, φ, increases with time.
Panels (a) and (b) are the snapshots at φ = 0.04 and 0.1, respectively.
The length of the box is L = 119.9r1 for panel (a) and L = 88.2r1 for
panel (b).

We investigate the dependence on the compression speed
(Cv) and damping force (kn) in Appendix D. We confirm that
the distribution of fcum(< F ) barely depends on Cv and kn.

Next, we show the average of the interparticle normal
force, 〈F 〉, and its dependence on the filling factor. Figure 3
shows 〈F 〉 as a function of φ. We find that 〈F 〉 increases with
φ during compression and for φ � 0.25 we find 〈F 〉/Fc � 1,
which allows us to consider the compression length to be
constant, δ ≈ δ0. We note that 〈F 〉/Fc also depends on the
material properties and radius of constituent particles and this
result is only applicable for aggregates made of water ice
particles with r1 = 0.1 µm.

FIG. 2. Cumulative frequency distribution of interparticle nor-
mal force. Here fcum(< F ) is the fraction of particle connections
whose normal force is smaller than F . The compression length
between contacting particles is δ = δ0 when F = 0. Panels (a) and
(b) are for the cases of φ = 0.1 and 0.25, respectively.

Finally, we discuss the relation between 〈F 〉 and the pres-
sure of the dust aggregate, P. In this study, an aggregate is
compressed by itself as we use the periodic boundary condi-
tion. The pressure of the aggregate is defined by the standard
method in molecular dynamics simulations which is based
on the virial theorem [45]. In our numerical simulation, P is

FIG. 3. Average of the interparticle normal force, 〈F 〉, as a func-
tion of φ. Here we assume that constituent particles are made of water
ice and the radius is r1 = 0.1 µm.
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FIG. 4. Normalized normal force, g, as a function of φ. The
dashed line is a theoretical prediction [Eq. (22)]. Red and blue points
denote our numerical result for ice and glass spheres, respectively.

defined as follows [24,46]:

P =
〈

2

3L3

N∑
i=1

mvi
2

2
+ 1

3L3

∑
i< j

di, jFi, j

〉
t

, (17)

where m is the mass of each particle, vi is the velocity of
the ith particle, di, j is the distance between the ith and jth
particles, and Fi, j is the interparticle normal force between ith
and jth particles. Assuming that the material density of ice
is ρ = 1000 kg m−3 [36], m is given by m = (4π/3)ρr1

3 =
4.2 × 10−18 kg. Here Fi, j is positive when the repulsive force
works and Fi, j = 0 if ith and jth particles do not contact.
We calculate the time-averaged value of P and 〈A〉t denotes
the time average of a variable A. We take an average of the
right-hand side of Eq. (17) for 103tc, which is sufficiently
longer than the characteristic time of particle interaction (=
tc) and negligibly shorter than the timescale of compression
[= 5 × 106tc; see Eq. (15)] [24,38].

We introduce the normalized normal force, g, as follows:

g = 〈F 〉
πr1

2P
. (18)

In our simulation, the porous aggregate is continuously
compressed and the applied pressure is balanced with the
compressive strength. In contrast, when the applied pressure
is lower than the compressive strength and the deformation
of an aggregate is negligible, 〈F 〉 must be proportional to P.
Thus we can interpret g as a constant of proportionality. The
red line of Fig. 4 shows g for the range between φ = 0.01 and
0.25.

It should be noted that g would be independent of
the material parameters of the constituent particles. Here
we perform an additional simulation using dust aggre-
gates of glass spheres. The material parameters of glass
spheres are γ = 0.02 J m−2, E = 54 GPa, ν = 0.17, and ρ =
2650 kg m−3 [36]. We set Cv = 3 × 10−7 and kn = 0.1 for
this case. The particle radius is set to be equal to that for ice
aggregates: r1 = 0.1 µm. The number of constituent particles
and the initial structure of the aggregate are also identical to
those for ice aggregates. The blue line of Fig. 4 denotes our

FIG. 5. Average coordination number, 〈Z〉, as a function of φ.
The dashed line is a semianalytic model in previous studies: 〈Z〉 =
2 + 9.38φ1.62 [44,47].

numerical result for glass spheres. It is obvious that numerical
results for both ice and glass aggregates are consistent with
each other.

Here we show that g could be derived analytically from the
definition of P. When the compression speed is sufficiently
low, we can regard the compression as a quasistatic process
(i.e., vi ≈ 0) and Eq. (17) is approximated by

P ≈ 1

3L3

∑
i< j

di, jFi, j . (19)

When 〈F 〉/Fc � 1, we can assume that di, j ≈ 2r1 − δ0 for all
particle connections and we obtain the following equation:∑

i< j

di, jFi, j ≈ 2r1

c0
〈F 〉N 〈Z〉

2
, (20)

where

c0 = 2r1

2r1 − δ0
(21)

is a correction factor (c0 = 1.005 for ice particles with r1 =
0.1 µm) and 〈Z〉 is the average coordination number. There-
fore, we derive the following equation:

g ≈ 4c0

〈Z〉φ (22)

and g is inversely proportional to both φ and 〈Z〉. The dashed
line in Fig. 4 is the theoretical prediction and it shows excel-
lent agreement with the numerical result.

The average coordination number should also be a function
of φ and it must depend on how to prepare the initial aggregate
before compression. Figure 5 shows the filling factor depen-
dence of 〈Z〉. When the initial fluffy aggregates were prepared
by the ballistic cluster-cluster aggregation process, the filling
factor dependence of 〈Z〉 is given by [44,47]

〈Z〉 = 2 + 9.38φ1.62. (23)

We confirm that our numerical result is consistent with a
model prediction.

Although the filling factor dependence of g is trivial when
we go back to the definition of P in molecular dynamics
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simulations, it has been poorly understood. Several predic-
tions on g have been reported; e.g., g = (2/

√
6)φ−1 [15] or

g = φ−1 [18]. These studies did not mention the dependence
of g on 〈Z〉, however. When we focus on fluffy aggregates with
φ � 0.1, we can regard 〈Z〉 ≈ 2 and it barely depends on φ.
In contrast, for φ � 0.1, 〈Z〉 clearly depends on φ (Fig. 5) and
the effect of 〈Z〉 on g is non-negligible.

We note that Eq. (22) would be applicable for dust ag-
gregates of arbitrary structures, as long as the constituent
particles could be regarded as monodisperse spheres. We ex-
pect that 〈Z〉 ≈ 2 whenever φ is order(s) of magnitude lower
than 1, however, the filling factor dependence of 〈Z〉 is differ-
ent for each preparation procedure of aggregates [44,48].

It should be noted that not all particles do not contribute
heat and pressure transfer within aggregates. As shown in
Fig. 2, a substantial fraction of interparticle contacts is force
free when φ � 0.1. We might need to evaluate the effective
mean of F by averaging over contacts with nonzero F when
the effects on the thermal and mechanical properties of aggre-
gates are considered.

IV. CONCLUSION

Summarizing, the relationship among the pressure within
an aggregate, P, the filling factor, φ, the average coordination
number, 〈Z〉, and the average interparticle normal force, 〈F 〉,
is derived once numerically and then theoretically [Eqs. (18)
and (22)]. We found that 〈F 〉 is inversely proportional to both
φ and 〈Z〉. The filling factor dependence is consistent with
that predicted in previous studies [15,18]. We derived this
dependence from the definition of the pressure in granular
matter. We also note that g would be independent of the
material parameters of the constituent particles (Fig. 4).

Understanding the interparticle normal force and its de-
pendence on the other parameters are essential to predict the
thermal and mechanical properties of granular matter. Our
findings will provide deeper insight into the physics of porous
granular matter. We expect that our theoretical prediction will
be tested by laboratory experiments.

Finally, we note that not only the average of F but also
the distribution of F is of great interest. The failure of par-
ticles under pressure should start when the maximum of F
exceeds the threshold and the disruption of constituent par-
ticles changes the size distribution of particles. The force
chain structure should also be affected by the failure. We will
address these issues in future studies.
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APPENDIX A: DAMPING FORCE FOR INTERPARTICLE
NORMAL MOTION

The elastic interparticle normal force, F , induces oscilla-
tion at each connection. The oscillation would attenuate in
reality due to energy dissipation. In this study, we introduce
an artificial damping force in the normal direction which is
modeled in Ref. [24]. The damping force applied to each

particle is given by

Fdamp = −kn
m

tc
vrel,n, (A1)

where kn is the dimensionless coefficient and vrel,n is
the normal component of the relative velocity between
two contacting particles. Note that vrel,n is negative when
two particles approach. We adopt kn = 0.01 as a fiducial
value [38].

APPENDIX B: TANGENTIAL INTERACTION MODELS

We calculate the interaction of each connection of parti-
cles, taking all interactions modeled by Ref. [36] into account.
The mechanical model for the normal interaction is described
in Sec. II in detail. Here we briefly explain the models for the
tangential interactions.

We consider three types of tangential motions, namely,
rolling, sliding, and twisting (see Fig. 2 of Ref. [36]). The
displacements corresponding to these motions are expressed
by the rotation of the two particles in contact. In the frame-
work of the contact model developed by Ref. [36], the elastic
and inelastic regimes are considered for each interaction: no
energy is dissipated when the displacements of the tangen-
tial motions are all small enough, while energy dissipation
occurs when the displacements exceed the threshold values.
The forces and torques on each particle due to tangential
interactions are originally formulated by Refs. [49,50]. The
detail of the interaction models is described in Sec. 2.2 of
Ref. [36].

APPENDIX C: DIFFERENTIAL FREQUENCY
DISTRIBUTION OF INTERPARTICLE NORMAL FORCE

In the granular community, the frequency distribution of
interparticle normal force is usually presented in the differ-
ential frequency distribution [20–22]. Although we choose
the cumulative distribution instead of the differential one in
Sec. III, we present the differential frequency distribution in
this Appendix.

Figure 6 shows the differential frequency distribution of
interparticle normal force, pdiff (F/Fc), for the case of φ = 0.1
[see Fig. 2(b)]. Here pdiff (F/Fc) is given by

pdiff (F/Fc) = fcum[< (i + 1/2)	Fc]

	

− fcum[< (i − 1/2)	Fc]

	
, (C1)

where 	 is the bin width of the differential distribution and
F = i	Fc (i = 0,±1,±2, . . .). Panels (a) and (b) are for the
cases of 	 = 0.01 and 0.001, respectively. We find that the
shape of the distribution is strongly affected by the choice
of 	.
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FIG. 6. Differential frequency distribution of interparticle nor-
mal force for the case of φ = 0.1 [see Fig. 2(b)]. Panels (a) and
(b) are for the cases of 	 = 0.01 and 0.001, respectively.

We can see a clear pileup at F ≈ 0 in Fig. 6(b), as discussed
in Sec. III [see also Fig. 2(b)]. This reflects the fact that a

1×10-7
1×10-7
3×10-7

FIG. 7. Cumulative frequency distribution of interparticle nor-
mal force, fcum(< F ), for φ = 0.25. The red line represents the
fiducial case (Cv = 1 × 10−7 and kn = 0.01). The black line is a
strong dissipation case (Cv = 1 × 10−7 and kn = 0.1). The gray
dashed line is a strong dissipation and fast compression case (Cv =
3 × 10−7 and kn = 0.1).

non-negligible fraction of particles in highly porous aggre-
gates are not in backbone structure.

APPENDIX D: DEPENDENCE ON Cv AND kn

To check the robustness of our numerical results, we per-
form additional simulations with different parameter sets of Cv

and kn. Figure 7 shows the cumulative frequency distribution
of interparticle normal force, fcum(< F ), for φ = 0.25. The
red line represents the fiducial case and black and gray dashed
lines show the results for different sets of Cv and kn. We
confirm that fcum(< F ) is approximately independent of Cv

and kn.

[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Granular solids,
liquids, and gases, Rev. Mod. Phys. 68, 1259 (1996).

[2] R. M. Iverson, M. E. Reid, and R. G. Lahusen, Debris-flow
mobilization from landslides, Annu. Rev. Earth Planet Sci. 25,
85 (1997).

[3] H. Miyamoto, H. Yano, D. J. Scheeres, S. Abe, O. Barnouin-
Jha, A. F. Cheng, H. Demura, R. W. Gaskell, N. Hirata, M.
Ishiguro, T. Michikami, A. M. Nakamura, R. Nakamura, J.
Saito, and S. Sasaki, Regolith migration and sorting on asteroid
itokawa, Science 316, 1011 (2007).

[4] J. Blum and G. Wurm, The growth mechanisms of macroscopic
bodies in protoplanetary disks, Annu. Rev. Astron. Astrophys.
46, 21 (2008).

[5] A. Tsuchiyama, M. Uesugi, T. Matsushima, T. Michikami, T.
Kadono, T. Nakamura, K. Uesugi, T. Nakano, S. A. Sandford,
R. Noguchi, T. Matsumoto, J. Matsuno, T. Nagano, Y. Imai, A.
Takeuchi, Y. Suzuki, T. Ogami, J. Katagiri, M. Ebihara, T. R.
Ireland et al., Three-dimensional structure of hayabusa samples:
Origin and evolution of itokawa regolith, Science 333, 1125
(2011).

[6] H. Katsuragi and D. J. Durian, Unified force law for granular
impact cratering, Nat. Phys. 3, 420 (2007).

[7] T. Matsushima, J. Katagiri, K. Uesugi, A. Tsuchiyama, and
T. Nakano, 3D shape characterization and image-based DEM
simulation of the lunar soil simulant FJS-1, J. Aerospace Eng.
22, 15 (2009).

[8] J. Chen, A. Kitamura, E. Barbieri, D. Nishiura, and M.
Furuichi, Analyzing effects of microscopic material parameters
on macroscopic mechanical responses in underwater mixing
using discrete element method, Powder Technol. 401, 117304
(2022).

[9] H. Hertz, Miscellaneous Papers (Macmillan, New York, 1896).
[10] K. L. Johnson, K. Kendall, and A. D. Roberts, Surface energy

and the contact of elastic solids, Proc. R. Soc. London, Ser. A
324, 301 (1971).

[11] B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, Effect of
contact deformations on the adhesion of particles, J. Colloid
Interface Sci. 53, 314 (1975).

[12] C. K. Chan and C. L. Tien, Conductance of packed spheres in
vacuum, J. Heat Transfer 95, 302 (1973).

024904-6

https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1146/annurev.earth.25.1.85
https://doi.org/10.1126/science.1134390
https://doi.org/10.1146/annurev.astro.46.060407.145152
https://doi.org/10.1126/science.1207807
https://doi.org/10.1038/nphys583
https://doi.org/10.1061/(ASCE)0893-1321(2009)22:1(15)
https://doi.org/10.1016/j.powtec.2022.117304
https://doi.org/10.1098/rspa.1971.0141
https://doi.org/10.1016/0021-9797(75)90018-1
https://doi.org/10.1115/1.3450056


INTERPARTICLE NORMAL FORCE IN HIGHLY POROUS … PHYSICAL REVIEW E 109, 024904 (2024)

[13] C. Dominik and A. G. G. M. Tielens, The physics of dust coag-
ulation and the structure of dust aggregates in space, Astrophys.
J. 480, 647 (1997).

[14] A. V. Gusarov, T. Laoui, L. Froyen, and V. I. Titov, Contact
thermal conductivity of a powder bed in selective laser sinter-
ing, Int. J. Heat Mass Transf. 46, 1103 (2003).

[15] N. Sakatani, K. Ogawa, Y. Iijima, M. Arakawa, R. Honda, and
S. Tanaka, Thermal conductivity model for powdered materi-
als under vacuum based on experimental studies, AIP Adv. 7,
015310 (2017).

[16] S. Arakawa, H. Tanaka, A. Kataoka, and T. Nakamoto, Thermal
conductivity of porous aggregates, Astron. Astrophys. 608, L7
(2017).

[17] O. Ben-Nun, I. Einav, and A. Tordesillas, Force attractor in
confined comminution of granular materials, Phys. Rev. Lett.
104, 108001 (2010).

[18] R. Schräpler, J. Blum, I. von Borstel, and C. Güttler, The strat-
ification of regolith on celestial objects, Icarus 257, 33 (2015).

[19] F. Okubo and H. Katsuragi, Impact drag force exerted on a
projectile penetrating into a hierarchical granular bed, Astron.
Astrophys. 664, A147 (2022).

[20] D. M. Mueth, H. M. Jaeger, and S. R. Nagel, Force distribution
in a granular medium, Phys. Rev. E 57, 3164 (1998).

[21] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Force
distributions near jamming and glass transitions, Phys. Rev.
Lett. 86, 111 (2001).

[22] T. S. Majmudar and R. P. Behringer, Contact force mea-
surements and stress-induced anisotropy in granular materials,
Nature (London) 435, 1079 (2005).

[23] C. Güttler, M. Krause, R. J. Geretshauser, R. Speith, and J.
Blum, The physics of protoplanetesimal dust agglomerates. IV.
toward a dynamical collision model, Astrophys. J. 701, 130
(2009).

[24] A. Kataoka, H. Tanaka, S. Okuzumi, and K. Wada, Static com-
pression of porous dust aggregates, Astron. Astrophys. 554, A4
(2013).

[25] T. Omura and A. M. Nakamura, Experimental study on com-
pression property of regolith analogues, Planet. Space Sci. 149,
14 (2017).

[26] S. Okuzumi, H. Tanaka, H. Kobayashi, and K. Wada, Rapid
coagulation of porous dust aggregates outside the snow line: A
pathway to successful icy planetesimal formation, Astrophys. J.
752, 106 (2012).

[27] A. Kataoka, H. Tanaka, S. Okuzumi, and K. Wada, Fluffy
dust forms icy planetesimals by static compression, Astron.
Astrophys. 557, L4 (2013).

[28] T. Okada, T. Fukuhara, S. Tanaka, M. Taguchi, T. Arai, H.
Senshu, N. Sakatani, Y. Shimaki, H. Demura, Y. Ogawa, K.
Suko, T. Sekiguchi, T. Kouyama, J. Takita, T. Matsunaga, T.
Imamura, T. Wada, S. Hasegawa, J. Helbert, T. G. Müller et al.,
Highly porous nature of a primitive asteroid revealed by thermal
imaging, Nature (London) 579, 518 (2020).

[29] H. Kobayashi and H. Tanaka, Rapid formation of gas-giant
planets via collisional coagulation from dust grains to planetary
cores, Astrophys. J. 922, 16 (2021).

[30] R. Tazaki, C. Ginski, and C. Dominik, Fractal aggregates
of submicron-sized grains in the young planet-forming disk
around IM lup, Astrophys. J. Lett. 944, L43 (2023).

[31] J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa,
M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller,
W. J. Markiewicz, I. Mann, B. A. S. Gustafson, F. Giovane, H.
Fechtig et al., Growth and form of planetary seedlings: Results
from a microgravity aggregation experiment, Phys. Rev. Lett.
85, 2426 (2000).

[32] D. Paszun and C. Dominik, The influence of grain rota-
tion on the structure of dust aggregates, Icarus 182, 274
(2006).

[33] T. Suyama, K. Wada, and H. Tanaka, Numerical simula-
tion of density evolution of dust aggregates in protoplan-
etary disks. I. head-on collisions, Astrophys. J. 684, 1310
(2008).

[34] P. Meakin, A historical introduction to computer mod-
els for fractal aggregates, J. Sol-Gel Sci. Technol. 15, 97
(1999).

[35] J. Blum and G. Wurm, Experiments on sticking, restructuring,
and fragmentation of preplanetary dust aggregates, Icarus 143,
138 (2000).

[36] K. Wada, H. Tanaka, T. Suyama, H. Kimura, and T. Yamamoto,
Numerical simulation of dust aggregate collisions. I. compres-
sion and disruption of two-dimensional aggregates, Astrophys.
J. 661, 320 (2007).

[37] M. Tatsuuma, A. Kataoka, and H. Tanaka, Tensile
strength of porous dust aggregates, Astrophys. J. 874, 159
(2019).

[38] M. Tatsuuma, A. Kataoka, S. Okuzumi, and H. Tanaka, Formu-
lating compressive strength of dust aggregates from low to high
volume filling factors with numerical simulations, Astrophys. J.
953, 6 (2023).

[39] We note that an equivalent equation was derived in Ref. [51] in
a smart way.

[40] H. Tanaka, K. Wada, T. Suyama, and S. Okuzumi, Growth
of cosmic dust aggregates and reexamination of particle
interaction models, Prog. Theor. Phys. Suppl. 195, 101
(2012).

[41] S. Krijt, C. Güttler, D. Heißelmann, C. Dominik, and
A. G. G. M. Tielens, Energy dissipation in head-on collisions
of spheres, J. Phys. D 46, 435303 (2013).

[42] S. Arakawa and S. Krijt, On the stickiness of CO2 and H2O ice
particles, Astrophys. J. 910, 130 (2021).

[43] Here we analyze all particle pairs with x > 0 as a postpro-
cess analysis. Strictly speaking, two particles in contact do
not detach at x = 0 but the contact breaks at x = −(9/16)1/3

in the JKR model. However, in our compression simulation,
the contribution of contacts with x < 0 should be negligibly
small.

[44] S. Arakawa, M. Takemoto, and T. Nakamoto, Geometrical
structure and thermal conductivity of dust aggregates formed
via ballistic cluster-cluster aggregation, Prog. Theor. Exp. Phys.
2019, 093E02 (2019).

[45] J. Haile, Molecular Dynamics Simulation: Elementary Methods
(Wiley, New York, 1997).

[46] C. O’Sullivan, Particulate Discrete Element Modelling: A Ge-
omechanics Perspective (CRC Press, Boca Raton, FL, 2011).

[47] S. Arakawa, M. Tatsuuma, N. Sakatani, and T. Nakamoto, Ther-
mal conductivity and coordination number of compressed dust
aggregates, Icarus 324, 8 (2019).

024904-7

https://doi.org/10.1086/303996
https://doi.org/10.1016/S0017-9310(02)00370-8
https://doi.org/10.1063/1.4975153
https://doi.org/10.1051/0004-6361/201732182
https://doi.org/10.1103/PhysRevLett.104.108001
https://doi.org/10.1016/j.icarus.2015.04.033
https://doi.org/10.1051/0004-6361/202243787
https://doi.org/10.1103/PhysRevE.57.3164
https://doi.org/10.1103/PhysRevLett.86.111
https://doi.org/10.1038/nature03805
https://doi.org/10.1088/0004-637X/701/1/130
https://doi.org/10.1051/0004-6361/201321325
https://doi.org/10.1016/j.pss.2017.08.003
https://doi.org/10.1088/0004-637X/752/2/106
https://doi.org/10.1051/0004-6361/201322151
https://doi.org/10.1038/s41586-020-2102-6
https://doi.org/10.3847/1538-4357/ac289c
https://doi.org/10.3847/2041-8213/acb824
https://doi.org/10.1103/PhysRevLett.85.2426
https://doi.org/10.1016/j.icarus.2005.12.018
https://doi.org/10.1086/590143
https://doi.org/10.1023/A:1008731904082
https://doi.org/10.1006/icar.1999.6234
https://doi.org/10.1086/514332
https://doi.org/10.3847/1538-4357/ab09f7
https://doi.org/10.3847/1538-4357/acdf43
https://doi.org/10.1143/PTPS.195.101
https://doi.org/10.1088/0022-3727/46/43/435303
https://doi.org/10.3847/1538-4357/abe61d
https://doi.org/10.1093/ptep/ptz102
https://doi.org/10.1016/j.icarus.2019.01.022


SOTA ARAKAWA et al. PHYSICAL REVIEW E 109, 024904 (2024)

[48] A. Seizinger and W. Kley, Bouncing behavior of microscopic
dust aggregates, Astron. Astrophys. 551, A65 (2013).

[49] C. Dominik and A. G. G. M. Tielens, Resistance to rolling in
the adhesive contact of two elastic spheres, Philos. Mag., A 72,
783 (1995).

[50] C. Dominik and A. G. G. M. Tielens, Resistance
to sliding on atomic scales in the adhesive contact

of two elastic spheres, Philos. Mag., A 73, 1279
(1996).

[51] J. Chen, D. Krengel, D. Nishiura, M. Furuichi,
and H.-G. Matuttis, A force displacement relation
based on the JKR theory for DEM simulations of
adhesive particles, Powder Technol. 427, 118742
(2023).

024904-8

https://doi.org/10.1051/0004-6361/201220946
https://doi.org/10.1080/01418619508243800
https://doi.org/10.1080/01418619608245132
https://doi.org/10.1016/j.powtec.2023.118742

