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Self-oscillating coupled systems possess the ability to actively absorb external environmental energy to sustain
their motion. This quality endows them with autonomy and sustainability, making them have application value in
the fields of synchronization and clustering, thereby furthering research and exploration in these domains. Build-
ing upon the foundation of thermal responsive liquid crystal elastomer-based (LCE-based) spring oscillators, a
synchronous system comprising three LCE-based spring oscillators interconnected by springs is established. In
this paper, the synchronization phenomenon is described, and the self-oscillation mechanism is revealed. The
results indicate that by varying system parameters and initial conditions, three synchronization patterns emerge,
namely, full synchronous mode, partial synchronous mode, and asynchronous mode. For strongly interacting
systems, full synchronous mode always prevails, while for weak interactions, the adjustment of initial velocities
in magnitude and direction yields the three synchronization patterns. Additionally, this study explores the
impact of several system parameters, including LCE elasticity coefficient and spring elasticity coefficient, on
the amplitude, frequency, and synchronous mode of the system. The findings in this paper can enhance our
understanding of the synchronization behavior of multiple mutually coupled LCE-based spring oscillators, with
promising applications in energy harvesting, soft robotics, signal monitoring, and various other fields.
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I. INTRODUCTION

Self-oscillation system refers to a system that can exhibit
sustained periodic motion through obtaining energy from an
external steady environment [1–5]. Self-oscillation is ubiqui-
tous in nature, manifesting in various phenomena such as the
rhythmic beating of the heart and the swaying of a swing. One
of the key advantages of self-excited oscillation is its ability
to operate without the need for additional controllers, drawing
energy from the surrounding environment to sustain its self-
sustained oscillatory behavior [6,7]. This unique characteristic
holds significant promise in a wide range of applications, in-
cluding medical devices [8,9], soft robotics [10,11], actuators
[12–14], and energy harvesting [15,16].

In recent years, as active materials have been the sub-
ject of extensive research, self-oscillating systems based on
active materials, such as ionic gels [17,18], hydrogels [19],
photothermal responsive polymer [20–26], shape memory
polymers [27], and dielectric elastomers [28], have been con-
tinuously developed. These active materials exhibit diverse
responses to light [29,30], heat [31,32], electric field [33],
and magnetic field [34,35], including changes in shape and
motion. A variety of self-oscillating modes based on active
materials are constructed, including rolling [36,37], jumping
[38], twisting [39], buckling [40,41], bending [42,43], swing-
ing [44], vibrating [45], curling [46], stretching [47], shuttling
[48], spinning [49], and floating [50]. Liquid crystal elastomer
(LCE) is a kind of material with superior properties [51–54],
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which forms a polymer network structure through the cross-
linking of liquid crystal monomer molecules [55]. When the
LCE is exposed to external stimuli such as light [36,45,46,49],
heat [31,32], electricity [33], and magnetism [35], reversible
morphological changes can occur. LCE possesses the benefits
of fast response and extensive deformation, rendering it more
apt for constructing self-oscillation systems. Presently, exten-
sive experimental and theoretical research has been conducted
on self-oscillation based on LCE.

Synchronization is ubiquitous in nature, such as fireflies,
the pendulum, and the contraction of the heart [56–60]. And
the synchronous phenomenon is put forward for the first
time in the 17th century, when Huygens observed during
one voyage that two pendulums connected by a beam can
reverse synchronous vibration, and discovered that the cause
of the reverse sync between the two pendulums was the tiny
vibrations propagated by the beam [61,62]. Based on this
phenomenon, he put forward the theory of synchronization.
On the basis of Huygens’ research, scientists have done a lot
of research on the phenomenon of synchronization, such as
quantum mechanical synchronization, explosion synchroniza-
tion, synchronization nonlinear system [63–65], etc. These
synchronizations provide the foundation theory for the es-
tablishment of a large range of synchronization models and
neural networks [66–68].

Nowadays, a lot of self-oscillating systems are established
based on LCE materials, most of which are about a single
self-oscillator, while a few studied the interaction of multiple
spontaneous oscillators [69,70]. To achieve a wider range of
applications, we propose a coupling system that consists of
three LCE-based spring oscillators under a linear temperature
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FIG. 1. Schematic diagram of self-oscillating coupled system.
(a) Reference state; (b) prestretched state; (c) current state; (d) force
analysis of the masses.

field. Then we describe the phenomena of self-oscillation and
synchronization, revealing the mechanism of self-oscillation.
This study is valuable for designing more self-sustained syn-
chronization systems utilizing diverse thermally responsive
materials [71], which have broad applications in fields such
as soft robotics, energy harvesters, sensors, and so on.

The structure of the paper is as follows. In Sec. II, based on
the dynamic LCE model, the governing equations of a coupled
system of three LCE-based spring oscillators are derived. In
Sec. III, three synchronization modes are described, and the
self-oscillation mechanism is revealed. In Secs. IV–VI, we
quantitatively investigate the influence of system parameters
on self-oscillation. Finally, in Sec. VII, we provide a summary.

II. MODEL AND FORMULATION

In this section, we first construct a synchronous self-
oscillating system coupled by three LCE-based spring oscil-
lators under a linear temperature field. Then, we derive and
linearize the governing equations of the coupled synchronous
system.

A. Dynamic model of three LCE-based spring oscillators

In this section, we formulate a dynamical model for the
LCE-based spring oscillators under a linear temperature field.
Figure 1 illustrates the model of the self-oscillating coupled
system under a linear temperature field. The system comprises
three LCE-based spring oscillators interconnected by springs.
In the initial state, the original length of each LCE fiber is
L0 and the original length of each spring is LS , as drawn in
Fig. 1(a). Initially, one end of every LCE fiber is anchored,
while the opposite end is attached to a spring. This lower
section of the spring is linked to another spring through a
pulley, thereby effectively connecting three spring oscillators.
To ensure the force balance of the system, the LCE fibers

and the springs are required to be prestretched, where the
prestretched amount of each LCE fiber and each spring is λ1

and λ2. It can be seen in Fig. 1(b) that in equilibrium, the
length of each LCE fiber is λ1L0 and the length of each spring
is λ2LS . The governing equations of the coupled system in the
initial state are

m1g + Fs10 − FL10 = 0,

m2g + Fs20 − FL20 = 0,

m3g + Fs30 − FL30 = 0, (1)

where Fs10, Fs20, and Fs30 are the initial elastic forces of
the springs and FL10, FL20, and FL30 are the initial elastic
forces of the LCE fibers, where Fs0 = k(λ2LS − LS ) and FL0 =
K (λ1L0 − L0), while k and K are the spring elastic coefficient
and the LCE elastic coefficient. From this, the relationship
between λ1 and λ2 can be obtained, i.e.,

λ2 = K̄ (λ1 − 1) − 1

k̄L̄2
+ 1, (2)

where F̄s10 = Fs10/mg, F̄s20 = Fs20/mg, F̄s30 = Fs30/mg, F̄L10 =
FL10/mg, F̄L20 = FL20/mg, F̄L30 = FL30/mg, k̄ = kL1/mg, K̄ =
KL1/mg, and L̄2 = L2/L1.

It can be seen from Fig. 1(c) that after heating, the LCE
fibers begin to oscillate in the direction of fiber length, in
which the displacements of the masses are w1(t ), w2(t ), and
w3(t ). The force analysis of the three fibers as shown in
Fig. 1(d), where Fs1 , Fs2 , and Fs3 are the elastic force of the
springs and FL1 , FL2 , and FL3 are the elastic force of LCE fibers.
Fd1 , Fd2 , and Fd3 are the damping force. For simplicity, we as-
sume that the damping force is linearly related to velocity and
consistently opposes the motion of the fiber. The equations
that describe the system can be formulated as

m1ẅ1(t ) − m1g − Fs1 (t ) + FL1 (t ) + Fd1 (t ) = 0,

m2ẅ2(t ) − m2g − Fs2 (t ) + FL2 (t ) + Fd2 (t ) = 0,

m3ẅ3(t ) − m3g − Fs3 (t ) + FL3 (t ) + Fd3 (t ) = 0, (3)

where ẅ1(t ), ẅ2(t ), and ẅ3(t ) are the accelerations d2w1(t )
dt2 ,

d2w2(t )
dt2 , and d2w3(t )

dt2 , and the elastic force of the spring is

Fs1 = k[λ2LS − LS − w1(t )] − k[w1(t ) + w2(t )]

− k[w1(t ) + w3(t )],

Fs2 = k[λ2LS − LS − w2(t )] − k[w2(t ) + w1(t )]

− k[w2(t ) + w3(t )],

Fs3 = k[λ2LS − LS − w3(t )] − k[w3(t ) + w1(t )]

− k[w3(t ) + w2(t )]. (4)

We assume nonlinear damping for the damping character-
istics, and it can be written as

Fd1 = (a0 + a1|ẇ1|)ẇ1,

Fd2 = (a0 + a1|ẇ2|)ẇ2,

Fd3 = (a0 + a1|ẇ3|)ẇ3, (5)
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where a0 and a1 are the first damping coefficient and the
second damping coefficient, and ẇ1(t ), ẇ2(t ), and ẇ3(t ) are
the velocities dw1(t )

dt , dw2(t )
dt , and dw3(t )

dt .

B. Tension of the LCE fiber

Since the nonuniform deformation of the LCE fibers under
a linear temperature field, a Lagrangian coordinate system X ,
and a Euler coordinate system x are established as shown in
Figs. 1(a) and 1(b). The instantaneous position of the particle
is xi = xi(Xi, t ) (i = 1, 2, 3), and the displacement of the par-
ticle is ui(Xi, t ) (i = 1, 2, 3) during the LCE fibers oscillating.

There is an assumption that the tension is directly pro-
portional to the strain of the LCE fiber, following a linear
dependency:

FL1 = KL1[ε1(X, t ) − εT (X, t )],

FL2 = KL2[ε2(X, t ) − εT (X, t )],

FL3 = KL3[ε3(X, t ) − εT (X, t )], (6)

where K is the LCE elastic coefficient, and the one-
dimensional strains ε1(X, t ), ε2(X, t ), and ε3(X, t ) are given
by

ε1(X, t ) = ∂u1(X, t )

∂X 1
,

ε2(X, t ) = ∂u2(X, t )

∂X2
,

ε3(X, t ) = ∂u3(X, t )

∂X3
. (7)

Moreover, the heat-induced strain εT (X, t ) is directly pro-
portional to the temperature difference T (X, t ):

εT (X, t ) = αT (X, t ), (8)

where α is the thermal expansion coefficient, α < 0 indicates
thermal contraction, and α > 0 denotes thermal expansion.

Given the uniform and constant of the driving force FL(t )
in the LCE fiber, we can calculate it by integrating both sides
of Eq. (6) from 0 to X . Combining this with Eqs. (7) and (8),
we can derive the driving force at the end of the LCE fiber:

FL1 (t ) = K

[
w1(t ) − α

∫ L

0
T (X, t )dX

]
,

FL2 (t ) = K

[
w2(t ) − α

∫ L

0
T (X, t )dX

]
. (9)

Because the temperature field within the LCE fiber is
nonuniform and varies over time, heat exchange occurs be-
tween the fiber and its surroundings, resulting in a temperature
distribution denoted as Text (t ). Therefore, there is an assump-
tion that the radius of the fiber is significantly smaller than the
length L, so the temperature field in the LCE fiber can be seen
as uniform, namely, T = T (X, t ). In this case, the temperature
field in the LCE fiber is as follows:

τ
dT (X, t )

dt
= Text (x) − T (X, t ), (10)

where the characteristic time τ = ρc

h , ρc is the heat capacity
and h is the heat transfer coefficient. There is an assumption
that the temperature field in the environment follows a linear
pattern:

Text (x) = βx + Q, (11)

where Q represents the temperature at x = 0 and β indicates
the temperature gradient.

We introduce the following dimensionless parameters: t̄ =
t/

√
L/g, F̄L = FL/mg, ū = u/L, w̄ = w/L, X̄ = X/L, x̄ =

x/l , τ̄ = τ/
√

L/g, K̄ = KL/mg, ᾱ = αTL, T̄ = T/TL, T̄ext =
Text/TL, β̄ = βL/TL, and Q̄ = Q/TL (TL denotes the tempera-
ture at x = L).

In this case, the elastic force of LCE fiber can be written
as

F̄L1 = K̄

[
w̄1(t̄ ) − ᾱ

∫ 1

0
T̄ (X̄1, t̄ )dX̄

]
,

F̄L2 = K̄

[
w̄2(t̄ ) − ᾱ

∫ 1

0
T̄ (X̄2, t̄ )dX̄

]
. (12)

The temperature field’s solution is as follows:

T̄ (X̄ , t̄ ) = β̄[w̄(t̄ ) + 1]

eᾱβ̄ − 1
(eᾱβ̄X̄ − 1) + Q̄ + τ̄

β̄ẇ(t̄ )

eᾱβ̄ − 1

×
[

(eᾱβ̄X̄ − 1)(ᾱβ̄eᾱβ̄ − eᾱβ̄ + 1)

eᾱβ̄ − 1
− ᾱβ̄X̄ eᾱβ̄X̄

]
.

(13)

By inserting Eq. (13) into Eq. (12), the elastic force F̄L(t )
of LCE fiber can be written as

F̄L1 (t̄ ) = K̄ᾱβ̄

eᾱβ̄ − 1
w̄1(t̄ ) + K̄ᾱβ̄τ̄

1 − eᾱβ̄ + ᾱβ̄eᾱβ̄

(eᾱβ̄ − 1)
2 ẇ1(t )

+ K̄

(
ᾱβ̄

eᾱβ̄ − 1
− 1 − ᾱQ̄

)
,

F̄L2 (t̄ ) = K̄ᾱβ̄

eᾱβ̄ − 1
w̄2(t̄ ) + K̄ᾱβ̄τ̄

1 − eᾱβ̄ + ᾱβ̄eᾱβ̄

(eᾱβ̄ − 1)
2 ẇ2(t )

+ K̄

(
ᾱβ̄

eᾱβ̄ − 1
− 1 − ᾱQ̄

)
,

F̄L3 (t̄ ) = K̄ᾱβ̄

eᾱβ̄ − 1
w̄3(t̄ ) + K̄ᾱβ̄τ̄

1 − eᾱβ̄ + ᾱβ̄eᾱβ̄

(eᾱβ̄ − 1)
2 ẇ3(t )

+ K̄

(
ᾱβ̄

eᾱβ̄ − 1
− 1 − ᾱQ̄

)
. (14)

C. Governing equations

By defining F̄d = Fd/mg, ā0 = a0
m

√
L
g , ā1 = a1L

m , and com-

bining with Eqs. (5) and (14), Eq. (3) can be expressed
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as [72]

ẅ1(t̄ ) − 1 − k[λ2L̄2 − L̄2 − 3w̄1(t̄ ) − w̄2(t̄ ) − w̄3(t̄ )] + K̄ᾱβ̄

eᾱβ̄ − 1
[w̄1(t̄ ) + λ1 − 1]

+ K̄ᾱβ̄τ̄
1 − eᾱβ̄ + ᾱβ̄eᾱβ̄

(eᾱβ̄ − 1)
2 ẇ1(t̄ ) + K̄

(
ᾱβ̄

eᾱβ̄ − 1
− 1 − ᾱQ̄

)
+ (ā0 + ā1|ẇ1(t̄ )|)ẇ1(t̄ ) = 0,

ẅ2(t̄ ) − 1 − k[λ2L̄2 − L̄2 − 3w̄2(t̄ ) − w̄1(t̄ ) − w̄3(t̄ )] + K̄ᾱβ̄

eᾱβ̄ − 1
[w̄2(t̄ ) + λ1 − 1]

+ K̄ᾱβ̄τ̄
1 − eᾱβ̄ + ᾱβ̄eᾱβ̄

(eᾱβ̄ − 1)
2 ẇ2(t̄ ) + K̄

(
ᾱβ̄

eᾱβ̄ − 1
− 1 − ᾱQ̄

)
+ (ā0 + ā1|ẇ2(t̄ )|)ẇ2(t̄ ) = 0,

ẅ3(t̄ ) − 1 − k[λ2L̄2 − L̄2 − 3w̄3(t̄ ) − w̄1(t̄ ) − w̄2(t̄ )] + K̄ᾱβ̄

eᾱβ̄ − 1
[w̄3(t̄ ) + λ1 − 1]

+ K̄ᾱβ̄τ̄
1 − eᾱβ̄ + ᾱβ̄eᾱβ̄

(eᾱβ̄ − 1)
2 ẇ3(t̄ ) + K̄

(
ᾱβ̄

eᾱβ̄ − 1
− 1 − ᾱQ̄

)
+ (ā0 + ā1|ẇ3(t̄ )|)ẇ3(t̄ ) = 0. (15)

Equation (15) represents a second-order differential equa-
tion with variable coefficients. In this research, the classical
fourth-order Runge-Kutta method is adopted to numerically
solve Eq. (15) by using the MATLAB software. This approach
allows us to obtain the steady-state response of the LCE fiber,
which obtains the displacement and velocity of self-oscillation
over time.

III. TWO MOTION REGIMES AND THE MECHANISM

In this section, three synchronous modes, namely, full syn-
chronous mode, partial synchronous mode, and asynchronous
mode, are described first. Then, two motion regimes, namely,
static and self-oscillation regimes, are found, and the mecha-
nism of self-oscillation is revealed in detail.

To further investigate the coupled self-oscillating syn-
chronous system, it is imperative to obtain standard values
for dimensionless system parameters. Based on previous
experiments and data [72–77], Table I lists the actual
values of the system parameters, while corresponding di-
mensionless parameters are computed and presented in
Table II.

TABLE I. Properties of the material and geometric parameters.

Parameter Definition Value Unit

L Original length of LCE fiber 0.01–1 m
m Mass 0.01–0.1 kg
g Acceleration of gravity 9.8 m/s2

ρc Heat capacity 0.02–0.5 J/m2/C
h Heat transfer coefficient 1–20 W/m2/C
K LCE elastic coefficient 10–100 N/m
k Spring elastic coefficient 10–100 N/m
α Thermal expansion coefficient −0.4–0 1/C
β Temperature gradient 20–1000 C/m
a0 First damping coefficient 0–0.5 kg/s
a1 Second damping coefficient 0–1 kg/s
τ Characteristic time 0.001–0.5 s

A. Three synchronization modes and two motion regimes

A time history curve of each mass can be obtained by
numerical calculation, with setting appropriate system param-
eters K̄ , k̄, ᾱ, β̄, ā0, ā1, τ̄ , v0

1 , v0
2 , and v0

3 . Figure 2 shows that
there are three synchronous modes, namely, fully synchronous
mode, partial synchronous mode, and asynchronous mode.
In calculations, the dimensionless parameters are selected as
K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā1 = 0.6, and τ̄ = 0.15.
When ā0 = 0.2, the three LCE fibers with same velocities, ini-
tially oscillate under a linear temperature field. Subsequently,
due to the damping force, the amplitude gradually decreases
until it becomes stationary, as illustrated in Figs. 2(a), 2(c),
and 2(e). This is because the energy absorbed by the fiber
when heated cannot compensate for the damping dissipation.
Conversely, when ā0 = 0.02, the LCE fiber can oscillate pe-
riodically and constantly in the temperature field, namely,
the self-oscillation regime, as plotted in Figs. 2(b), 2(d), and
2(f). This is because the net work done by the tension of
the LCE fiber can compensate for the damping dissipation.
Furthermore, the system has three synchronous modes, and
when v0

1 = 0, v0
2 = 0, and v0

3 = 0, the system reaches full
synchronous mode, where the time history curves of the LCE
fibers are exactly the same as shown in Fig. 2(b). It can be
seen from Fig. 2(d) that when v0

1 = 5, v0
2 = 0, and v0

3 = 0, the
system is the partial synchronous mode. And Fig. 2(e) shows
that the system is asynchronous mode when v0

1 = 1, v0
2 = 0,

and v0
3 = −5.

B. The mechanism of self-oscillation

To further study the mechanism of self-oscillation, Fig. 3
draws the changes of several key quantities in the process
of self-oscillation, where the system parameters of the full

TABLE II. Dimensionless parameters.

Parameter K̄ k̄ ᾱ β̄ ā0 ā1 τ̄

Value 1–20 2–15 -0.4–0 0–1 0–0.2 0–1 0.01–0.2
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FIG. 2. Three synchronous modes and two motion regimes of the
coupled self-oscillating system, where the parameters are K̄ = 14,
k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā1 = 0.6, and τ̄ = 0.15. (a) Static regime
in full synchronous mode, and the parameter is set as ā0 = 0.2,
v0

1 = 0, v0
2 = 0, and v0

3 = 0. (b) Self-oscillation regime in full syn-
chronous mode, and the parameters are set as ā0 = 0.02, v0

1 = 0,
v0

2 = 0, and v0
3 = 0. (c) Static regime in partial synchronous mode,

and the parameters are set as ā0 = 0.2, v0
1 = 0, v0

2 = 0, and v0
3 = 5.

(d) Self-oscillation regime in partial synchronous mode, and the
parameters are set as ā0 = 0.02, v0

1 = 0, v0
2 = 0, and v0

3 = 5. (e)
Static regime in asynchronous mode, and the parameters are set as
ā0 = 0.2, v0

1 = 1, v0
2 = 0, and v0

3 = −5. (f) Self-oscillation regime in
asynchronous mode, and the parameters are set as ā0 = 0.02, v0

1 = 1,
v0

2 = 0, and v0
3 = −5. There exist three synchronous modes of the

system, that is, full synchronous mode, partial synchronous mode,
and asynchronous mode.

synchronous mode are K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ = 0.6,
ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 0.
The parameters of the partial synchronous mode are set as
K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02, ā1 = 0.6, τ̄ =
0.15, v0

1 = 5, v0
2 = 0, and v0

3 = 0. The parameters of the
asynchronous mode are set as K̄ = 14, k̄ = 6, ᾱ = −0.2,
β̄ = 0.6, ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 1, v0
2 = 0, and

v0
3 = −5. Figures 3(a)–3(c) display the time history curves

in the three synchronous modes, illustrating that the LCE
fiber can oscillate periodically under linear temperature field.
Figures 3(d)–3(f) plot the changes of the tension of the LCE
fibers over time, explaining the periodic change of the driving
force. Figures 3(g)–3(i) plot the damping force over time
in the three synchronous modes, indicating that the damp-
ing force changes periodically over time. Figures 3(j)–3(l)
show the relationship between the tension of LCE fibers and
displacements, where the area of hysteresis loop enclosed
indicates the net work. Figures 3(m)–3(o) illustrate the rela-
tionship between the damping force and displacement, where
the area of hysteresis loop enclosed is the damping dissipa-
tion. By further calculation, the area of hysteresis loops in
Figs. 3(j)–3(l) and 3(m)–3(o) are equal, which means that
the net work done by the LCE fiber can compensate the
damping dissipation, so the self-oscillation of the system can
maintain.

IV. PARAMETER STUDY IN THE FULL
SYNCHRONOUS MODE

In Eq. (15), there are seven dimensionless parameters: K̄ ,
k̄, ᾱ, β̄, ā0, ᾱ1, and τ̄ , which can affect the self-oscillation.
In this section, the effect of these seven parameters on the
self-oscillation of the full synchronous mode is investigated
in detail.

A. Effects of thermal expansion coefficient

Figure 4 plots how the thermal expansion coefficient ᾱ

affects the system in the full synchronous mode, where other
system parameters are selected as K̄ = 14, k̄ = 6, β̄ = 0.6,
ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 0.
It can be seen from Fig. 4(a) that |ᾱ| = 0.05 is a critical
value between static and self-oscillation regimes. As shown
in Fig. 4(a), when |ᾱ| < 0.05, the system is in the static
regime. On the contrary, when |ᾱ| > 0.05, the amplitude of
the system increases with the increase of the absolute value
of the thermal expansion coefficient, while the frequency is
not affected. This is because with the increase of the absolute
value of ᾱ, the contraction of the LCE fiber increases, the
driving force of the system increases, and thus the amplitude
increases. Figure 4(b) plots three limit cycles for different
thermal expansion coefficients ᾱ.

Further calculations show that the system exhibits a full
synchronous mode when the thermal expansion coefficients
of the three LCE fibers are identical, as depicted in Fig. 5(a).
In the case where the thermal expansion coefficients of LCE
fibers 1, 2, and 3 are −0.3, −0.2, and −0.2, respectively, the
system operates in the partial synchronous mode, as illustrated
in Fig. 5(b). Furthermore, when the thermal expansion coef-
ficients of LCE fibers 1, 2, and 3 are −0.3, −0.2, and −0.1,
respectively, the system transits into asynchronous mode, as
shown in Fig. 5(c). Other system parameters, such as elastic
coefficient and spring coefficient, have the potential to influ-
ence the self-oscillation synchronization mode. In this study,
we focus on the synchronization phenomenon in three coupled
identical self-oscillators. In the following parametric analysis,
the system parameters for the three coupled self-oscillators
are set to be identical. A detailed quantitative analysis of
synchronization behaviors among nonidentical coupled self-
oscillators could serve as a subject for future work.

B. Effects of LCE elastic coefficient

Figure 6 draws how the LCE elastic coefficient affects the
system in the full synchronous mode, where other system pa-
rameters are k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02, ā1 = 0.6,
τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 0. Figure 6(a) shows that
there is a critical K = 3 between static and self-oscillation
regimes. When K < 3, the system is in the static regime, while
when K > 3, the system is in the self-oscillation regime; there
are increases in both amplitude and frequency as K increases.
This is because with the increase of K , the tension FL of the
LCE fibers increases, namely, the driving force increases, so
the amplitude and frequency increase. Figure 6(b) illustrates
the limit cycles with different K in the full synchronous mode.
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FIG. 3. Mechanism of the self-oscillation. The parameters of the full synchronous mode are set as K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ = 0.6,
ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 0. The parameters of the partial synchronous mode are set as K̄ = 14, k̄ = 6, ᾱ =
−0.2, β̄ = 0.6, ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 5, v0
2 = 0, and v0

3 = 0. The parameters of the asynchronous mode are set as K̄ = 14,
k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 1, v0
2 = 0, and v0

3 = −5. (a)–(c) Time history curve of full synchronous
mode, partial synchronous mode, and asynchronous mode. (d)–(f) Curves of the tension of LCE fiber change over time in the full synchronous
mode, partial synchronous mode, and asynchronous mode. (g)–(i) Curves of damping forces change with time in full synchronous mode, partial
synchronous mode, and asynchronous mode. (j–(l) The relationship between displacement and the tension of LCE fibers in full synchronous
mode, partial synchronous mode, and asynchronous mode. (m)–(o) The relationship between displacement and the damping forces in full
synchronous mode, partial synchronous mode, and asynchronous mode. The energy absorbed by the fibers from the temperature field can
offset damping dissipation, enabling the system to sustain self-oscillation.

C. Effects of spring elastic coefficient

Figure 7(a) plots the effect of spring elastic coefficient
k on the amplitude and frequency in the full synchronous
mode, where other system parameters are selected as k̄ = 6,
ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0,
v0

2 = 0, and v0
3 = 0. As shown in Fig. 7(a), the amplitude

FIG. 4. The effect of the thermal expansion coefficient on the
self-oscillation in full synchronous mode. (a) Variations of ampli-
tude and frequency with different thermal expansion coefficients. (b)
Limit cycles with ᾱ = −0.1, ᾱ = −0.15, and ᾱ = −0.2.

decreases with the increase of k, and the frequency increases
with the increase of k. This is because with the increase of
the spring elastic coefficient, the recovery force of the system
increases, which inhibits the system self-oscillation, thus the
amplitude decreases. Figure 7(b) draws three limit cycles with
different k in the full synchronous mode. The results show that
the system is always in the self-oscillation regime of the full
synchronous mode as the spring elastic coefficient changes.

D. Effects of temperature gradient

Figure 8 shows how the temperature gradient affects the
system in full synchronous mode, where other system pa-
rameters are chosen as K̄ = 14, k̄ = 6, ᾱ = −0.2, ā0 = 0.02,
ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 0. In Fig. 8(a),
β̄ = 0.2 is a critical value between two motion regimes, where
with β̄ < 0.2 the system is in static regime, while the system
is in self-oscillation regime with β̄ > 0.2. Meanwhile, the
amplitude of the system increases with an increase of β̄, while
the frequency is unchanged. The reason is, as β̄ increases,
the temperature increases faster, and the LCE fiber is able
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FIG. 5. Synchronization modes of three coupled nonidentical self-oscillators with different thermal expansion coefficients. (a) Full
synchronous mode. (b) Partial synchronous mode. (c) Asynchronous mode.

to absorb more heat energy, which is converted into more
kinetic energy, so the amplitude increases. In Fig. 8(b), the
limit cycles of different β̄ for full synchronous modes are
plotted.

E. Effects of the first damping coefficient

Figure 9 shows how the first damping coefficient ā0 affects
the system in the full synchronous mode, where other system
parameters are selected as K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ =
0.6, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, v0

3 = 0. ā0 = 0.12
is a critical value between two motion regimes as shown in
Fig. 9, where the system is in the static regime as ā0 > 0.12
and the system is in the self-oscillation regime with ā0 < 0.12.
Further, the amplitude decreases with increasing ā0, while fre-
quency is not affected. This is because when the first damping
coefficient increases, the damping dissipation increases, and
then the system kinetic energy decreases, thus the amplitude
decreases. Figure 9(b) draws three limit cycles for different ā0

in the full synchronous mode.

F. Effects of the second damping coefficient

Figure 10 shows how the second damping coefficient ā1

affects the system in full synchronous mode, where other
system parameters are selected as K̄ = 14, k̄ = 6, ᾱ = −0.2,
β̄ = 0.6, ā0 = 0.02, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 0.
Figure 10(a) shows that the second damping coefficient does
not affect the motion regimes of the system. In Fig. 10(a),
the amplitude decreases with the increase of ā1, while the
frequency remains unchanged. This is because when the first
damping coefficient increases, it leads to higher damping
dissipation, resulting in a reduction in the system’s kinetic

FIG. 6. The effect of an LCE elastic coefficient on the self-
oscillation in full synchronous mode. (a) Variations of amplitude and
frequency with different LCE elastic coefficients. (b) Limit cycles
with K̄ = 14, K̄ = 10, and K̄ = 6.

energy, so the amplitude decreases. Figure 10(b) plots three
limit cycles for different ā1 in the full synchronous mode.

G. Effects of characteristic time

Figure 11 shows the effect of characteristic time τ̄ on
the system in full synchronous mode, where other parame-
ters are K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02, ā1 =
0.6, v0

1 = 0, v0
2 = 0, and v0

3 = 0. It can be concluded from
Fig. 11(a) that τ̄ = 0.03 is a critical characteristic time be-
tween two motion regimes. As shown in Fig. 11(a), the system
reaches the static regime for τ̄ < 0.03, while the system is
the self-oscillation regime for τ̄ > 0.03. Meanwhile, the am-
plitude increases with an increase of τ̄ , while the frequency
remains unchanged. This is because with the increase of the
characteristic time, the heat transfer rate increases, leading
the LCE fiber to absorb more heat energy, the tension of the
LCE fiber can do more work, and the amplitude increases.
Figure 11(b) draws three limit cycles with different τ̄ in the
full synchronous mode.

V. PARAMETER STUDY IN THE PARTIAL
SYNCHRONOUS MODE

In this section, the effect of system parameters on self-
oscillation in the partial synchronous mode is investigated in
detail. For ease of description, the amplitude and frequency
of LCE fiber 1 and LCE fiber 2 are written as A1,2 and f1,2.
The amplitude and frequency of LCE fiber 3 are written as A3

and f3.

FIG. 7. The effect of spring elastic coefficient on the self-
oscillation in full synchronous mode. (a) Variations of amplitude and
frequency with different spring elastic coefficients. (b) Limit cycles
with k̄ = 6, and k̄ = 10.
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FIG. 8. The effect of temperature gradient on the self-oscillation
in full synchronous mode. (a) Variations of amplitude and frequency
with different temperature gradient. (b) Limit cycles with β̄ = 0.4,
β̄ = 0.6, and β̄ = 0.8.

A. Effects of thermal expansion coefficient

Figure 12 draws how the thermal expansion coefficient ᾱ

affects the system in the partial synchronous mode, where
other system parameters are selected as K̄ = 14, k̄ = 6, β̄ =
0.6, ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 =
5. As shown in Fig. 12(a), |ᾱ| = 0.05 is a critical thermal
expansion coefficient between two motion regimes. When
|ᾱ| < 0.05, the system is in the static regime, while the sys-
tem is in the self-oscillation regime with |ᾱ| > 0.05, and the
amplitude A1,2 is less than A3 and f1,2 is consistent with
f3. Figure 12(a) illustrates that the amplitude and frequency
decrease as ᾱ increases. This is because the greater the thermal
expansion coefficient, the greater the amount of LCE fiber
thermal drive contraction, the greater the tension of the LCE
fiber, the greater the driving force of the system, and thus the
greater the amplitude. Figure 12(b) draws three limit cycles
for different ᾱ in the partial synchronous mode.

B. Effects of LCE elastic coefficient

Figure 13 draws how the LCE elastic coefficient affects
the system in the partial synchronous mode, where other
system parameters are k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02,
ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 5. As shown
in Fig. 13(a), there is a critical value K̄ = 3 between two
regimes. The system is in the static regime, with K̄ < 3, and
the system is in self-oscillation regime with K̄ > 3, and the
amplitude A1,2 is less than A3 and f1,2 is consistent with f3.
Figure 13(a) shows that amplitude and frequency increase
as K̄ increases. This is because the greater the LCE elastic
coefficient, the greater the tension of the LCE fiber when
it contracts, the greater the driving force of the system, and

FIG. 9. The effect of the first damping coefficient on the self-
oscillation in full synchronous mode. (a) Variations of amplitude and
frequency with different first damping coefficients. (b) Limit cycles
with ā0 = 0.02, ā0 = 0.06, and ā0 = 0.1.

FIG. 10. The effect of the second damping coefficient on the
self-oscillation in full synchronous mode. (a) Variations of amplitude
and frequency with different second damping coefficients. (b) Limit
cycles with ā1 = 0.3, ā1 = 0.6, and ā1 = 0.9.

thus the greater the amplitude. Figure 13(b) draws three limit
cycles for different K̄ in the partial synchronous mode.

C. Effects of spring elastic coefficient

Figure 14 shows how the spring elastic coefficient k̄ af-
fects the system in the partial synchronous mode, where
other system parameters are selected as k̄ = 6, ᾱ = −0.2,
β̄ = 0.6, ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and

v0
3 = 5. As shown in Fig. 14(a), the system is always in the

self-oscillation regime as k̄ increases. It can be seen from
Fig. 14(a) that A1,2 is less than A3, and f1,2 is the same as f3. It
can be seen from Fig. 14(a) that the amplitude decreases as k̄
increases, while the frequency increases as k̄ increases. This is
because with the increase of the spring elastic coefficient, the
recovery force of the system increases, which inhibits the self-
oscillation, thus the amplitude decreases. Figure 14(b) draws
three limit cycles with different k̄ in the partial synchronous
mode.

D. Effects of temperature gradient

Figure 15 shows how the temperature gradient affects
the system in the partial synchronous mode, where other
system parameters are chosen as K̄ = 14, k̄ = 6, ᾱ = −0.2,
ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 5.
Figure 15(a) shows that β̄ = 0.08 is a critical temperature
gradient between the static and self-oscillation regimes. When
β̄ < 0.08, the system is in the static regime, and the system
is in the self-oscillation regime when β̄ > 0.08. Meanwhile,
the amplitudes of LCE fiber 1 and LCE fiber 2 are smaller
than LCE fiber 3. In addition, the amplitude increases with

FIG. 11. The effect of characteristic time on the self-oscillation
in full synchronous mode. (a) Variations of amplitude and frequency
with characteristic time. (b) Limit cycles with τ̄ = 0.1, τ̄ = 0.15, and
τ̄ = 0.2.
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FIG. 12. The effect of coefficient of thermal expansion on the
self-oscillation in partial synchronous mode. (a) Variations of ampli-
tude and frequency with different coefficients of thermal expansion.
(b) Limit cycles with ᾱ = −0.1, ᾱ = −0.15, and ᾱ = −0.2.

the increase of temperature gradient, while the frequency
remains constant. This is because as the temperature gradi-
ent increases, the temperature becomes higher, the amount
of LCE fiber contraction increases, and the tension of the
LCE fiber as the driving force increases, thus the amplitude
increases. Three limit cycles of different temperature gradient
in the partial synchronous mode are plotted in Fig. 15(b).

E. Effects of the first damping coefficient

Figure 16 shows how the the first damping coefficient ā0 af-
fects the system in the partial synchronous mode, where other
system parameters are selected as K̄ = 14, k̄ = 6, ᾱ = −0.2,
β̄ = 0.6, ā1 = 0.6, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and v0

3 = 5.
Figure 16(a) shows that ā0 = 0.12 is a critical first damp-
ing coefficient between two motion regimes. The system is
in the static regime with ā0 > 0.12, while the system is in
the self-oscillation regime with ā0 < 0.12. In addition, the
amplitudes of LCE fiber 1 and LCE fiber 2 are smaller than
that of LCE fiber 3. As shown in Fig. 16(a), the amplitude
decreases with the increase of the first damping coefficient,
while the frequency is basically unchanged. This is because
the larger the first damping coefficient is, the damping dissipa-
tion increases, the kinetic energy of the system decreases, and
thus the amplitude decreases. Figure 16(b) draws three limit
cycles with different first damping coefficients of the partial
synchronous mode.

F. Effects of the second damping coefficient

Figure 17 illustrates how the second damping coefficient
ā1 affects the system in the partial synchronous mode, where

FIG. 13. The effect of LCE elastic coefficient on the self-
oscillation in partial synchronous mode. (a) Variations of amplitude
and frequency with different LCE elastic coefficients. (b) Limit cy-
cles with K̄ = 14, K̄ = 10, and K̄ = 6.

FIG. 14. The effect of spring elastic coefficient on the self-
oscillation in partial synchronous mode. (a) Variations of amplitude
and frequency with different spring elastic coefficients. (b) Limit
cycles with k̄ = 6, k̄ = 8, and k̄ = 10.

other system parameters are selected as K̄ = 14, k̄ = 6, ᾱ =
−0.2, β̄ = 0.6, ā0 = 0.02, τ̄ = 0.15, v0

1 = 0, v0
2 = 0, and

v0
3 = 5. Figure 17(a) shows that the system stays in the self-

oscillation regime and the amplitudes of LCE fiber 1 and LCE
fiber 2 are less than those of LCE fiber 3. Figure 17(a) also
shows that the amplitude of self-oscillation decreases with
increases of the second damping coefficient, while the fre-
quency remains constant. This phenomenon can be attributed
to the heightened damping dissipation associated with the
larger values of the first damping coefficient, which leads to a
reduction in the system’s kinetic energy and, consequently, a
decrease in amplitude. Figure 17(b) illustrates three limit cy-
cles with different second damping coefficients of the partial
synchronous mode.

G. Effects of characteristic time

Figure 18 shows how the characteristic time affects the
system in the partial synchronous mode, where other sys-
tem parameters are selected as K̄ = 14, k̄ = 6, ᾱ = −0.2,
β̄ = 0.6, ā0 = 0.02, ā1 = 0.6, v0

1 = 0, v0
2 = 0, and v0

3 = 5.
Figure 18(a) shows that τ̄ = 0.02 is a critical characteristic
time between the static and self-oscillation regimes. The sys-
tem is in the static regime with τ̄ < 0.02, and the system is
in the self-oscillation regime with τ̄ > 0.02. Meanwhile, the
amplitudes of LCE fiber 1 and LCE fiber 2 are smaller than
those of LCE fiber 3. As shown in Fig. 18(a), the ampli-
tude increases as the characteristic time increases, while the
frequency remains constant. The reason for this is, with the
increase of characteristic time, the heat transfer rate increases,
leading the fiber to absorb more heat energy, the tension of
LCE fiber can do more work, and the amplitude increases.

FIG. 15. The effect of temperature gradient on the self-
oscillation in partial synchronous mode. (a) Variations of amplitude
and frequency with different temperature gradients. (b) Limit cycles
with β̄ = 0.4, β̄ = 0.6, and β̄ = 0.8.
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FIG. 16. The effect of the first damping coefficient on the self-
oscillation in partial synchronous mode. (a) Variations of amplitude
and frequency with different first damping coefficients. (b) Limit
cycles with ā0 = 0.02, ā0 = 0.06, and ā0 = 0.1.

Figure 18(b) draws three limit cycles of different characteris-
tic times of the partial synchronous mode.

VI. PARAMETER STUDY IN THE
ASYNCHRONOUS MODE

In this section, the effect of system parameters on self-
oscillation in the asynchronous mode is investigated in detail.
For ease of description, the amplitudes of the three LCE fibers
are written as A1, A2, and A3 and the frequencies of the three
LCE fibers are written as f1, f2, and f3. The phase difference
between LCE fiber 1 and LCE fiber 2 is written as Pd1,2, and
the phase difference between LCE fiber 2 and LCE fiber 3 is
written as Pd2,3.

A. Effects of thermal expansion coefficient

In Fig. 19, the effects of the thermal expansion coeffi-
cient on the amplitude, frequency, and phase difference of the
system in the asynchronous mode are depicted, where other
system parameters are selected as K̄ = 14, k̄ = 6, β̄ = 0.6,
ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 1, v0
2 = 0, and v0

3 = −5.
Figure 19(a) shows that the system is in the static regime with
|ᾱ| < 0.075, while the system is in the self-oscillation regime
with |ᾱ| > 0.075. Figure 19(a) shows that an increase in the
thermal expansion coefficient can lead to a decrease in the
amplitude and frequency. The reason is, the greater |ᾱ| leads
to a greater contraction of the LCE fiber, then the greater
the LCE fiber tension, and thus the greater the amplitude.
Figure 19(b) shows that when |ᾱ| is small, the system is in
the asynchronous mode and the phase difference Pd1,2 is at its
minimum, while the phase difference Pd2,3 is at its maximum.

FIG. 17. The effect of the second damping coefficient on the self-
oscillation in partial synchronous mode. (a) Variations of amplitude
and frequency with different second damping coefficients. (b) Limit
cycles with ā1 = 0.3, ā1 = 0.6, and ā1 = 0.9.

FIG. 18. The effect of characteristic time on the self-oscillation
in partial synchronous mode. (a) Variations of amplitude and fre-
quency with characteristic time. (b) Limit cycles with τ̄ = 0.1,
τ̄ = 0.15, and τ̄ = 0.2.

As |ᾱ| increases, phase difference Pd1,2 gradually increases,
while phase difference Pd2,3 decreases.

B. Effects of LCE elastic coefficient

In Fig. 20, the influence of the LCE elastic coefficient on
the amplitude, frequency, and phase difference of the system
in the asynchronous mode is depicted, where other system pa-
rameters are k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02, ā1 = 0.6,
τ̄ = 0.15, v0

1 = 1, v0
2 = 0, and v0

3 = −5. Figure 20(a) shows
that the system is in the static regime with K̄ < 2, and the sys-
tem is in the self-oscillation regime with K̄ > 2. Meanwhile,
the amplitude and frequency increase as K̄ increases. The
reason is, the greater the LCE elastic coefficient, the greater
the elastic force, the greater the driving force, and thus the
greater the amplitude. Figure 20(b) plots the phase difference
between LCE fibers 1,2 and LCE fibers 2,3. As can be seen
from Fig. 20(b), the phase difference Pd1,2 reaches its min-
imum, and the phase difference Pd2,3 reaches its maximum.
Then the phase difference Pd1,2 increases with the increase of
the LCE elastic coefficient, while the phase difference Pd2,3

decreases with the increase of the LCE elastic coefficient.

C. Effects of spring elastic coefficient

Figure 21 illustrates how variations in the spring elas-
tic coefficient impact the system’s amplitude, frequency, and
phase difference in the asynchronous mode, where other sys-
tem parameters are selected as k̄ = 6, ᾱ = −0.2, β̄ = 0.6,
ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 1, v0
2 = 0, and v0

3 = −5.
Figure 21(a) reveals that the system is always in the self-

FIG. 19. The effect of thermal expansion coefficient on the
self-oscillation in asynchronous mode. (a) Variations of amplitude
and frequency with different thermal expansion coefficients. (b)
Variations of phase difference with different thermal expansion
coefficients.
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FIG. 20. The effect of LCE elastic coefficient on the self-
oscillation in asynchronous mode. (a) Variations of amplitude and
frequency with different LCE elastic coefficients. (b) Variations of
phase difference with different LCE elastic coefficients.

oscillation regime, leading to a decrease in amplitude of
self-oscillation and an increase in frequency as the spring elas-
tic coefficient k̄ increases. This is because as the spring elastic
coefficient increases, the recovery force of the system during
oscillation increases, which inhibits the self-oscillation, and
thus the amplitude decreases. It can be seen from Fig. 21(b)
that with the increase of spring elastic coefficient, the phase
differences Pd1,2 and Pd2,3 gradually decrease.

D. Effects of temperature gradient

Within Fig. 22, the relationship between the temperature
gradient and the system’s amplitude, frequency, and phase
difference in the asynchronous mode is plotted, where other
system parameters are chosen as K̄ = 14, k̄ = 6, ᾱ = −0.2,
ā0 = 0.02, ā1 = 0.6, τ̄ = 0.15, v0

1 = 1, v0
2 = 0, and v0

3 = −5.
As shown in Fig. 22(a), when β̄ < 0.1, the system is in
the static regime. When β̄ > 0.1, the system is in the self-
oscillation regime, where amplitude and frequency increase
as the temperature gradient increases. The reason is, the
greater the temperature gradient, the faster the temperature
increases, the more heat is absorbed by the LCE fiber; and
then the higher the kinetic energy of the system, the greater the
self-oscillation amplitude. Figure 22(b) shows that the system
firstly operates in partial synchronous mode. Then, with the
increase of β̄, the system evolves into asynchronous mode,
and at this point Pd1,2 increases and Pd2,3 decreases.

E. Effects of the first damping coefficient

Figure 23 elucidates how the first damping coefficient
affects amplitude, frequency, and phase difference in the

FIG. 21. The effect of spring elastic coefficient on the self-
oscillation in asynchronous mode. (a) Variations of amplitude and
frequency with different spring elastic coefficients. (b) Variations of
phase difference with different spring elastic coefficients.

FIG. 22. The effect of temperature gradient on the self-
oscillation in asynchronous mode. (a) Variations of amplitude and
frequency with different temperature gradients. (b) Variations of
phase difference with different temperature gradients.

asynchronous mode, where other system parameters are
selected as K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā1 = 0.6,
τ̄ = 0.15, v0

1 = 1, v0
2 = 0, and v0

3 = −5. It can be seen
from Fig. 23(a) that the system is in the static regime
with ā0 > 0.12, while the system is in the self-oscillation
regime with ā0 < 0.12. Figure 23(a) shows that an in-
crease in the first damping coefficient can lead to a
decrease in the amplitude and frequency of self-oscillation.
This is because the greater the first damping coeffi-
cient, the larger the damping dissipation, and the smaller
the kinetic energy, which results in a smaller amplitude.
Figure 23(b) plots the curve of phase differences Pd1,2 and
Pd2,3 with the first damping coefficient ā0. Figure 23(b) shows
that the system is in the asynchronous mode first, then phase
difference Pd1,2 gradually decreases and phase difference
Pd2,3 gradually increases as ā0 increases.

F. Effects of the second damping coefficient

Figure 24 elucidates how the second damping coefficient
affects the amplitude, frequency, and phase difference in an
asynchronous mode, where other system parameters are se-
lected as K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02, τ̄ =
0.15, v0

1 = 1, v0
2 = 0, and v0

3 = −5. Figure 24(a) shows that
the system is always in the self-oscillation regime, where
the amplitude and frequency decrease as the second damping
coefficient increases. The reason is, the higher the second
damping coefficient, the higher the damping dissipation, and
the lower the kinetic energy, which results in a smaller ampli-
tude. Figure 24(b) shows that with the increase of the second
damping coefficient, the phase difference between the fibers
is basically unchanged.

FIG. 23. The effect of the first damping coefficient on the self-
oscillation in asynchronous mode. (a) Variations of amplitude and
frequency with different first damping coefficients. (b) Variations of
phase difference with different first damping coefficients.
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FIG. 24. The effect of the second damping coefficient on the self-
oscillation in asynchronous mode. (a) Variations of amplitude and
frequency with different second damping coefficients. (b) Variations
of phase difference with different second damping coefficients.

G. Effects of characteristic time

Figure 25 shows the influence of characteristic time on
the amplitude, frequency, and phase difference of the self-
oscillation, where other system parameters are selected as
K̄ = 14, k̄ = 6, ᾱ = −0.2, β̄ = 0.6, ā0 = 0.02, ā1 = 0.6,
v0

1 = 1, v0
2 = 0, and v0

3 = −5. Figure 25(a) illustrates that
under the conditions of τ̄ < 0.02, the system is always in
the static regime, and under the conditions of τ̄ > 0.02, the
system transitions into a self-oscillation regime. It can be seen
from Fig. 25(a) that as the characteristic time increases, the
amplitude and frequency increase. The reason is, the higher
the characteristic time, the more heat energy the LCE fibers
absorb, and the more kinetic energy the system has, which
results in a higher amplitude. As shown in Fig. 25(b), when
0.02 < τ̄ < 0.04, Pd1,2 = 0, and Pd2,3 reaches the maximum,
the system is in the partial synchronous mode. As the char-
acteristic time increases, Pd1,2 gradually increases, and Pd2,3

gradually decreases, while the system is in the asynchronous
mode.

VII. CONCLUSIONS

Self-exciting coupled oscillators are pervasive in natural
phenomena, playing a pivotal role in synchronous and cluster

FIG. 25. The effect of characteristic time on the self-oscillation
in asynchronous mode. (a) Variations of amplitude and frequency
with different characteristic times. (b) Variations of phase difference
with different characteristic times.

behaviors. This paper delves into the synchronization modes
within a system of three interconnected self-oscillators, which
are thermal responsive LCE fibers under linear temperature
field. Based on the dynamic LCE model, we derived the
governing equations of the coupled system and revealed the
mechanisms of self-oscillation. Numerical calculation shows
that the self-oscillation is maintained when the damping
dissipation and the net work done by LCE fiber tension
are dynamically balanced. Three distinct synchronous modes
within the system can be obtained: the full synchronous
mode, the partial synchronous mode, and the asynchronous
mode.

Further calculations show that the coupled LCE-based
spring oscillators always develop into the full synchronous
self-oscillation when the driving force of the LCE fiber is
large. However, when the driving force is low, changing
the initial velocity can adjust the synchronous mode. When
the initial velocities of the three LCE fibers are equal, the
coupled self-oscillating system also can evolve into the full
synchronous mode. When the velocity of two LCE fibers is
0 and the velocity of another LCE fiber is larger, the system
can evolve intoa partial synchronous mode. When the initial
velocities of the three LCE fibers are different, the system
will develop into an asynchronous mode. For asynchronous
mode, when the driving force is small, the system is first
a partial synchronous mode, and as the driving force in-
creases, the system gradually evolves into an asynchronous
mode.

In addition, we further study the effects of system param-
eters including LCE and spring elastic coefficient, thermal
expansion coefficient, temperature gradient, characteristic
time, and the first and the second damping coefficient on
the self-oscillation. The amplitude of self-oscillation is posi-
tively correlated with the LCE elastic coefficient, temperature
gradient, and characteristic time, while the amplitude is nega-
tively correlated with the spring elastic coefficient and the first
and the second damping coefficient. The findings of this re-
search offer insights for developing synchronization systems
utilizing diverse thermally responsive materials, with practi-
cal applications in energy harvesters, soft robotics, medical
equipment, and so on. In addition, the system in this paper can
be extended to large-scale synchronous systems with a large
number of coupled self-oscillators and applied to the field of
clustering.
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APPENDIX: PARAMETER DEFINITIONS

Parameter Definition

L0 Original length of each LCE fiber
LS Original length of each spring
λ1 Prestretched amount of each LCE fiber
λ2 Prestretched amount of each spring
m1 Mass of block 1
m2 Mass of block 2
m3 Mass of block 3
g Gravitational acceleration
k Spring elastic coefficient
K LCE elastic coefficient
Fs10 Initial elastic forces of the spring 1
Fs20 Initial elastic forces of the spring 2
Fs30 Initial elastic forces of the spring 3
FL10 Initial elastic forces of the LCE fiber 1
FL20 Initial elastic forces of the LCE fiber 2
FL30 Initial elastic forces of the LCE fiber 3
Fs1 Elastic forces of the spring 1
Fs2 Elastic forces of the spring 2
Fs3 Elastic forces of the spring 3
FL1 Elastic forces of the LCE fiber 1
FL2 Elastic forces of the LCE fiber 2
FL3 Elastic forces of the LCE fiber 3
Fd1 Damping force of spring-oscillator 1
Fd2 Damping force of spring-oscillator 2
Fd3 Damping force of spring-oscillator 3
w1 Displacement of the mass 1
w2 Displacement of the mass 2
w3 Displacement of the mass 3
ẇ1 Velocity of the mass 1
ẇ2 Velocity of the mass 2
ẇ3 Velocity of the mass 3
v0

1 Initial velocity of the mass 1
v0

2 Initial velocity of the mass 2
v0

3 Initial velocity of the mass 3
ẅ1 Acceleration of the mass 1
ẅ2 Acceleration of the mass 2
ẅ3 Acceleration of the mass 3
L1 Length of LCE fiber 1
L2 Length of LCE fiber 2
L3 Length of LCE fiber 3
ε1 One-dimensional strain of LCE fiber 1
ε2 One-dimensional strain of LCE fiber 2
ε3 One-dimensional strain of LCE fiber 3
εT Heat-induced strain of LCE fibers
α Thermal expansion coefficient
β Temperature gradient
Text Temperature distribution
τ Characteristic time
ρc Heat capacity
h Heat transfer coefficient
a0 The first damping coefficient
a1 The second damping coefficient
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