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Odd elasticity and topological waves in active surfaces
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Odd elasticity describes active elastic systems whose stress-strain relationship is not compatible with a
potential energy. As the requirement of energy conservation is lifted from linear elasticity, new antisymmetric
(odd) components appear in the elastic tensor. In this work we study the odd elasticity and non-Hermitian
wave dynamics of active surfaces, specifically plates of moderate thickness. These odd moduli can endow the
vibrational modes of the plate with a nonzero topological invariant known as the first Chern number. Within
continuum elastic theory, we show that the Chern number is related to the presence of unidirectional shearing
waves that are hosted at the plate’s boundary. We show that the existence of these chiral edge waves hinges on
a distinctive two-step mechanism. Unlike electronic Chern insulators where the magnetic field at the same time
gaps the spectrum and imparts chirality, here the finite thickness of the sample gaps the shear modes, and the
odd elasticity makes them chiral.
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I. INTRODUCTION

Membranes driven by active, energy consuming, processes
play a role in processes ranging from cell division and de-
formation [1–5] to morphogenesis [6–8] and soft robotics
[9–11]. In order to model these systems, one typically com-
bines the elasticity of passive surfaces [12–17] with active
forces, leading to self-organized behaviors ranging from shape
instabilities to traveling waves and oscillations [18–24]. Yet
elasticity itself can also be modified by internal energy
sources: the elastic tensor relating stress and strain can include
so-called odd elastic coefficients, which describe the part of
the elastic response that is not compatible with energy con-
servation [19,25–27]. Odd elasticity is expected to naturally
emerge in effective descriptions of active mechanical systems.
While odd elasticity has not yet been observed in naturally
occurring biological membranes, signatures of odd elasticity
have been reported in bulk systems such as robotic metamate-
rials [28,29], collections of spinning magnetic colloids [30],
starfish embryos [31], and models of muscular hydraulics
[32].

In this article we investigate the odd elasticity of mem-
branes and its effect on vibrational dynamics. The potential
role of odd elastic moduli in membranes has been proposed on
the grounds of symmetry in sheets of vanishing thickness [19].
In the limit of vanishing thickness, the cross section of the
membrane is slaved to the out-of-plane bending of the mem-
brane. For linear deformations, the relevant odd moduli do not
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affect the out-of-plane motion of the membrane subject to the
vanishing thickness assumption. Here we extend the analy-
sis to plates with finite thickness, focusing on the so-called
moderately thick regime, in which the tilting of the plate
cross section is independent from its midplane deformation.
A symmetry analysis reveals that an isotropic, free-standing,
moderately thick plate can exhibit two independent odd elastic
moduli that affect the linearized, out-of-plane dynamics of the
membrane, one of which disappears in the limit of vanishing
thickness. By analyzing the normal modes of vibration of
odd-elastic plates, we show that odd elasticity affects both
wave propagation in the plate and its linear stability. Fur-
thermore, we show that odd elastic plates can support edge
modes in which waves propagate in a unidirectional fashion at
the border of the plate. The waves propagating in these edge
modes do not backscatter when they encounter sharp edges or
defects, owing to the topological nature of the edge modes
[33–46]. We show that the existence of these chiral edge
waves hinges on a distinctive two-step mechanism. Unlike
electronic Chern insulators where the magnetic field at the
same time gaps the spectrum and imparts chirality, here the
finite thickness of the sample gaps the shear modes, and the
odd elasticity makes them chiral.

II. ODD ELASTICITY OF MODERATELY THICK PLATES

In this section we set up the description of an odd elas-
tic plate. We first review the framework of odd elasticity
[25,26] (Sec. II A) and the Reissner-Mindlin theory of mod-
erately thick plates [12,47,48] (Sec. II B). We then derive
the elastic constitutive relations of the plate, starting from
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the three-dimensional (3D) bulk elastic tensor of the material
constituting the plate (Sec. II C). Finally, we obtain the equa-
tions of motion describing the dynamics of the deformation of
the plate (Sec. II D).

A. Odd elasticity

Linear elasticity is the continuum theory that describes the
behavior of solids under small long-wavelength deformations.
The deformation of the solid is described by the displacement
field ξi(x) = x′

i − xi giving the difference between the original
position of a point x of the elastic solid and its current position
x′. We assume that only the variation of the internal relative
distances modifies the physical state. The internal forces then
depend only on the strain tensor ui j = (∂iξ j + ∂ jξi)/2 at linear
order. The forces between parcels of the elastic continuum
are described by the stress tensor σi j . In linear elasticity, one
assumes a linear relation between stress and strain

σi j = Ci jk�uk�, (1)

where Ci jk� is the elastic tensor, assumed here to be ho-
mogeneous in space and frequency independent. Symmetry
constrains the structure of Ci jk�. The strain tensor is symmetric
by construction, and, if internal torques are absent, the stress
tensor is symmetric too. In this case, the elastic tensor is
symmetric under the exchanges i ↔ j and k ↔ � [49]. See
Refs. [19,25] for cases in which the displacement gradient
tensor and the stress tensor are not assumed to be symmetric.

If the system is conservative, another symmetry exists: the
elastic tensor satisfies Ci jk� = Ck�i j . To see why, note that the
forces are conservative if the net work done is zero for every
sequence of deformation that begins and ends in the same
configuration. The work per unit volume of an infinitesimal
deformation is given by σi jdui j and the work per unit volume
under a finite cycle of deformation is calculated as the line
integral of this quantity. We consider a closed path C in the
strain space, parameterized by ui j (λ). Let σi j (λ) = Ci jk�uk�(λ)
be the associated stress tensor. By applying Stokes’s theorem,
we can express the work W as the surface integral

W =
∮

C
σi j dui j =

∫
S

1

2

∂σi j

∂uk�

dui j ∧ duk� (2)

in which ∧ is the exterior product and S is a surface in strain
space such that ∂S = C . Using the antisymmetry of the
exterior product, we can see that the forces are conservative
(W = 0 for all C ) if and only if

∂σi j

∂uk�

= ∂σk�

∂ui j
, (3)

or equivalently, if and only if

Ci jk� = Ck�i j . (4)

This property is known as Maxwell-Betti reciprocity [50].
A system is said to be odd elastic when Eq. (4) does not
hold, i.e., when its elastic tensor has components that are
odd under exchange i j ↔ k� [25]. Note that we have made
no distinction between the Cauchy and Piola-Kirchhoff stress
tensors, because we have assumed that there is no prestress in
the system; see Refs. [26,51] for details.

(a)

(b)

FIG. 1. Kinematics of a moderately thick plate. In the Reissner-
Mindlin theory of moderately thick plates, the deformation of a plate
(drawn in its undeformed reference state in gray and in a deformed
state in black) is parameterized by five fields (ηx , ηy, φx , φy, and w)
defined on the midplane (dash-dotted line). The fields ηx (ηy ) and
w describe, respectively, the horizontal and vertical displacements
of the midplane (a). The field φx is the angle between a deformed
normal line in the x direction and the z axis. The quantity −∂xw

quantifies the slope of the midplane in the x direction. If −∂xw is
different from φx , then uxz is nonzero (b).

B. Reissner-Mindlin theory

We consider a moderately thick and initially flat surface,
i.e., a plate, whose midplane (the longitudinal plane that cuts
the plate’s thickness in half) lies at rest in the x-y plane; see
Fig. 1. The plate has uniform thickness h along the z axis at
rest. In the Reissner-Mindlin theory of moderately thick plates
[12], the full 3D displacement field of the plate ξi(x, y, z) is
expressed in terms of fields defined on the horizontal midplane
as

ξx(x, y, z) = ηx(x, y) + zφx(x, y),

ξy(x, y, z) = ηy(x, y) + zφy(x, y),

ξz(x, y, z) = w(x, y). (5)

The field ηα represents the horizontal displacement of the mid-
plane (z = 0) in the direction α ∈ {x, y}, while w describes
the vertical displacement. A line of points that lies vertical
at rest is inclined of an angle φα between the z axis and the α

axis after the deformation (Fig. 1). While the full displacement
field is defined over a 3D space, the fields ηα , φα , and w are
defined over the midplane, which is a two-dimensional (2D)
manifold.

The strains can be decomposed into two terms: z-
independent and z-linear ui j = u0

i j + zu1
i j . Here u1

i j describes
strains in which the top face and the bottom face of the plate
are deformed oppositely. Explicitly

2u0
αβ = ∂αηβ + ∂βηα,

2u0
αz = φα + ∂αw,

u0
zz = 0,
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2u1
αβ = ∂αφβ + ∂βφα,

u1
αz = 0,

u1
zz = 0. (6)

The bending of the midplane is quantified by −∂αw, and
u0

αz is half of the angle between a deformed vertical line
and the normal to the deformed midplane, projected in the α

direction (Fig. 1). No z-linear term is present in the transverse
strain. The vertical strain uzz is identically zero because the
vertical displacement is independent from z (a strain tensor
with uzz = 0 is known as a plane strain). Since ξα = ηα + zφα ,
an originally vertical straight line remains straight after the
deformation, and since uzz = 0, the line does not elongate.

C. Constitutive relations of odd elastic plates

We now derive an elastic constitutive relation for the plate,
starting from the 3D bulk elastic tensor of the material consti-
tuting the plate.

1. Basis tensors and bulk constitutive relations

We first define a basis of symmetric rank-two tensors
appropriate to the plate geometry, that we will then use to
represent the tensorial constitutive relations in matrix form:

Z =
⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠, D = 1√

2

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠,

S1 = 1√
2

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, S2 = 1√

2

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

T x = 1√
2

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, T y = 1√

2

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠. (7)

These basis tensors are collectively referred to as Ba with
a = 0, . . . , 5 (so B0 = Z , B1 = D, B2 = S1, etc.). We then
decompose the strain and stress tensors on this basis as

σi j = σaBa
i j and ui j = uaBa

i j (8)

in which the sum over a is implied. The tensor D describes
cylindrical symmetric strains and stresses, S1,2 the planar
shears, and T x,y the cross-sectional shears in x and y direc-
tion. This basis separates the irreducible representations of the
group of rotations SO(2) around the z axis: D is invariant,
Sα transforms as a two-headed arrow in the plane, and T α

transforms as an ordinary vector in the plane. All basis tensors
except Z have a vanishing zz entry and therefore represent
plane stresses and strains, while Z describes nonplane stresses
and strains.

The constitutive relation (1) for the 3D bulk can then be
written in matrix form as

σ 3D
a = C3D

ab u3D
b (9)

in which σ 3D
a and u3D

b are the components of the stress and
strain in the basis (7), with a, b = 0, . . . , 5.

2. Effective in-plane constitutive relation

The elastic tensor of the plate is then derived from the
elastic tensor of the bulk 3D material by eliminating the vari-
ables σ0 ≡ σzz and u0 ≡ uzz under the so-called plane-stress
hypothesis σzz = 0 [52]. This is detailed in Appendix B. The
constitutive relation for the plate then reads

σa = Cabub (10)

in which we now have only a, b = 1, . . . , 5 (as the nonplane
components σ0 and u0 have been eliminated), and in which
Cab is an effective elastic tensor related to C3D

ab by the nonlinear
relation (B2) in Appendix B.

Assuming that the 3D bulk is described by the most general
elastic tensor C3D

ab compatible with cylindrical isotropy (i.e.,
invariant under rotations around the z axis), which is given in
Appendix A, we show in Appendix B that the elastic matrix
of the plate in Eq. (10) reads

Cab = 2

⎛
⎜⎜⎜⎜⎜⎜⎝

B̃ 0 0 0 0

0 μ1 Ko
1 0 0

0 −Ko
1 μ1 0 0

0 0 0 μ2 Ko
2

0 0 0 −Ko
2 μ2

⎞
⎟⎟⎟⎟⎟⎟⎠

(11)

in the basis {D, S1, S2, T x, T y}. Here B̃ is an effective 2D
bulk modulus [given by Eq. (B4)] which relates 2D isotropic
dilations to the 2D isotropic stress, μ1 and μ2 are passive shear
moduli that couple respectively planar shears (uS1 , uS2 ) and
cross-sectional shears (uT x , uT y ), while the odd moduli Ko

1 , Ko
2

build the antisymmetric part of the elastic tensor; namely, Ko
1

maps uS1 to −σS2 and uS2 to σS1 . Ko
2 acts analogously on the

basis elements T x, T y.

3. Constitutive relation for the net stress and moment

The dynamical quantities that are relevant for the plate’s
dynamics are the net stress tensor Ni j and the moment tensor
Mi j defined by

Ni j =
∫ h/2

−h/2
dz σi j, Mi j =

∫ h/2

−h/2
dz zσi j . (12)

These are respectively the zeroth and first moment of the stress
in z. Integration in the z direction produces a net stress that
depends only on u0 and a moment tensor that depends on the
bending terms u1. Using the constitutive equations (1) with
the elastic tensor in Eq. (11), we find that the in-plane stresses
are governed by

⎛
⎜⎜⎝

ND

NS1

NS2

⎞
⎟⎟⎠ = 2h

⎛
⎜⎝

B̃ 0 0

0 μ1 Ko
1

0 −Ko
1 μ1

⎞
⎟⎠

⎛
⎜⎜⎝

u0
D

u0
S1

u0
S2

⎞
⎟⎟⎠, (13)
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TABLE I. Plate strains and stresses. Here u0 and u1 are respectively the zeroth- and first-order contributions to the strain in a power
expansion in z; N is the net stress and M is the bending moment. The column is labeled by the tensor basis element on which the stresses,
strains, and moments are projected. The arrows are visual cues for the forces and torques on each of the shown surfaces (light arrows are
pointing towards the inside of the plate).

D S1 S2 T x T y

u0

u1

N

M

while the bending moments are governed by⎛
⎜⎝

MD

MS1

MS2

⎞
⎟⎠ = h3

6

⎛
⎜⎝

B̃ 0 0

0 μ1 Ko
1

0 −Ko
1 μ1

⎞
⎟⎠

⎛
⎜⎜⎝

u1
D

u1
S1

u1
S2

⎞
⎟⎟⎠ (14)

and the cross-sectional stresses by(
NT x

NT y

)
= 2h

(
μ2 Ko

2

−Ko
2 μ2

)(
u0

T x

u0
T y

)
. (15)

A visual representation of the components of the strain, net
stress, and moment tensor in the basis of Eq. (7) is given in
Table I. We note that the constitutive equations in Eqs. (13)
to (15) assume that the plate arises as the thin limit of a
homogeneous 3D solid. However, if the plate is not homo-
geneous along its thickness, additional moduli can appear
that couple the independent equations in Eqs. (13) to (15);
see Appendix B. Notice that the moduli μ2 and Ko

2 set the
stresses in response to the cross-sectional shearing. The matrix
in Eq. (15) is proportional to a rotation matrix whose chirality
is set by the modulus Ko

2 . This will play a crucial role when
we discuss the spectrum and topological modes in Sec. III. In
the limit of zero thickness, the constitutive relations Eqs. (13)
to (15) match the flat limit of the constitutive relations in
Ref. [19] (see Appendix C).

Having the constitutive relations, we can examine the lin-
early independent cycles in strain space over which work is
extracted C = ∂S . The work per unit surface is

W =
∫ h/2

−h/2
dz

∫
C

dua Cabub

= h
∫

C
du0

a Cabu0
b + h3

12

∫
C

du1
a Cabu1

b

= h

2

∫
S

Cab du0
a ∧ du0

b + h3

24

∫
S

Cab du1
a ∧ du1

b. (16)

There are three independent ways to extract energy with
a cycle of deformations, represented in Fig. 2. Cycling in
the plane u0

S1 -u0
S2 , the energy density extracted is equal to

2hKo
1 times the area enclosed in the strain space [Fig. 2(a)].

A bending cycle that involves u1
S1 and u1

S2 extracts (h3/6)Ko
1

times the area enclosed [Fig. 2(b)]. With a cycle in the u0
T x -u0

T y

plane, the density of work is 2hKo
2 times the area enclosed

[Fig. 2(c)].

D. Equations of motion

We now study the dynamics of the system. To do so, let
us assume that the elastic material evolves according to a
Newtonian dynamics and is subject to an external friction
force f ext

i = −�ξ̇i summarizing the effect of the environment.
The evolution of the plates is then described by the following

(a) Planar shearing (b) Bending

(c) Cross-section shearing

FIG. 2. Energy cycles in the elastic plate. Illustrations of the
three linearly independent cycles that extract energy from the plate.
Panel (a) utilizes in planar shear deformations, panel (b) utilizes
bending deformations, and panel (c) utilizes cross-sectional shearing.
See Table I for definitions of the deformation icons.
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(a) Passive eigenmode (b) Active eigenmode (c) Legend: strain space

FIG. 3. Perspective and top view of bulk, gapped eigenmodes. We illustrate the eigenmodes implied by Eq. (25). As a guide, a deformed
cross-sectional slice of the plate is colored by the local component of cross-sectional shears u0

T x,y (see Fig. 2 and Table I for illustration of
cross-sectional shears). (a) A passive eigenmode (Ko

1 = Ko
2 = 0) traces out a line (red-blue) in strain space. (b) An eigenmode with Ko

2 > 0 and
B̃ = μ = Ko

1 = 0 draws an ellipse in the strain plane (full color wheel present). The energy injected in the system after a complete oscillation
is proportional to the area covered in the strain plane.

conservation laws for linear and angular momentum (derived
in Appendix D)

h(ρη̈α + �η̇α ) = ∂βNβα, (17)

h(ρẅ + �ẇ) = ∂αNαz, (18)

h3

12
(ρφ̈α + �φ̇α ) = ∂βMβα − Nzα, (19)

where ρ is the density of the plate, assumed to be uniform.
Using the constitutive relations, Eqs. (13) to (15), we ob-

tain

ρη̈α + �η̇α = (
B∂α∂β + μ1∇2δαβ + Ko

1∇2εαβ

)
ηβ, (20)

ρẅ + �ẇ = μ2∇2w + μ2∂αφα + Ko
2εαβ∂αφβ, (21)

h2

12
(ρφ̈α + �φ̇α ) = h2

12

(
B∂α∂β + μ1∇2δαβ + Ko

1∇2εαβ

)
φβ

− (
μ2δαβ + Ko

2εαβ

)
(∂βw + φβ ). (22)

We first note that horizontal displacements ηα are decoupled
from the other degrees of freedom. Their dynamics are identi-
cal to that of a purely 2D isotropic odd elastic system, which
has already been studied in [25]. The out-of-plane dynamics
governed by Eqs. (21) and (22) will be the focus of the fol-
lowing sections.

In the limit h → 0 of thin plates, Eq. (22) implies ∂αw +
φα = 0 and the equations of motion become those of the
Kirchhoff-Love theory of plates [12] where uαz is identi-
cally zero. Namely, the out-of-plane deflection ω obeys the
equation

ρẅ + �ẇ = −Deff∇4w, (23)

where

Deff = h2 (B + μ1)
[
μ2

2 − (
Ko

2

)2] − 2μ2Ko
1 Ko

2

12
[
μ2

2 + (
Ko

2

)2] (24)

as derived in Appendix D. Notice that this equation is struc-
turally identical to that of a passive plate, but with the effective
bending stiffness Deff renormalized by odd moduli Ko

1 and Ko
2 .

III. NORMAL MODES AND TOPOLOGICAL WAVES

We now analyze the normal modes of vibration of the odd
elastic plate. As illustrated in Fig. 3, we first show how the
flexural eigenmodes behave in the bulk of the plate (i.e., far
from any edge). Then, we show how to assign a topological
invariant to the band structure of the system. This step allows
us to predict the existence of unidirectional edge states expo-
nentially localized to the boundary of the plate (Fig. 7), under
certain boundary conditions [53–56].

A. Normal modes of vibration

The out-of-plane deformations of the plate are described
by Eqs. (21) and (22). As these equations are linear, all
solutions are obtained by considering solutions of the form
φα (x, t ) = φα ei(k·x−ωt ) and w(x, t ) = w ei(k·x−ωt ) and solving
the resulting eigenvalue problem. Using the dimensionless
quantities q = (

√
12h)k and w̃ = w/(

√
12h), we obtain

h2

12
(ρω2 + i�ω)

(
φ

w̃

)
= M(q)

(
φ

w̃

)
(25)

in which we have introduced the dynamical matrix

M(q) = Me(q) + Mo(q) (26)

in which

Me(q) =

⎛
⎜⎝

B̃q2
x + μ1q2 + μ2 B̃qxqy iμ2qx

B̃qxqy B̃q2
y + μ1q2 + μ2 iμ2qy

−iμ2qx −iμ2qy μ2q2

⎞
⎟⎠

and

Mo(q) =

⎛
⎜⎝

0 Ko
1 q2 + Ko

2 iKo
2 qy

−Ko
1 q2 − Ko

2 0 −iKo
2 qx

iKo
2 qy −iKo

2 qx 0

⎞
⎟⎠.

When ρ > 0, the allowed complex frequencies ω, solutions of
Eq. (25), can be expressed in terms of the eigenvalues λ of M
as

ω± = − i

2

⎡
⎣�

ρ
± i

√
48λ

h2ρ
− �2

ρ2

⎤
⎦. (27)

In general, ω = ω + iσ are complex numbers: their real part
ω is the (angular) frequency, while their imaginary part σ
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FIG. 4. Effect of odd elasticity of the dispersion relation. We plot the eigenvalues λ in Eq. (25) and the corresponding (angular) frequency
ω and growth rate σ obtained from Eq. (26) in different cases. We have used the parameters h = 0.1, ρ = 1, � = 20, B = 1 in all panels. In
addition, we have set (a) μ1 = 0.25, μ2 = 0.04, Ko

1 = 0, Ko
2 = 0, (b) μ1 = 0.5, μ2 = 0.2, Ko

1 = 0, Ko
2 = 0, (c) μ1 = 0.25, μ2 = 0.04, Ko

1 = 0,
Ko

2 = 0.05, (d) μ1 = 0.25, μ2 = 0.04, Ko
1 = 0.7, Ko

2 = 0, (e) μ1 = 0.25, μ2 = 0.04, Ko
1 = 0, Ko

2 = 0.2.

is the growth rate of perturbations. In our convention σ < 0
indicates that perturbations decay and σ > 0 indicates that
perturbations grow, a sign of instability. The spectrum of the
dynamical matrix M depends only on q = |q| because of the
cylindrical isotropy of the constitutive relations. It contains
three bands in the complex plane, symmetric under reflection
with respect to the real axis.

When odd elastic moduli vanish, the dynamical matrix
M is Hermitian and therefore has real eigenvalues μ2 +
μ1q2 and X ±

√
X 2 − μ2(B + μ1)q4 with X = [μ2 + (B +

μ1 + μ2)q2]/2. When μ1, μ2, and B are positive, these
eigenvalues are also positive, and the growth rates are neg-
ative, which means that the system is linearly stable (except
for two marginal modes at q = 0 that correspond to rigid
body motions). When λ < λc ≡ h2�2/(48ρ), the frequency
ω vanishes: perturbations are overdamped. In particular, per-

turbations with q → 0 are overdamped whenever μ2 < λc

[Figs. 4(a) and 4(b)].
When odd elastic moduli are nonzero, the dynamical ma-

trix becomes non-Hermitian. When q = 0, the dynamical
matrix reduces to

M(q = 0) =
⎛
⎝ μ2 Ko

2 0
−Ko

2 μ2 0
0 0 0

⎞
⎠. (28)

The eigenvalues of M(q = 0) are λ± = μ2 ± iKo
2 and λ0 =

0. Hence, odd elastic moduli can induce (damped) oscillations
at q → 0 in an originally overdamped system, in a way similar
to 2D odd elasticity [25]. More precisely, an arbitrarily small
Ko

2 does so when μ2 < λc [Fig. 4(c)].
In addition, odd elastic moduli can induce linear insta-

bilities: Ko
2 tends to induce instabilities at q = 0 (because it

couples to cross-sectional shearing), while Ko
1 tends to induce
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FIG. 5. Odd elasticity induces instabilities. We have used h =
0.1, ρ = 1.0, � = 20.0, B = 1.0, μ1 = 1.0, μ2 = 1.0.

instabilities at large q (because it couples to bending); see
Figs. 4(d) and 4(e). This is illustrated in Fig. 5, in which we
plot the regions in parameter space in which the system is
linearly stable (i.e., σ < 0 for all q > 0) or unstable. For the
parameters chosen, we observe that high enough odd elastic
moduli always lead to instabilities. A second important case
is the limit in which ρ = 0, wherein the frequencies are given
by

ω = −i
12�

h2
λ. (29)

In this case the membrane is always stable (σ < 0) so long
as B̃, μ1, μ2 > 0. When B, μ1, μ2 = 0, then ω is entirely real
(since Mo is anti-Hermitian), and so waves propagate without
attenuation in this limit.

To summarize, odd elastic moduli have qualitative effects
on the dispersion relation and modes of vibration of a mod-
erately thick membrane: they affect wave propagation in the
membrane, as well as its linear stability. This suggests that
shape instabilities and oscillations predicted in active mem-
branes [18,19,22,23,57,58] may be affected by the presence
of odd elasticity, which should therefore be taken into account
in order to describe living and robotic tissues.

B. Unidirectional edge states and bulk topology

Up to this point, we have focused on the bulk properties
of the system, that correspond to the vibrational modes of an
infinite, unbounded plate. These properties are contained in
the eigenvalues and eigenvectors of M(q). We now utilize
the topological properties of these bulk eigenvectors to show
that unidirectional edge states may appear at the boundary of
a finite plate (subject to appropriate boundary conditions). To
do so, we first note that the spectrum of M(q) has a gap
when odd elastic moduli are present: Fig. 6 shows that the
spectrum consists of two gapped modes whose deformation is
dominated by cross-sectional shearing. When the odd moduli
are nonzero but sufficiently small [Figs. 6(c) and 6(d)], the
spectrum has a nonzero imaginary part, but the gap is still

sorted by the real (blue) part of the spectrum. By contrast, for
sufficiently large Ko

2/μ2, the gap opens in the imaginary part
of the spectrum [Figs. 6(e) and 6(f)]. Finally, when the even
moduli vanish, the spectrum is entirely imaginary [Figs. 6(g)
and 6(h)]. When the gap is in the imaginary part, the chiral
modulus Ko

2 dominates over μ2, and hence we may intuitively
expect chiral phenomenology in the wave mechanics.

The reason for this band gap is the finite thickness h of
the beam. Recall that plane waves in a 3D solid are described
by a wave vector with three components (qx, qy, qz ). Since
the plates we consider are thin the z direction, the minimum
nonzero value of qz is proportional to 1/h, resulting in finite
frequency modes even when qx = qy = 0. This gap is propor-
tional to the moduli μ2 and Ko

2 because these moduli respond
to cross-sectional shearing, which involves gradients in the z
direction [cf. Eq. (15) and Table I]. Accordingly, the frequen-
cies in (25) and (27) depend on the eigenvalues λ as ρω2 +
i�ω ∝ λ/h2. As h → 0, the gapped cross-sectional shearing
modes are pushed to arbitrarily high frequencies regardless
of wave number. For sufficiently small h, the hydrodynamic
description is no longer valid, and the theory is purely 2D and
gapless, as considered in Ref. [19] and described by Eq. (23).

We now show that when the gap is open at sufficiently
large Ko

2 , the combination of chirality and a band gap gives
rise to a nonzero topological invariant known as the Chern
number, which leads to unidirectional wave propagation at
the boundary of a finite system. In Appendix E we compute
a topological invariant known as the first Chern number. This
quantity can be expressed as the integral of the so-called Berry
curvature over the momentum space. In most applications
of topological band theory, the structure under consideration
takes the form of a discrete lattice, and so the momentum
space is a compact manifold (namely, a torus). By contrast,
here we analyze continuum equations for which the mo-
mentum space corresponds to the real plane. This introduces
additional subtleties regarding meaning and interpretation of
the Chern number [53–56,59–63]. These aspects have been
studied in the context of fluids with broken microscopic time-
reversal and parity symmetries exhibiting a property known
as odd viscosity [64]. In Appendix G we provide an explicit
mapping between the odd-elastic plate and these fluids. Other
(distinct) topological properties that have been studied in
elastic continua include topological softness associated with
floppy mechanisms in the microstructure [44,45].

For simplicity, in the main text we concentrate on
the simplest scenario in which the bands are gapped
is the purely active plate, where all even moduli van-
ish (B̃ = μ1 = μ2 = 0). In this case the dynamical matrix
reads

M(q) =

⎛
⎜⎝

0 Ko
1 q2 + Ko

2 iKo
2 qy

−Ko
1 q2 − Ko

2 0 −iKo
2 qx

iKo
2 qy −iKo

2 qx 0

⎞
⎟⎠, (30)

which has a flat band of eigenvalues λ0(q) = 0 and two purely
imaginary bands

λ±(q) = ±i
√(

Ko
2 q

)2 + (
Ko

1 q2 + Ko
2

)2
. (31)

The spectrum has a gap whenever Ko
2 �= 0. As detailed in

Appendix E, if Ko
1 �= 0 the eigenvectors of M(q) do not
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FIG. 6. Eigenvalues of the dynamical matrix in the complex plane. In (a), (c), (e), and (g) we plot real and imaginary part of the spectrum,
and in (b), (d), (f), and (h) we plot the spectrum parametrically in the complex plane for q ∈ [0, 5]. The eigenvalues are expressed in units of

G =
√

μ2
2 + Ko

2
2. In (a) and (b) the odd moduli are zero and thus the spectrum is real. B̃/G = 5.7, μ1/G = 1, μ2/G = 1, Ko

1 /G = 0.0, Ko
2 /G =

0.0. In (c) and (d) the odd modules are turned on and the spectrum shows an imaginary part. B̃/G = 5.4, μ1/G = 0.95, μ2/G = 0.95, Ko
1 /G =

0.3, Ko
2 /G = 0.3. Lowering the (passive) bulk modulus and raising the odd moduli in (e) and (f), the spectrum becomes gapped. B̃/G =

1.3, μ1/G = 0.4, μ2/G = 0.4, Ko
1 /G = 0.66, Ko

2 /G = 0.92. In (g) and (h) the spectrum is completely imaginary as only the odd moduli are
nonzero. Ko

1 /G = 0.7, Ko
2 /G = 1.

depend of the direction of q in the limit q → ∞. This allows
us to compactify the momentum space to a sphere, identify-
ing all the points at infinity. It is then possible to associate
a topological invariant to the bulk eigenvectors associated
with each band, the first Chern number C. Its values are (see
Appendix E)

C0 = 0,

C+ = sgnKo
2 − sgnKo

1 ,

C− = −C+. (32)

The presence of nonzero Chern numbers suggests that edge
modes could appear at the system boundary [65]. In the con-
tinuum, the precise boundary conditions play a subtle role in
determining the number of edge modes [55,56].

To illustrate the existence of the localized edge mode, we
perform a numerical simulation of Eqs. (21) and (22) in the
overdamped limit ρ = 0; see Fig. 7. We consider a finite plate
that has its midplane defined over a region with boundary B
and assume that the displacement field vanishes at the bound-
ary:

w|B = 0, φx|B = 0, φy|B = 0. (33)

In the top row (a–c) of Fig. 7, we have taken Ko
1/Ko

2 > 0,
which implies that the gapped vibrational bands are topo-
logically trivial [C+ = 0 in (32)]. Accordingly, when the
membrane is periodically forced near its boundary, the de-
formation remains localized. By contrast, in the bottom row
(d–f), we have taken Ko

1/Ko
2 > 0, which implies that the

gapped vibrational bands are topologically nontrivial [C+ = 2
in (32)], and accordingly the system displays a unidirectional
edge mode confined to its boundary. See Appendix F for
details of the numerics and Supplemental Videos 1 and 2 [73]
for full renderings of the simulations.

Finally, we comment that our analysis relies on the
Reissner-Mindlin theory of thin plates. This theory is appli-
cable for low-frequency modes. Hence, our analysis is valid
only when the band gap is small enough to lie within the
range of validity of the low frequency approximation. The
precise range of validity often requires experimentation, but
is generally larger for floppier materials with a lower shear
modulus.

IV. CONCLUSION

In this work we studied the equations of motion for an
odd-elastic plate in the Reissner-Mindlin moderately thick
limit. The in-plane dynamics of the plate follows the equa-
tions of 2D odd elasticity. The out-of-plane dynamics displays
additional odd elastic responses. We have shown that the dis-
persion relation and normal modes are qualitatively affected
by odd elasticity, which can induce linear instabilities and
affect wave propagation in the plate. We have also shown that
the spectrum is gapped as long as the active elastic moduli
are dominant with respect to the passive ones. Moreover, the
bands can acquire a nonzero Chern number, and this leads
to the emergence of unidirectional waves at the boundary
of a finite plate. In more complex geometries, odd elastic
responses may also affect shape instabilities and self-actuation
in active membranes.

The continuum theory developed in this work may serve
as a guide to design active mechanical metamaterials with
desired waveguide properties, for instance, using piezoelectric
materials [28]. All that is generically required is the breaking
of 2D chirality, effective nonconservative forces that depend
on strain, and a geometry consisting of a moderately thick
cross section. Possible extensions of our analysis include
frequency-dependent (i.e., viscoelastic) moduli [26,66–68],
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Simulation of topological edge mode. A numerical solution to Eqs. (21) and (22) with Ko
1 /Ko

2 > 0 (a)–(c) and Ko
1 /Ko

2 < 0 (d)–(f).
Panels (a) and (d) are 3D renderings, panels (b) and (d) show the height field w, and panels (c) and (f) depict φ. The red arrows (b), (c), (e),
(f) indicate the location of the driving, and the gray arrows (e), (f) indicate the direction of wave propagation. When Ko

1 /Ko
2 > 0, the gapped

vibrational bands are topologically trivial [C+ = 0 in Eq. (32)]. When Ko
1 /Ko

2 < 0, the gapped bands are topologically nontrivial [C+ = 2 in
Eq. (32)], resulting in a boundary mode. See Appendix F for details of the numerics, including nondimensionalization of the variables. In all
panels the nondimensionalized moduli are K̃o

2 = 2, μ̃2 = 0.05, B̃ = 0, μ̃1 = 0, while K̃o
1 = 1 in (a)–(c) and K̃o

1 = −1 in (d)–(f). The membrane
is driven near its right boundary at a frequency �̃ = 0.1. See Supplemental Movies 1 and 2 [73] for renderings of the full simulations.

the role of background curvature, and odd elasticity coupled
with other effects such as flows [19,20]. Beyond artificial
systems, shape sensing and active stresses naturally occur
in biological media such as membranes with protein pumps
[69,70], the actomyosin cortex [71], macroscopic tissues
[72], or rafts of living organisms [31]. The nonconservative
mechanics of odd membranes may provide a lens to inter-
pret naturally occurring dynamics, or control biosynthetic
media.

The computer code used in this study is available on Zen-
odo at [74] under the 2-clause BSD licence.
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APPENDIX A: ODD ELASTIC MODULI IN THREE
DIMENSIONS WITH CYLINDRICAL SYMMETRY

Odd elasticity cannot arise in systems with spherical
isotropy (i.e., invariance under all rotations in three dimen-
sions). However, it can arise in systems with cylindrical
isotropy (i.e., invariance under all rotations preserving the z
axis) [25]. In this Appendix we construct the most general
elastic tensor in a bulk 3D system with cylindrical symmetry,
i.e., a rank-four tensor which does not change when the co-
ordinate system is rotated around the z axis. Since both the
strain and the stress are symmetric, we introduce a basis for
symmetric rank 2 tensors G = {g0, . . . , g5} by

g0
i j = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, g1

i j = 1√
6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠,

(A1a)

g2
i j = 1√

2

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, g3

i j = 1√
2

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

(A1b)

g4
i j = 1√

2

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, g5

i j = 1√
2

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠.

(A1c)

In this Appendix Greek labels refer to the element of the
basis G in Eq. (A1). Notice that G can be decomposed into
irreducible representations of SO(3): g0 lies in the trivial rep-
resentation, and g1, . . . , g5 (symmetric traceless matrices) lie
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in a “spin 2” irreducible representation. The basis is orthonor-
mal with respect to the trace scalar product 〈a, b〉 = tr(ab).
Hence, an arbitrary symmetric tensor ti j can be decomposed
as ti j = ∑

α tαgα
i j with

tα =
∑

i j

ti jg
α
i j . (A2)

The elastic tensor is a linear operator over the space of rank
two tensors, and its representative matrix can be calculated by

Cαβ =
∑
i jk�

gα
i jCi jk�gβ

k�
. (A3)

Hooke’s law can thus be expressed as

σα =
∑

β

Cαβuβ. (A4)

Under a rotation r of the reference system, the ma-
trix gα changes into g′α = rgαrt (t denotes transposition).
Since g′α is also symmetric, it can be decomposed on the
G basis, defining the representation of rotations R over the
rank-two tensors: g′α

i j = Rαβgβ
i j . Under rotations, the elastic

modulus tensor transforms as C′
αβ = RαμCμν (Rt )νβ . Cylindri-

cal isotropy means that C is invariant under rotations about
the z axis, i.e., C = RCRt . Equivalently, C commutes with the
representation of the generator of rotations about the z axis,
Lz, which is given by

Lz =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0 0
0 0 −2 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A5)

Imposing [C, Lz] = 0, one finds that the most general elastic
tensor with cylindrical isotropy reads

C3D = 2

⎛
⎜⎜⎜⎜⎜⎜⎝

3
2 B D + H 0 0 0 0

D − H μ3 0 0 0 0
0 0 μ1 Ko

1 0 0
0 0 −Ko

1 μ1 0 0
0 0 0 0 μ2 Ko

2
0 0 0 0 −Ko

2 μ2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A6)

Here B is the bulk modulus, which couples spherically sym-
metric dilations to pressure, μ1, μ2, μ3 are shear moduli,
which couple shear deformations to the corresponding shear
stress, and D is a passive mixed modulus that couples pas-
sively the cylindrically symmetric shear strain to pressure and

TABLE II. Comparison between all moduli compatible with pla-
nar isotropy and those obtained from a 3D bulk material. Mixed
coefficients may be replaced with even and odd combinations (for
instance, C30 + C03 is even while C30 − C03 is odd).

Planar isotropy Limit of 3D material
Eq. (B5) Eqs. (13)–(15) Even or odd

C00 2hB̃ Even
C11 2hμ1 Even
C12 2hKo

1 Odd
C03 0 Mixed
C14 0 Mixed
C15 0 Odd
C33 (h3/6)B̃ Even
C44 (h3/6)μ1 Even
FPC (h3/6)Ko

1 Odd
C30 0 Mixed
C41 0 Mixed
C42 0 Odd
C66 2hμ2 Even
C67 2hKo

2 Odd

spherically symmetric dilations to cylindrically symmetric
stress. The modulus H is the antisymmetric (or odd) counter-
part of the modulus D. The modulus Ko

1 is an antisymmetric
coupling between shears 2 and 3 in the x-y plane, while Ko

2
is an antisymmetric coupling between shears 4 and 5, which
could be respectively called xz and yz shears. In three dimen-
sions, one can show that an isotropic [i.e., SO(3)-symmetric]
elastic tensor cannot contain odd elastic moduli [25].

APPENDIX B: PLATE CONSTITUTIVE RELATIONS

Directly from the parameterization of the displacement
field in the plate, and thus from the kinematic assumptions
on the allowed displacements, we have that uzz vanishes iden-
tically. Then its conjugate variable, the vertical stress σzz,
does not affect the dynamics, and it is common practice
[12] to set it to zero—imposing the so-called plane-stress
condition. The constitutive relations of the bulk 3D mate-
rial with cylindrical isotropy [Eq. (A6)] are modified by
this assumption, and a reduced elastic tensor for the plate,
which maps the nonzero strains into the nonzero stresses, is
calculated.

To do so, we decompose the stress vector σ 3D =
(σ0, . . . , σ5) = (σZ , σ�) into a in-plane component σ� =
(σ1, . . . , σ4) and an out-of-plane component σZ = σ0, and
similarly for the strain vector u3D = (uZ , u�). Here the com-
ponents σa and ua of the stress and strain vector refer to the
basis vectors Ba defined in Eq. (7). The elastic matrix C3D in
the bulk constitutive relation (A6) can then be seen as a block
matrix:

(
σZ

σ�

)
= C3D

(
uZ

u�

)
=

(
CZZ CZ�

C�Z C��

)(
uZ

u�

)
. (B1)

Note that the matrix in Eq. (A6) is written in the basis (A1), while Eq. (B1) is written in the basis (7). A change of basis matrix
has to be applied to Eq. (A6) before carrying out the procedure delineated here.
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Assuming σZ = 0, solving for uZ (leading to uZ = −C−1
ZZ CZ�u�) and replacing, we find

σ� = Ceffu� where Ceff = C�� − C�ZC−1
ZZ CZ�. (B2)

In the main text, we use the simplified notations σ ≡ σ� and C ≡ Ceff.
Using the constitutive relation (A6) for the 3D bulk, this leads to

Cab ≡ Ceff
ab = 2

⎛
⎜⎜⎜⎜⎝

B̃ 0 0 0 0
0 μ1 Ko

1 0 0
0 −Ko

1 μ1 0 0
0 0 0 μ2 Ko

2
0 0 0 −Ko

2 μ2

⎞
⎟⎟⎟⎟⎠ (B3)

with

B̃ = −6D2 + 6H2 + 9Bμ3

3B + 4(
√

2D + μ3)
. (B4)

Notice that B̃ is a nontrivial function of the 3D bulk modulus B, 3D axial shear modulus μ3, as well as the moduli D and H
which relate 3D dilations and axially symmetric shear in a symmetric and antisymmetric way, respectively (see Appendix A for
more details). In contrast, the remaining shear moduli are inherited in a straightforward way from three dimensions.

More generally, we can consider moduli that are consistent with planar isotropy but do not arise from the thin limit of a 3D
structure. The constitutive relation in this case takes the more general form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ND

NS1

NS2

MD

MS1

MS2

NT x

NT y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C00 0 0 C03 0 0 0 0
0 C11 C12 0 C14 C15 0 0
0 −C12 C11 0 −C15 C14 0 0

C30 0 0 C33 0 0 0 0
0 C41 C42 0 C44 C45 0 0
0 −C42 C41 0 −C45 C44 0 0
0 0 0 0 0 0 C66 C67

0 0 0 0 0 0 −C67 C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0
D

u0
S1

u0
S2

u1
D

u1
S1

u1
S2

u0
T x

u0
T y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B5)

to be compared with Eqs. (13)–(15). In Eq. (B5) the coeffi-
cients in red (namely, C03, C14, C15, C30, C41, C42) do not arise
from the thin limit of a 3D structure. A comparison between
the plates’ elastic moduli in Eq. (B5) and in Eqs. (13)–(15) is
given in Table II.

APPENDIX C: RELATION WITH THE NOTATIONS
OF SALBREUX ET AL.

In this Appendix we compare our notation to that of
Ref. [19], which considers active membrane mechanics in
the limit h → 0. In our notation we use Greek letters for
in-plane indices, and we do not distinguish between up and
down indices since we linearize about a flat membrane. In
our notation (their notation), the in-plane stress tensor is de-
noted Nαβ (t i j ), the linearized 2D strain tensor is denoted uαβ

(ui j), the in-plane bending moment is denoted Mαβ (m̄i j), and
midplane curvature is denoted ∂α∂βω (ci j). Using the notation
of Eq. (B5) in our work and Eqs. (66) and (67) in Ref. [19],
we can also compare the elastic moduli: this is done in Ta-
ble III. We note that C66 and C67 do not appear in Ref. [19]
because these terms couple explicitly to the finite thickness
degree of freedom φ, which is not studied in the h → 0 limit.
Likewise, the elastic coefficients H1, H̄1, H̄2, HC, H̄C, and HPC

in Refs. [19] do not appear in our work as they are coefficients
of a geometric term �i which involves background curvature
and higher-order gradients of the displacement field not con-
sidered in the present work.

TABLE III. Comparison of the notations used in this work and
the notations of Ref. [19]. The coefficients C66 and C67 do not ap-
pear in Ref. [19] because these terms couple explicitly to the finite
thickness degree of freedom φ, which is not studied in the h → 0
limit. Likewise, the elastic coefficients H1, H̄1, H̄2, HC, H̄C, and HPC

in Ref. [19] do not appear in our work because they are coefficients
of a geometric term �i which involves background curvature and
higher-order gradients of the displacement field not considered in the
present work. See Table II for a correspondence with the notations
used in the main text.

This work Ref. [19]

In-plane stress tensor Nαβ t i j

In-plane bending moment Mαβ m̄i j

Midplane curvature ∂α∂βω ci j

C00 E2 + E1/2
C11 E1/2
C12 EPC

C03 G2 + G1/2
C14 G1/2
C15 GC

Elastic coefficients C33 F2 + F1/2
C44 F1/2
FPC C45

C30 K2 + K1/2
C41 K1/2
C42 −KC

C66 n/a
C67 n/a
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APPENDIX D: DERIVATION OF THE EQUATIONS
OF MOTION AND EXPLICIT h → 0 LIMIT

In this Appendix we calculate the equations describing the
evolution of the plate in the bulk using the principle of virtual
work. We consider a plate that is infinite along the x and

y directions, and has finite thickness along z ∈ [−h/2, h/2].
The region occupied by the plate at rest is then V =
R2 × [−h/2, h/2]. The displacement field configurations are
assumed to vanish at infinity. We consider an external drag
force given by f ext

i = −�ξ̇i.

The virtual work principle states that the actual field configuration in its time evolution from ti to t f must satisfy∫ t f

ti

dt (δK − δW int − δW ext ) = 0, (D1)

where K is the kinetic energy, δW int is the internal infinitesimal work, and δW ext is the external infinitesimal work, given by

K = 1

2

∫
V

d3x ρξ̇iξ̇i, δW int =
∫

V
d3x σi jδui j, δW ext =

∫
V

d3x f ext
i δξi (D2)

in which the variations δ are performed within the allowed displacements [12]. Notice that the principle of virtual work is valid
even for nonconservative forces (like f ext or odd elastic forces) because it requires only energy differential δW . While δW is
integrated over space and time, allowing for integration by parts of spatiotemporal derivatives, it is not required to integrate δW
over the variation of the fields to obtain an explicit potential W . When the explicit potential W exists (which is not required in the
derivation below), the differential δ may be pulled outside of the space-time integral, and an action is obtained for a Lagrangian
theory.

In the following, we express the 3D displacement field with respect to the plate fields, then we integrate over z, assuming a
uniform density. The terms that survive are the ones that contain an even power of z. Finally we integrate by parts in order to
isolate the variations of the fields. For the kinetic energy, we have

∫ t f

ti

dt δK =
∫ t f

ti

dt
∫

V
d3x ρ[(η̇α + zφ̇α )δ(η̇α + zφ̇α ) + ẇδẇ]

=
∫ t f

ti

dt
∫
R2

d2x ρ

[
hη̇αδη̇α + hẇδẇ + h3

12
φ̇αδφ̇α

]

= −
∫ t f

ti

dt
∫
R2

d2x ρ

[
hη̈αδηα + hẅδw + h3

12
φ̈αδφα

]
. (D3)

For the internal elastic forces, we have

∫ t f

ti

dt δWint =
∫ t f

ti

dt
∫

V
d3x [σαβ (∂αδηβ + z∂αδφβ ) + σzαδφα + σαz∂αδw]

=
∫ t f

ti

dt
∫
R2

d2x [Nαβ∂αδηβ + Mαβ∂αδφβ + Nzαδφα + Nαz∂αδw]

=
∫ t f

ti

dt
∫
R2

d2x [−∂αNαβδηβ − ∂αMαβδφβ + Nzαδφα − ∂αNαzδw]. (D4)

For the external forces, we have∫ t f

ti

dt δWext =
∫ t f

ti

dt
∫
R2

d2x �

[
hη̇αδηα + hẇδw + h3

12
φ̇αδφα

]
. (D5)

Finally, requiring Eq. (D1) to be satisfied for all the variations of the plate’s fields, we get

h(ρη̈α + �η̇α ) = ∂βNβα, (D6)

h(ρẅ + �ẇ) = ∂αNαz, (D7)

h3

12
(ρφ̈α + �φ̇α ) = ∂βMβα − Nzα. (D8)

Substituting the constitutive relations we get Eqs. (20) to (22).
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We now discuss the h → 0 limit of Eqs. (21) and (22). Let
L be a typical length scale over which the membrane deflects
and treat ε ≡ h/L as a small parameter. Let Dt = ρ∂2

t + �∂t ,
and normalize the x coordinate by L. Then the equations of
motion Eqs. (21) and (22) read

Dtw =∂α

[(
μ2δαβ + Ko

2εαβ

)
(∂βw + φβ )

]
, (D9)

ε2Dtφα = ε2(B∂α∂β + μ1∇2δαβ + Ko
1∇2εαβ )φβ

− 12(μ2δαβ + Ko
2εαβ )(∂βw + φβ ). (D10)

To understand the ε → 0 limit, we organize the fields as

w(x, t ) = w(0)(x, t ) + ε2w(2)(x, t ) + · · · , (D11)

φα (x, t ) = φ(0)
α (x, t ) + ε2φ(2)

α (x, t ) + · · · . (D12)

To zeroth order in ε, Eq. (D10) implies that

φ
(0)
β = −∂βw(0). (D13)

Plugging in Eq. (D13) into Eq. (D9) implies that Dtw
(0) = 0

and hence, by virtue of Eq. (D13), Dtφ
(0)
α = 0. Using the fact

that Dtφ
(0)
α = 0, the ε2 contribution to Eq. (D10) reads

(
μ2δαβ + Ko

2εαβ

)(
∂βw(2) + φ

(2)
β

)
= 1

12

(
B∂α∂β + μ1∇2δαβ + Ko

1∇2εαβ

)
φ

(0)
β . (D14)

Combining Eq. (D10) and Eq. (D13) yields

∂αw(2) + φ(2)
α = −Bμ2∂α∂β + Ko

2 Bεαγ ∂γ ∂β + (
μ1μ2 − Ko

1 Ko
2

)
δαβ∇2 + (

μ2Ko
1 + Ko

2μ1
)∇2εαβ

12
[
μ2

2 + (
Ko

2

)2
] ∂βw(0). (D15)

Plugging Eq. (D15) into the ε2 contribution to Eq. (D9) yields

Dtw
(2) = ∂α

[(
μ2δαβ + Ko

2εαβ

)(
∂βw(2) + φ

(2)
β

)]
(D16)

= − (B + μ1)
[
μ2

2 − (
Ko

2

)2] − 2μ2Ko
1 Ko

2

12
[
μ2

2 + (
Ko

2

)2
] ∇4w(0).

(D17)

Therefore, the equation of motion for w is closed unto itself
to leading order in h/L. In original units, it is given by the
Kirchhoff-Love theory of plates(

ρ∂2
t + �∂t

)
w = −Deff∇4w, (D18)

where Deff is a bending stiffness whose value is renormalized
by the odd moduli Ko

1 and Ko
2

Deff = h2 (B + μ1)
[
μ2

2 − (
Ko

2

)2] − 2μ2Ko
1 Ko

2

12
[
μ2

2 + (
Ko

2

)2
] (D19)

with the constraint φα = −∂αw.

APPENDIX E: CALCULATION OF THE FIRST CHERN
NUMBER

Here we show that for a purely active plate, as long
as Ko

2 , Ko
1 �= 0, momentum space can be compactified to a

sphere. Once momentum space is compactified, we may de-
fine the first Chern number as a topological invariant for the
eigenvector bands, which is later calculated. The reader is
directed to Ref. [54] and references therein for more details.

We write the purely active dynamical matrix as a linear
combination of the matrices

Sx =
⎛
⎝0 0 0

0 0 −1
0 −1 0

⎞
⎠, Sy =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

Sz =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ (E1)

with M(q) = i �M(q) · �S, and �M(q) = (Ko
2 qx, Ko

2 qy, Ko
1 q2 +

Ko
2 ). Since a multiplicative factor does not change the eigen-

vectors of a matrix, the Hamiltonian N (q) = n̂(q) · �S, with
n̂ = �M/|| �M||, has the same eigenvectors as M(q) and thus the
properties of the bands of eigenvectors of M can be studied
equivalently on N . Explicitly, we have

n̂(q) = 1√
q2 + (

1 + Ko
1/Ko

2 q2
)2

⎛
⎜⎝

qx

qy

(Ko
1/Ko

2 )q2 + 1

⎞
⎟⎠, (E2)

which is well defined on the whole momentum space if Ko
2 �=

0. If in addition Ko
1 �= 0, then limq→∞ n̂(q) does not depend

on the chosen direction. Identifying all the points at infinity,
we compactify the momentum space to a sphere. In this case
the eigenvectors of each band form a vector bundle over a
compact manifold and the first Chern number is a well-defined
topological invariant.

The Berry curvature F of the bands of M coincides with
the Berry curvature of the bands of N , so we will focus on
the latter. We define the following map from 3D unit vectors
to 3 × 3 complex matrices

S : S2 → Mat(3,C),

v̂ �→ v̂ · �S = vxSx + vySy + vzSz. (E3)

Then N is the composition of n̂ and S , i.e., N : R2 n̂−→
S2 S−→ Mat(3,C). Each band of eigenvectors of S induces
a Berry curvature FS2

on the sphere. The Berry curvature F
induced by N is equal to the pull-back through n̂ of FS2

, i.e.,
F = n̂∗FS2

. The curvature FS2
can be calculated explicitly as

follows. Let n̂ = (sin θ cos φ, sin θ sin φ, cos θ ), the eigenvec-
tors of the positive and negative bands of N = n̂ · �S are

ψ±(n̂) = 1√
2

⎛
⎝ cos θ cos φ ∓ i sin θ

±i cos φ + cos θ sin φ

−i sin θ

⎞
⎠. (E4)
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(a) Ko
1/Ko

2 < 0. (b) Ko
1/Ko

2 > 0.

FIG. 8. Visualization of Chern number calculation A cross sec-
tion of �M(q) and n̂(q) shows the index of the maps. In red, the
projection on the unit sphere. The behavior of the map n̂ can be
understood visualizing the map �M. (a) �M describes a paraboloid that
encloses the origin, then n̂ = �M/|| �M|| covers the whole unit sphere.
(b) �M describes a paraboloid pointing upwards, then n̂ covers the
same portion of the unit sphere two times, with opposite orientation,
giving index zero.

These induce a Berry connection AS2

± = −i〈ψ±|dψ±〉 =
∓ cos θ dφ and Berry curvature FS2

± = dAS2

± = ± sin θ dθ ∧
dφ. We observe that FS2

+ is the volume form of the sphere,
thus C+ = 1/(2π )

∫
R2 n̂∗FS2

+ is twice the index (or degree) of
the map n̂. The index of a map is an integer that counts the
signed number of times that the domain (here the momentum
space, compactified to a sphere) wraps on the target space
(here the sphere S2). The index of n̂ depends on the relative
values of Ko

1 and Ko
2 as follows. When Ko

1 and Ko
2 have the

same sign, the map n̂ does not fully cover the sphere, thereby
yielding a vanishing index and C+ = 0. When Ko

1 and Ko
2 have

opposite sign, the map n̂ covers the sphere once, so |C+| = 2.
The sign of the Chern number then depends on the orientation
of the covering: if Ko

2 > 0, n̂(0) = (0, 0, 1)t, so the sphere is
covered from the top and thus C+ = 2; if Ko

2 < 0, the sphere
is covered from the bottom, leading to C− = −2. The result is
summarized in Eq. (32). A pictorial representation is given in
Fig. 8.

APPENDIX F: NUMERICAL DEMONSTRATION
OF TOPOLOGICAL EDGE STATE

To validate the existence and properties of the topologi-
cal edge mode, we numerically solve Eqs. (21) and (22) in
the presence of a boundary. For stability, we consider the
overdamped limit (ρ = 0), and we use the following dimen-
sionless variables: x̃α = √

12xα/h, w̃ = √
12w/h, and t̃ =

12Mt/h2� where M is an arbitrary reference modulus with
dimensions mass/(time2 × length). With this normalization,
Eqs. (21) and (22) read

∂ω̃

∂ t̃
= μ̃2∇̃2w̃ + μ̃2∂̃αφα + K̃o

2εαβ ∂̃αφβ, (F1)

∂φα

∂ t̃
= (

B̃∂̃α∂̃β + μ̃1∇̃2δαβ + K̃o
1 ∇̃2εαβ

)
φβ

− (
μ̃2δαβ + K̃o

2εαβ

)
(∂̃βw̃ + φβ ) + fα (x̃, t̃ ), (F2)

where the the moduli have bee nondimensionalized by M.
To drive the system, we have added to the right-hand side of

Eq. (22) a forcing term of the form

f1(x̃, t̃ ) = exp

[
(x̃1 − 20)2 + x̃2

2

30

]
cos(�̃t̃ ), f2(x̃, t̃ ) = 0,

(F3)

where �̃ is the driving frequency. The domain of x̃ is taken
to be a hexagon of side length

√
3 × 10, and we discretize the

equations onto a triangular lattice and impose the boundary
conditions in Eq. (33). The equations of motion are integrated
in Python using scipy.integrate.solve_ivp. In Fig. 7 we
use B̃ = 0, μ̃1 = 0, K̃o

2 = 2, μ̃2 = 0.05. In Figs. 7(a)–7(c) we
use K̃o

1 = 1 and in Figs. 7(d)–7(f) we use K̃o
1 = −1. In both

panels we take the driving frequency to lie in the predicted
bulk band gap �̃ = 0.1. The simulations are integrated over a
range t̃ = [0, 300]. In Fig. 7 the simulation is rendered at time
t̃ = 45. See Supplemental Movies 1 and 2 [73] for the entire
simulation.

APPENDIX G: MAPPING BETWEEN ODD-ELASTIC
PLATES AND ODD-VISCOUS FLUIDS

We assume that the dynamics of the active plate is over-
damped, which means that inertial terms in the equations [ρω2

in Eq. (25)] can be neglected over the drag term [i�ω in
Eq. (25)]. We can compare the resulting equations to those
of a fluid with odd viscosity exposed to an external magnetic
field [54]. For the fluid with odd viscsoity, the physical fields
are the density ρ and the velocity v. The parameters are the
average density ρ0, the speed of sound c, a typical frequency
ωB analogous to the cyclotron frequency, the ordinary viscos-
ity ν, and odd viscosity ν0. The nondimensional linearized
Navier-Stokes equations are ([54], Appendix VII)

∂t v = −Ma−2∇(ρ/ρ0) + Ro−1v∗ + Re−1∇2v

+ Re−1
odd∇2v∗,

∂t (ρ/ρ0) = −∇ · v, (G1)

where v∗ ≡ (vy,−vx ) is the velocity rotated by 90◦ and the
Mach, Rossby, Reynolds, and odd Reynolds dimensionless
numbers are respectively defined as

Ma = U

c
, Ro = U

LωB
, Re = UL

ν
, Reodd = UL

νo
.

(G2)

The nondimensionalized equations of an odd-elastic plate
with B̃ = μ2 = 0 can be obtained defining a timescale T (so
that ∂t → T −1∂t ) and read

∂tφ = −K̄o
2∇∗w − K̄o

2φ∗ + μ̄1∇2φ + K̄o
1∇2φ∗,

∂tw = K̄o
2∇ · φ∗ (G3)

with

μ̄1 = 12μ1T

h2�
, K̄o

1 = 12Ko
1 T

h2�
, K̄o

2 = 12Ko
2 T

h2�
, (G4)

and ∇∗ ≡ (∂y,−∂x ). Then the mapping from the odd-elastic
plate to the odd-viscous fluid is obtained through the
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identification

φα = εαβvβ, w = ρ/ρ0,

Ma−2 = K̄o
2 , Ro−1 = −K̄o

2 ,

Re−1 = μ̄1, Re−1
odd = K̄o

1 ,

1 = K̄o
2 . (G5)

In the mapping, the two scalar fields are identified, and the
two vector fields are identified (after a rotation by 90◦). Ko

1
is related to the odd Reynolds number, as they refer to the
same tensor component, respectively, for the elastic tensor
and for the viscosity tensor. Ko

2 is related to ωB. In fact, Ko
2

makes the vector φ rotate, as ωB makes the velocity rotate. The
passive shear modulus μ1 acts as an ordinary shear viscosity
term. Finally, the requirement 1 = K̄o

2 fixes the timescale of
the plate to T = h2�/(12Ko

2 ).
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