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We investigate diffusion in polydisperse granular media. We derive the mean-squared displacement of granular
particles in a polydisperse granular gas in a homogeneous cooling state, containing an arbitrary amount of species
of different sizes and masses. We investigate both models of constant and time-dependent restitution coefficients
and obtain a universal law for the size dependence of the mean-squared displacement for steep size distributions.
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I. INTRODUCTION

Granular materials are commonly used in nature and tech-
nology [1–4]. There are numerous examples: stones and sand
in the building industry; grains, sugar, salt, and cereals in the
food industry; and powders in cosmetic production. Granular
dust covers the surface of Mars [5], other planets, and satel-
lites.

Diluted granular systems are termed as granular gases [6].
The distance between the particles is larger than their sizes and
the total packing fraction of all components usually does not
exceed approximately 20%. Granular gases are components of
large interstellar dust clouds, protoplanetary disks, and plane-
tary rings in space. They can be obtained in a microgravity
environment on planes and rockets [7] by placing granular
matter in containers with vibrating [8,9] or rotating [10] walls,
and applying electrostatic [11] or magnetic forces [12,13].

The theory of granular gases extends the ideal gas model to
include the dissipation of particle collisions. Thus, a granular
gas represents a fundamental physical system in statistical
mechanics. It can be considered as a reference model system
in granular matter physics [14]. Most studies on granular
gases have been devoted to one-component granular gas [6],
whereas granular systems are mostly polydisperse. In Saturn’s
rings the sizes of granular particles range from millimeters to
several meters [15,16].

Because of the dissipative nature of interparticle collisions,
the energy equipartition, valid for equilibrium molecular sys-
tems, does not hold for granular mixtures, where each species
k has its own temperature Tk [17],

3

2
nkTk = mk

〈
v2

k

〉
2

=
∫

dvk fk (vk, t )
mkv

2
k

2
. (1)

Here, mk is the mass of the granular species, vk is its velocity,
f (vk, t ) is the velocity distribution function, which quantifies
the number of particles in the system of type k with velocity
vk at time t , and nk is the number density of the kth species of
the granular fluid:

nk =
∫

fk (vk, t )dvk . (2)

The total number density is equal to

n =
∑

i

ni. (3)

The velocity distribution function of species k is assumed to
be Maxwellian,

fk (vk, t ) = nk

(
mk

2πTk

)3/2

exp

(
−mkv

2
k

2Tk

)
. (4)

In force-free granular gases the granular temperatures decay
owing to dissipative collisions, leading to the anomalous sub-
diffusive motion of the granular particles [6].

Anomalous diffusion represents the motion of particles,
characterized by the nonlinear dependence of the mean-
squared displacement (MSD) on time [18–22],

〈R2(t )〉 ∼ tα, (5)

where α �= 1, while 0 < α < 1 corresponds to subdiffusion
[23] and α > 1 corresponds to superdiffusion. The case α = 2
describes the ballistic motion, and the cases with α > 2 are
termed superballistic or hyperdiffusive. The logarithmic time
dependence of MSD corresponds to ultraslow motion [24,25]:

〈R2(t )〉 ∼ log t . (6)

Depending on the restitution coefficient model, the motion
of particles in a force-free cooling unicomponent granular
gas may be either ultraslow or subdiffusive [26]. The effect
of the roughness of the granular particles on the diffusion
coefficient was also considered [27]. The MSD of granular
intruders has been investigated in binary granular mixtures
[28,29] and granular suspensions [30]. However, diffusion in
multicomponent granular mixtures has not been studied pre-
viously. Considering that granular systems are usually highly
polydisperse, one needs to fill this important gap, which is
the subject of investigation in the current paper. In Sec. II we
describe the model of both constant and velocity-dependent
restitution coefficients. In Sec. III we review the derivation of
the granular temperature [31], velocity correlation time [6],
and MSD in a unicomponent granular gas with a constant
restitution coefficient. In Sec. IV we discuss the known re-
sults for the cooling rates in polydisperse granular mixtures.
In Sec. V we derive the partial MSDs in a polydisperse gran-
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ular mixture, which is the main contribution of our paper.
Finally, in Sec. VI we summarize our findings.

II. MODELS OF THE RESTITUTION COEFFICIENT

The dissipative nature of interparticle collisions is quan-
tified by the so-called restitution coefficient ε (see, e.g.,
Refs. [1,6]):

ε =
∣∣∣∣ (v ′

ki · e)

(vki · e)

∣∣∣∣. (7)

Here, vki = vk − vi and v ′
ki = v ′

k − v ′
i are the relative veloc-

ities of particles of masses mk and mi before and after a
collision, respectively, and e is a unit vector directed along
the intercenter vector at the collision instant. The postcollision
velocities v ′

k and v ′
i are related to the precollision velocities vk

and vi as follows [6]:

v ′
k/i = vk/i ∓ meff

mk/i
(1 + ε)(vki · e)e. (8)

Here, meff = mimk/(mi + mk ) is the effective mass of collid-
ing particles. The restitution coefficient 0 � ε < 1 indicates
that the postcollisional relative velocity is smaller than the
precollisional velocity because the mechanical energy is trans-
formed into the internal degrees of freedom of the particles. In
oblique collisions, the restitution coefficient may also attain
negative values [32].

Several models have been proposed for the restitution
coefficient. The simplest assumption is that the restitution
coefficient is equal to a constant value [6]. It is easy to im-
plement in the analytical calculations and can be considered
as a basic reference model. However, this model contradicts
experiments, showing a clear dependence of the restitution
coefficient on impact velocity [15]. With a decrease in the
relative velocity, the restitution coefficient tends to unity, and
the collisions become more elastic.

The simplest, but still rigorous, first-principles model of
inelastic collisions considers the viscoelastic properties of the
particle material. This results in the corresponding interparti-
cle forces [33,34] and eventually in the restitution coefficient
for viscoelastic particles [35,36],

εki = 1 +
20∑
j=1

h j
(
Aκ

2/5
ki

) j/2|(vki · e)| j/10. (9)

Here, hk are numerical coefficients, and κ and A characterize
the elastic and dissipative properties of the particle material,
respectively. The viscoelastic model agrees well with the ex-
perimental data when the impact velocity is not very high [35].
The dissipative constant A quantifies the viscous properties of
the particle material [33,34],

A = 1

Y

(1 + ν)

(1 − ν)

(
4

3
η1(1 − ν + ν2) + η2(1 − 2ν)2

)
, (10)

where η1 and η2 are viscosity coefficients. κi j is a function
of Young’s modulus Y , Poisson’s ratio ν, mass, and size of
particles [6,33,35]:

κki = 1√
2

(
3

2

)3/2 Y

1 − ν2

√
σeff

meff
. (11)

The effective diameter of colliding particles with diameters σi

and σ j is

σeff = σiσ j

σi + σ j
. (12)

III. UNICOMPONENT GRANULAR GAS WITH
CONSTANT RESTITUTION COEFFICIENT

Let us first consider a monodisperse granular gas. Tak-
ing into account that the displacement of the particle may
be expressed as the integral of its velocity, R = ∫ t

0 v(t ′)dt ′,
the MSD can be written in terms of the velocity correlation
function:

〈R2(t )〉 =
∫ t

0
dt1

∫ t

0
dt2〈v1(t1)v1(t2)〉. (13)

The evolution of the velocity can be described in terms of
the pseudo-Liouville operator [6]:

dv1

dt
= Lv1. (14)

The pseudo-Liouville operator may be expressed through the
sum of the free-streaming component L0 = v1∇r1 and binary
collision operators [6]:

L = L0 +
∑
i>1

T̂1i. (15)

The binary collision operator describes the interactions be-
tween particles i and j,

T̂1i = σ 2
∫

de	(−v1i · e)|v1i · e|δ(r1i − σe)(b̂1i − 1).(16)

Operator b̂1i replaces the precollision velocities with the
postcollision velocities, using Eqs. (8). The Heaviside step
function 	(x) selects the approaching particles and the δ func-
tion determines the unit vector e, which specifies the collision.

Due to the assumption of the molecular chaos the veloci-
ties of particles are not correlated. The velocities of particles
change at the collision instants without memory, which corre-
sponds to the Markov process. The time-correlation function
of a Markov process is an exponentially decaying function
[37]. Therefore the velocity correlation function, correspond-
ing to the adiabatic approximation, takes the form

〈v1(t ′) · v1(t )〉 = 3T1(t ′)
m1

exp

(
− |t − t ′|

τv, ad(t ′)

)
. (17)

In the adiabatic approximation it is assumed that the prefactor
changes much slower than the exponential term. The adiabatic
velocity correlation time is equal to the initial slope of the
time-correlation function or may be presented as the derivative
at t = t ′ + ε in the limit ε → 0+:

τ−1
v, ad(t ) = − m1

3T1
lim

t→t ′+0+

d

dt
〈v1(t ′) · v1(t )〉. (18)

In order to derive τ−1
v, ad(t ) we perform a formal integration of

Eq. (14) and obtain the velocity time-correlation function in
the form [6]

〈v1(t ′) · v1(t )〉 = 〈v1(t ′) exp(L(t − t ′))v1(t ′)〉. (19)
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Taking the derivative with respect to time t , one can express
the adiabatic velocity correlation time in terms of the pseudo-
Liouville operator:

τ−1
v, ad(t ) = − m1

3T1
〈v1Lv1〉. (20)

In order to perform the averaging over the two-particle
correlation function f2(r1, r2, v1, v2), we use the hypoth-
esis of molecular chaos, which allows us to represent
f2(r1, r2, v1, v2) as a product of one-component distribution
functions,

f2(r1, r2, v1, v2) = g2(r12) f1(v1, t ) f1(v2, t ), (21)

where the coordinate part factorizes from the velocity part,
r12 = r1 − r2, and g2(r12) is the contact value of the pair
correlation function [6]. This may be assumed to be equal
to unity for dilute systems. Using f1(v1, t ) in the form of
Maxwellian distribution [Eq. (4)] and performing the aver-
aging, one obtains the inverse adiabatic velocity correlation
time:

τ−1
v, ad(t ) = 8

3
nσ 2g2(σ )

√
πT

m

1 + ε

2
. (22)

Beyond the adiabatic approximation the velocity correlation
function of a particle takes the following form,

〈v1(t ′) · v1(t )〉 = 3

√
T1(t ′)T1(t )

m1
exp

(
−|t − t ′|

τv (t ′)

)
, (23)

and the inverse velocity correlation time is equal to

τ−1
v (t ) = τ−1

v, ad(t ) − 1
2ξ (t ). (24)

Here, ξ (t ) is the cooling rate, quantifying the decay of the
granular temperatures in the granular gas in a homogeneous
cooling state [6]:

ξ (t ) = − 1

T

dT (t )

dt
. (25)

In a one-component granular gas it reads

ξ (t ) = 1 − ε2

3
τ−1

c (t ). (26)

The differential equation [Eq. (25)] with a cooling rate
[Eq. (26)] may be solved explicitly, and the temperature obeys
Haff’s law [31]:

T (t )

T (0)
=

(
1 + t

τ0

)−2

. (27)

The inverse characteristic time of the granular temperature
decay was equal to half of the cooling rate at the initial time,

τ−1
0 = 1 − ε2

6
τ−1

c (0) = ξ (0)

2
. (28)

The inverse mean collision time is

τ−1
c (t ) = 4nσ 2g2(σ )

√
πT

m
. (29)

Introducing Eqs. (26) and (22) into Eq. (24) yields

τ−1
v (t ) = τ−1

E (t )
(1 + ε)2

4
= τ−1

c (t )
(1 + ε)2

6
. (30)

For elastic particles with ε = 1 it becomes equal to the Enskog
relaxation time

τ−1
E (t ) = 8

3
nσ 2g2(σ )

√
πT

m
= 2

3
τ−1

c (t ). (31)

The time-dependent diffusion coefficient may be derived as

D(t ) = T (t )τv (t )

m
. (32)

The MSD of a one-component granular gas with a constant
restitution coefficient has the following form [26]:

〈R2(t )〉 = 6D(0)τ0 log

(
1 + t

τ0

)

+ 6D(0)τv (0)

[(
1 + t

τ0

)−β

− 1

]
. (33)

Here,

β = τ0

τv (0)
= (1 + ε)2

1 − ε2
. (34)

At short times t 
 τ0 the MSD has ballistic behavior
〈R2(t )〉 ∼ t2, and at long times it has a logarithmic time
dependence, 〈R2(t )〉 ∼ log t . The MSD of particles with a vis-
coelastic restitution coefficient scales according to 〈R2(t )〉 ∼
t1/6 at long times.

IV. GRANULAR TEMPERATURES
IN A POLYDISPERSE MIXTURE

The distribution of granular temperatures in granular mix-
tures has been studied for both constant [38] and viscoelastic
[39] restitution coefficients as well as for granular parti-
cles immersed in molecular gas [40]. Let us now consider
a mixture of N species. The evolution of partial granular
temperatures in a mixture occurs according to the following
system of differential equations [38,41,42]:

dTk

dt
= −Tkξk, (35)

k = 1, . . . , N. (36)

The cooling rate is equal to the sum

ξk =
N∑

i=1

ξki. (37)

For the constant restitution coefficient, the cooling rate ξki,
quantifying the decrease in the granular temperature of
species of mass mk due to collisions with species of mass mi,
is given by the following expression [38,41,42]:

ξki(t ) = 8

3

√
2πniσ

2
kig2(σki )

(
Tkmi + Timk

mimk

)1/2

(1 + εki )

×
(

mi

mi + mk

)[
1 − 1

2
(1 + εki )

Timk + Tkmi

Tk (mi + mk )

]
. (38)

Here, σki = (σk + σi )/2. The cooling rates for the constant
restitution coefficient became equal after a short relaxation
time, leading to a constant ratio of granular temperatures
during the evolution of the system.
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In the case of a binary mixture with nk 
 ni, mk �
mi, εii → 1 the temperature ratio may be found explicitly
[6,17,43]:

Tk

Ti
= 1 + εik

2(1 − b)
, (39)

b = 1

2
√

2

1 − ε2
ii

1 + εik

mk

mi

σ 2
ik

σ 2
k

g2(σik )

g2(σk )
. (40)

Granular temperatures in a viscoelastic one-component
granular gas scale at long times according to [6]

Ti(t ) ∼ t−5/3, (41)

and the cooling rates attain the form [39]

ξki(t ) = 16

3

√
2πniσ

2
kig2(σik )

(
Tkmi + Timk

mimk

)1/2( mi

mi + mk

)

×
[

1 − Tkmi + Timk

Tk (mi + mk )

+
∑

n

Bn

(
hn − 1

2

Tkmi + Timk

Tk (mi + mk )
An

)]
, (42)

where An = 4hn + ∑
j+k=n h jhk are pure numbers and

Bn(t )=(
Aκ

2/5
ki

) n
2

(
2

Tkmi + Timk

mimk

)n/20( (20 + n)n

800

)
�

( n

20

)
,

(43)

where �(x) denotes the gamma function. The ratio of granular
temperatures does not remain constant as compared to the
case of constant restitution coefficient, and the system tends
to equipartition with the passage of time [39].

V. MEAN-SQUARED DISPLACEMENT IN A
POLYDISPERSE GRANULAR MIXTURE

In a mixture of N species the total MSD can be expressed
through partial MSDs,

〈R2(t )〉 = 1

n

N∑
k=1

nk
〈
R2

k (t )
〉
. (44)

Let us derive the partial MSD of species k. The evolution of
velocity vk may also be described in terms of the pseudo-
Liouville operator as for the one-component granular gas,

dvk

dt
= Lvk . (45)

The Lioville operator takes the form

L = L0 +
N∑

i=1

NiT̂ki. (46)

Here, Ni is the number of particles of species i, and T̂ki is
the collisional operator describing the interactions between
particles of species i and k, respectively:

T̂ki = σ 2
∫

de	(−vki · e)|vki · e|δ(rki − σe)(b̂ki − 1).

(47)

Taking into account that Rk = ∫ t
0 vk (t ′)dt ′, the MSD can be

written in terms of the velocity correlation function:

〈
R2

k (t )
〉 =

∫ t

0
dt1

∫ t

0
dt2〈vk (t1)vk (t2)〉. (48)

Introducing the reduced time τk according to

dτk = dt
√

Tk (t )/Tk (0)τ−1
c (0), (49)

we can write down the exponential correlation function of the
reduced velocities ck = vk

√
mk/(2Tk ) [6],

〈ck[τk (t1)]ck[τk (t2)]〉 = 3

2
exp

[
−τk (t2) − τk (t1)

τ̂v,k (t1)

]
, (50)

and express the partial MSD 〈R2
k (t )〉 as

〈
R2

k (t )
〉 = 6

∫ t

0
dt1Dk (t1)

[
1 − exp

(
−τk (t ) − τk (t1)

τ̂v,k (t1)

)]
.

(51)

Here, the reduced velocity correlation time is

τ̂v,k (t ) = τv,k (t )

√
Tk (t )

Tk (0)
τ−1

c (0). (52)

The partial diffusion coefficient of species k may be calculated
according to

Dk (t ) = Tk (t )τv,k (t )

mk
. (53)

The inverse velocity correlation time is given by the sum

τ−1
v,k (t ) =

N∑
i=1

τ−1
v,ki(t ), (54)

where

τ−1
v,ki(t ) = τ−1

v,ki, ad(t ) − 1
2ξki(t ). (55)

The adiabatic velocity correlation time is calculated as fol-
lows:

τ−1
v,k ad(t ) =

N∑
i=1

τ−1
v,ki, ad(t ), (56)

τ−1
v,ki ad(t ) = −Nimk

3Tk
〈vkT̂kivk〉. (57)

A. Constant restitution coefficient

For ε = const we get after performing the averaging

τ−1
v,ki, ad(t ) = 8

√
2π

3
niσ

2
kig2(σki )

mi

mi + mk

×
(

Tkmi + Timk

mimk

)1/2 1 + ε

2
. (58)

Introducing Eqs. (38) and (58) into Eq. (55) yields

τ−1
v,ki(t ) = 8

√
2π

3
niσ

2
kig2(σki )

mi

mi + mk

Tkmi + Timk

Tk (mi + mk )

×
(

Tkmi + Timk

mimk

)1/2 (1 + ε)2

4
. (59)
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FIG. 1. Time dependence of partial MSDs in a binary granular
mixture for particles, colliding with a constant restitution coeffi-
cient ε = 0.5. The partial number densities of particles are equal:
n1 = n2 = 0.1. The masses of species are m1 = 1, m2 = 100, and
the diameters σ1 = 1, σ2 = 1. At short times the particles move
along ballistic trajectories 〈R2

k (t )〉 ∼ t2, and at long times the par-
ticles perform ultraslow diffusion 〈R2

k (t )〉 ∼ log t (dotted lines show
the slope). The dashed line corresponds to the total MSD 〈R2(t )〉
[Eq. (44)].

The reduced velocity correlation time τ̂v,k [Eq. (52)] becomes
constant at long times, and the diffusion coefficient, given by
Eq. (53), can be written as

Dk (t ) = Dk (0)

√
Tk (t )

Tk (0)
, (60)

with

Dk (0) = Tk (0)τ̂v,kτc(0)

mk
. (61)

The temperature ratio γk (t ) = Tk (t )/T1(k) becomes constant
at long times t � τ0, and the partial diffusion coefficient takes
the form

Dk (t ) = Dk (0)

√
γk (t )

γk (0)

√
T1(t )

T1(0)
(62)

or

Dk (t ) = Dk (0)

√
γk (t )

γk (0)

(
1 + t

τ0

)−1

. (63)

The MSD at long times may be calculated as

〈
R2

k (t )
〉 = 6

∫ t

0
dt1Dk (t1) = Dk (0)τ0

√
γk (t )

γk (0)
log

(
1 + t

τ0

)
.

(64)

Introducing Eqs. (52), (53), and (59) into Eq. (51) and
performing numerical integration, we can obtain the partial
MSDs in a granular mixture for particles, colliding with a
constant restitution coefficient ε = const. The results for the
binary and tertiary granular mixtures with equal amounts of
species of each mass are shown in Figs. 1 and 2, respectively.
In binary mixtures, at short times, particles with lighter masses
also move faster. However, at longer times the motion of

FIG. 2. Time dependence of partial MSDs in a tertiary granular
mixture for particles, colliding with a constant restitution coefficient
ε = 0.5 (solid lines). The number densities of particles are equal:
n1 = n2 = n3 = 0.1. The masses of species are m1 = 1, m2 = 100,
m3 = 500, and the diameters σ1 = 1, σ2 = 1, σ3 = 1.

particles with mass m = 1 becomes slower than that of par-
ticles with mass m = 100 (Fig. 1). The trajectories of massive
particles are slightly affected by collisions with much lighter
particles. In tertiary mixtures, the fastest particles have the
largest mass m = 500 (Fig. 2).

Now we investigate mixtures with a large amount of
species N � 1. If the size distribution is steep enough (θ > 2),
the granular temperature distribution scales according to
Tk ∼ k5/3 [38]. Then τ−1

v,ki ∼ i2−θ /k at k � i. Replacing in
Eq. (54) the sum by the integral, we obtain that for N → ∞
the integral becomes finite if θ > 3, and τv,k (t ) ∼ k. There-
fore, Dk (t ) ∼ k5/3, and for mean-squared displacements we
obtain the same scaling law as for granular temperatures:
〈R2

k〉 ∼ k5/3 for k � 1, t � τ0. The ratio 〈R2
k〉/〈R2

1〉 is plotted
in Fig. 3 for different values of parameter θ . At k � 1 a nice
agreement with scaling is observed.

FIG. 3. Fraction of partial MSDs 〈R2
k〉/〈R2

1〉 for different values
of k = mk/m1 in a mixture of granular particles with number density
nk = n1k−θ , θ = 3, 4, 5, n1 = 0.1 number of species N = 4000, time
t = 100 000, and constant restitution coefficient ε = 0.5. The solid
line corresponds to the result of numerical integration of Eq. (51),
and the thin dashed line shows the scaling 〈R2

k〉 ∼ k5/3.
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FIG. 4. MSD in a binary granular mixture with time-dependent
restitution coefficient, Aκ2/5 = 0.1, m1 = 1, m2 = 10, n1 = 0.1,
n2 = 0.02.

B. Velocity-dependent restitution coefficient

The inverse adiabatic velocity correlation time for particles
with a viscoelastic restitution coefficient given by Eq. (9) can
be analogously derived:

τ−1
v,ki, ad(t ) = 8

√
2π

3
niσ

2
kig2(σik )

mi

(mi + mk )2

×
(

Tkmi + Timk

mimk

)1/2
(

1 +
∑

i

hiBi

)
. (65)

The full velocity correlation time reads

τ−1
v,ki(t ) = 8

√
2π

3
niσ

2
kig2(σik )mi

Tkmi + Timk

Tk (mi + mk )2

×
(

Tkmi + Timk

mimk

)1/2
(

1 + 1

2

∑
i

AiBi

)
. (66)

Introducing Eqs. (52), (53), and (66) into Eq. (51), we
can derive partial MSDs 〈R2

k (t )〉 for particles colliding with
the velocity-dependent restitution coefficient. We show the
corresponding values for a binary granular mixture at Fig. 4.
At short times the particles move along ballistic trajectories,
〈R2

k〉 ∼ t2, and at long times 〈R2
k〉 ∼ t1/6.

VI. CONCLUSIONS

We investigated the diffusion in granular mixtures and
derived the expression for the mean-squared displacement
for granular mixtures with an arbitrary number of different
species. We obtained a generalized scaling law for partial
MSDs in polydisperse granular mixtures with discrete masses
mk and steep number densities nk ∼ k−θ with θ > 3. Our
results may be helpful for industrial applications in different
branches and investigations of the motion of particles in plan-
etary rings and other astrophysical objects.
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