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Noise-induced collective actuation in active solids

Paul Baconnier ,1,2,* Vincent Démery ,2,3 and Olivier Dauchot 2

1AMOLF, 1098 XG Amsterdam, The Netherlands
2UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France

3Univ Lyon, ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France

(Received 10 November 2023; accepted 28 January 2024; published 20 February 2024)

Collective actuation describes the spontaneous synchronized oscillations taking place in active solids when
the elasto-active feedback, which generically couples the reorientation of the active forces and the elastic stress,
is large enough. In the absence of noise, collective actuation takes the form of a strong condensation of the
dynamics on a specific pair of modes and their generalized harmonics. Here we report experiments conducted
with centimetric active elastic structures, where collective oscillation takes place along the single lowest energy
mode of the system, gapped from the other modes because of the system’s geometry. Combining the numerical
and theoretical analysis of an agent-based model, we demonstrate that this form of collective actuation is noise-
induced. The effect of the noise is first analyzed in a single-particle toy model that reveals the interplay between
the noise and the specific structure of the phase space. We then show that in the continuous limit, any finite
amount of noise turns this new form of transition to collective actuation into a bona fide supercritical Hopf
bifurcation.
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I. INTRODUCTION

Understanding the vibrational excitations of a solid has
been a key step in the development of solid-state physics. At
equilibrium, thermal fluctuations distribute uniformly among
the vibrational modes. Out of equilibrium, equipartition does
not hold, and more selective actuation of the modes may hold.
This is notably the case in the context of active matter. A sim-
ple nonequilibrium–correlated bath actuates an infinitesimal
zero mode while simultaneously suppressing fluctuations in
higher modes as compared to thermal fluctuations [1]. Fur-
thermore, when the nodes of the elastic network are motile,
self-propulsion is able to fully mobilize free-moving mecha-
nisms, even in topologically complex cases [1].

Active matter reveals its richness further when an elasto-
active feedback couples the reorientation of the active forces
to the strain and stress induced inside the solid by these forces
[2–7]. In the presence of zero modes associated with rigid
body motion or mechanisms, the dynamics then fully con-
dense onto one of these zero modes [3,5,7,8]. In the absence of
zero modes, new dynamical behaviors emerge in the form of
spontaneous collective and synchronous oscillations [2,4,6],
strikingly resembling the oscillations observed in dense living
active systems [2,9–15]. Taking advantage of a mechanical
model system made of springs and self-propelling toys, called
Hexbugs, it was recently shown that such oscillations result
from the selection of a pair of extended modes, with orthog-
onal polarization. These modes are not necessarily the lowest
energy ones [4,6]. The selection mechanism is rooted in the
elasto-active feedback coupling the structure’s deformations
and the reorientation of the active forces.
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The effect of noise on the dynamics reported above remains
largely unexplored. In the case where there are multiple zero
modes associated with solid body motions and/or mecha-
nisms, the dynamics can be mapped onto an effective free
energy and the dynamics quasistatically follow the zero mode
of minimal free energy [7]. In the absence of zero modes,
the selective and collective actuation is robust with respect
to the addition of a finite amount of white noise [4]. A more
unexpected effect of noise is the one that we uncover in the
present work: the onset of a noise-induced collective actuation
(NICA) regime, which takes place along the single lowest
energy mode. Starting from the experimental observation of a
regular oscillation in an active elastic structure, the lowest en-
ergy mode of which is gapped for geometrical reasons, we first
demonstrate, using numerical simulations, that the oscillations
only take place in the presence of noise on the orientational
dynamics of the active forces. We then discuss the emer-
gence of these oscillations in two opposite asymptotic limits:
that of a single active particle confined in a one-dimensional
harmonic potential and that of the continuum limit, using a
coarse-grained description of the dynamics. While the study
of the single particle provides evidence that the oscillations
take their roots in the specific structure of the phase space,
the coarse-grained analysis firmly demonstrates that any finite
amount of noise makes this new form of transition to collec-
tive actuation a bona fide supercritical Hopf bifurcation.

II. COLLECTIVE ACTUATION OF ACTIVE LADDERS

A. Theoretical background

The collective actuation of active elastic structures has
been described in detail in [4]. Let us nevertheless start, for
completeness and self-consistency, with a brief overview of
the existing results about collective actuation in the absence of

2470-0045/2024/109(2)/024606(13) 024606-1 ©2024 American Physical Society

https://orcid.org/0000-0003-3526-7605
https://orcid.org/0000-0001-7546-0384
https://orcid.org/0000-0002-7039-5787
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.024606&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevE.109.024606


BACONNIER, DÉMERY, AND DAUCHOT PHYSICAL REVIEW E 109, 024606 (2024)

noise. Consider a mechanically stable elastic structure com-
posed of active nodes connected by springs of stiffness k.
At each node i, an active unit is exerting an active force of
amplitude F0 in the direction of its polarity vector, n̂i. The
latter is free to rotate and reorients towards the displacement
of the node, dictated by the sum of the forces acting on it. This
nonlinear feedback between deformations and polarizations
is characterized by two length scales: (1) the elastic length
le = F0/k, the typical elastic deformation caused by the active
forces, and (2) the self-alignment length la, the characteristic
distance on which a node must be displaced to reorient the
active force located at that node. The ratio � = le/la, which
we refer to as the elasto-active coupling, controls the tran-
sition from a disordered frozen state, with all active forces
pointing in random directions, to an oscillating state, where
all the nodes oscillate synchronously around their reference
position. In this regime the dynamics condensate on a pair of
modes and their generalized harmonics. The selected modes
are not necessarily the lowest energy ones; they should also be
maximally extended and their polarization should be locally
orthogonal. Within the harmonic approximation, i.e., linear
elasticity, the dynamics are well described by

u̇i = �n̂i − Mi ju j, (1a)

ṅi = (n̂i × u̇i ) × n̂i +
√

2Dξin̂⊥
i , (1b)

where ui is the displacement of node i with respect to the
reference configuration, and M is the dynamical matrix,
whose eigenvectors are the normal, or vibrational, modes of
the elastic structure. Equation (1b) governs the reorientation
of the particles, and contains the nonlinear self-alignment
term and a noise term of amplitude D, with correlations
〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). Note that the above equations are
made dimensionless, using γ /k and la as units of time and
length, respectively, where γ is an effective friction coeffi-
cient.

Reducing the dynamics to the two selected modes allows us
to map the N-body dynamics onto that of a single self-aligning
polar particle in a harmonic potential. In the simplest case,
when the two modes are degenerated, the oscillating dynam-
ics correspond to simple circular orbits [16]. This dynamics
was experimentally reported in the case of a triangular lattice
pinned at its edges, in which the collective actuation takes the
form of a synchronized chiral oscillation of the nodes around
their mechanical equilibrium position [4]. The generalization
to two nondegenerated modes was thoroughly investigated in
[17] and was experimentally observed when the central node
of the same triangular lattice is pinned in both translation
and rotation, leading to a global alternating rotation [6]. In
all cases it is clearly established that no oscillations can take
place when reducing the dynamics to a single mode. In the
following we shall see that the latter statement holds only in
the absence of noise.

B. Experiments

The model active solids considered here consists of elas-
tic structures composed of N active units connected by coil
springs of rest length l0 (see [4] for details). Each active unit is
made of a HexbugTM, a centimetric battery-powered running

robot, embedded in a 3D printed annulus (height 1.4 cm; inter-
nal radius 2.5 cm, 3 mm thick). Each node has a well-defined
reference position set by mechanical equilibrium of the spring
network.

We focus on square lattices with rectangular shapes, com-
posed of L (resp. W ) active units along the long (resp. short)
direction of the structure [Figs. 1(b)–1(d)]. The left and right
ends of the lattices are held fixed so that the extension of
the springs in the structure along the longitudinal direction
is α = leq/l0 � 1.28 in the reference configuration. Doing so,
the structure intentionally has a stiff longitudinal direction
and a soft transversal one. Once doped with active units, the
dynamics observed in such active ladders depends on their
width W . For W = 4, the system is disordered; the polarities
of the active units are diffusing and the displacements of the
nodes are small. For W = 3 and W = 2, a global oscilla-
tion of the structure, perpendicular to its longitudinal axis,
takes place (see Supplemental Material movies 1–3 [18]).
More quantitatively, we define the longitudinal (resp. trans-
verse) polarizations M‖/⊥(t ) = (1/N )

∑
i n̂i(t ) · e‖/⊥, where

the vectors e‖ and e⊥ are defined in Fig. 1(a). As can be
seen from Figs. 1(e)–1(g), this oscillation is driven by the
collective alignment of the polarities of the active units along
the transverse direction, while the longitudinal polarization
remains within the range expected for random independent
orientations. The alignment is not perfect, however, because
of the presence of a significant angular noise in the dynamics
of the polarities. Within the framework of Eq. (1), we could
evaluate D ≈ 10−1 (see Supplementary Information of [4],
Sec. 2.2). We also note that the oscillation frequency of the
ladder of width W = 3 is larger than that of width W = 2. We
finally measure an

k = 〈ϕk|n̂〉/√N , the normalized projections
of the active forces on the normal modes of the idealized
spring networks [see Fig. 1(a) and below]. As indicated by
the square projection averaged over time [Figs. 1(h)–1(j)], the
active forces condensate on one mode, the first transverse,
lowest-energy one, shown in the right of Fig. 1(a) (see Sup-
plemental Material for a representation of all the modes and
their associated eigenvalues or energies [18]).

The collective actuation dynamics reported above is there-
fore very different from the previously reported synchronized
chiral oscillations [4] and global alternating rotations [6], the
distinctive signature of which is to require the activation of
two modes, selected by their specific geometries. While nu-
merical simulations and analytical studies demonstrated that
the latter collective actuations develop in the absence of noise,
we shall see below that noise is a necessary ingredient for the
type of collective actuation reported here to take place.

C. Numerical simulations

We consider Eq. (1) for the dynamics of N = 24 over-
damped self-aligning active particles, located at the nodes of
the W = 2 idealized spring network. Because of the elongated
geometry of the structure, the first transverse mode |ϕ1〉 =
|ϕ⊥,1〉 [Fig. 1(a), right] has an energy ω2

1 � 0.01, significantly
lower than the second lowest-energy mode, for which ω2

2 ∝
0.06. Note that in the experimental system, the width of the
ladder controls the transverse stiffness, which results from the
finite size of the nodes and the bending and shear moduli of
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FIG. 1. Experimental observation of collective actuation in active ladders. (a) Schematic representation of the active ladder architecture
(left) and its lowest-energy mode |ϕ⊥,1〉 (right). (b)–(d) Snapshot of the dynamics: each row corresponds to a different width W ; red arrows:
polarities n̂i; trajectories color coded from blue to red with increasing time; scale bars: 10 cm. (e)–(g) Transverse M⊥ (red) and longitudinal M‖
(black) polarizations as a function of time, corresponding to the dynamics reported in panels (b)–(d). The gray areas indicate the polarization
range [ − 1/

√
N, 1/

√
N] expected for a purely random dynamics of the polarities. (h)–(j) Mean-squared projections of the polarity field on the

normal modes as a function of the modes’ index k. The dashed horizontal black line indicates equirepartition of the active force. The bottom
color bar codes for the modes’ geometry (yellow: transverse; blue: longitudinal).

the real springs. This is not the case in the idealized lattice,
with purely central forces acting on pointlike nodes, for which
the transverse stiffness is independent of W (see Supplemental
Material [18]). In the present simplified model, the stiffness
of the lattice is thus controlled utterly by that of the springs,
hence by the value of �: the larger �, the softer the network.
We keep W = 2 fixed, unless stated otherwise.

We simulate Eq. (1) with an Euler-Maruyama method and
a fixed time step δt = 10−2. The active units are initiated
with positions in the reference configuration of the lattice
and with random initial orientations. When � < ω2

1, the sys-
tem is always disordered (not shown here): in the absence
of noise, it is frozen in a mechanical equilibrium config-
uration set by the random initial orientation of the active

units; at finite noise, the orientations diffuse. For ω2
1 < � =

0.05 < ω2
2, the observed dynamics depend on the presence of

noise, as clearly evidenced in Fig. 2. For any finite amount
of noise, D > 0, oscillations emerge along the transverse
direction [Figs. 2(a) and 2b]. These oscillations resemble
those observed experimentally, with a particularly large am-
plitude along the lowest-energy mode |ϕ⊥,1〉, while the rest
of the spectrum remains essentially flat [Figs. 2(d) and
2(e)]. Most importantly, these oscillations do not take place
in the absence of noise. For D = 0, the system is frozen-
polarized [Figs. 2(c) and 2(f)]: a static state is reached, with
the active units pointing in the direction of |ϕ⊥,1〉, leading
to a large and constant value of |M⊥| while M‖ remains
small.
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FIG. 2. Numerical investigation of the effect of noise on the
collective actuation of model active ladders. Simulations of a model
ladder of width W = 2, with N = 24 nodes and fixed �/ω2

1 = 4.17,
for three different noise amplitudes: D = 0 (bottom), D = 10−3

(middle), D = 6.10−3 (top). (a)–(c) Transverse M⊥ (red) and longi-
tudinal M‖ (black) polarizations as a function of time. (d)–(f) Mean
squared projections of the polarity field on the normal modes as a
function of the modes’ index k. The dashed horizontal black line in-
dicates equirepartition of the active force. The bottom color bar codes
for the modes’ geometry (yellow: transverse; blue: longitudinal).

The role of the noise is further characterized by examining
the Fourier spectrum of M⊥ as the elasto-active coupling �

increases from below ω2
1, for different noise amplitudes D,

and different system sizes (Fig. 3). For a given intermediate
noise level, the Fourier spectrum of M⊥ exhibits a distinctive
peak, the amplitude of which increases with � [Fig. 3(a)].
The same trend is observed when measuring the mean squared
transverse polarization, 〈M2

⊥〉, which grows from the small
value expected for independent random orientations and satu-
rates close to 1 for low enough noise [Fig. 3(c)]. Altogether,
the polarization periodically reverses its orientation with a
characteristic frequency fosc, captured by the location of
the peak, which increases with � from a finite value f �

osc at the

onset. The dependence on the noise amplitude is more subtle.
On one hand, the smaller the noise, the sharper the onset of the
oscillation regime [Fig. 3(c)]. On the other hand, at low noise,
the peak is absorbed by a strong low-frequency component of
the Fourier spectrum [Fig. 3(b)]: the polarization dynamics is
dominated by large amplitude stochastic reversals [Fig. 3(c)].
Finally, very large noise randomizes the dynamics, decreas-
ing both the amplitude of the peak in the Fourier spectrum
[Fig. 3(b)] and the amplitude of 〈M2

⊥〉 [Fig. 3(c)]. In the range
of noise where the oscillations are well captured, we note a
square root dependence of the oscillation frequency at onset,
f �
osc, with the noise amplitude.

Finally, we perform simulations with increasing values of
N , while keeping constant the physical size L and the aspect
ratio L/W . This amounts to decreasing the lattice spacing,
or, equivalently, to rescaling the eigenvalues of the dynam-
ical matrix so that the lowest-energy mode keeps the same
energy. The noise, D = 10−3, is kept constant. The onset of
oscillations is sharper with increasing system size [Fig. 3(e)],
while the oscillating frequency, extracted from an increasingly
sharper peak (not shown here) is essentially independent of N
[Fig. 3(f)].

D. Summary

Performing experiments with elongated active elastic
structures, we observe a transition from a disordered dynamics
to a global oscillation of the structure, when the aspect ratio of
the structure is large enough. The oscillation condensates on
a single transverse mode, which is also the lowest energy one.
Simulating an idealized version of the experimental structures
in the presence of a finite amount of noise, the same transition
is observed when the elasto-active coupling � exceeds the
energy of the lowest-energy mode, while remaining smaller
than that of the second one. Most importantly, the transition
observed numerically is suppressed in the absence of noise.
The present collective actuation is thus noise-induced, in
sharp contrast with the collective actuation regimes reported
before. This, together with the condensation of the dynamics
on a single mode, underlines its different nature, hence the
name noise-induced collective actuation (NICA).

III. NOISE-INDUCED OSCILLATIONS
IN A SINGLE-PARTICLE MODEL

A. From N to one particle

In this section, we discuss the onset of the oscillat-
ing dynamics by analyzing the stochastic dynamics of a
single-particle toy model. Our starting point is the Langevin
dynamics described by Eqs. (1). In the absence of noise, one
sees that any configuration of the polarity field {n̂i} is a fixed
point of the dynamics defined by ({n̂i}, {ui = �M−1

i j n̂ j}). The
linear stability analysis of any of these fixed points demon-
strates that the linearized dynamics has a zero eigenvalue
for all values of �. The destabilization threshold �c({n̂i}),
below which the considered fixed point is marginal, and above
which it is linearly unstable, depends on the orientation of
the active units. The first 2N configurations to destabilize are
those where the active forces point orthogonally to the lowest
energy mode. This destabilization takes place for � =
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FIG. 3. Numerical investigation of the transition towards the collective actuation of model active ladders. (a–d) Simulations of a model lad-
der of width W = 2, with N = 24 nodes. (a), (b) Power spectrums obtained from the Fourier transform of M⊥(t ); (a) for fixed fixed D = 10−3,
color coded from light to dark green as � increases, with �/ω2

1 ∈ [0.89, 1.21, 1.45, 1.61, 1.77, 1.85, 1.93, 2.01, 2.17, 2.33, 2.49, 2.81, 3.13];
(b) for fixed �/ω2

⊥,1 = 2, color coded from light to dark blue as noise increases, with D ∈ [10−5, 10−4, 10−3, 3 × 10−3, 10−2]. (c) Root-mean-

squared transverse polarization
√〈M2

⊥〉 as a function of �, obtained for different noise amplitudes D ∈ [10−5, 10−4, 10−3, 3 × 10−3, 10−2, 3 ×
10−2], color coded from light to dark blue as noise increases; the dashed horizontal lines indicate the expected value 1/

√
2N for a collection of

random independent orientations; the solid vertical blue lines indicate the values �c = 2(ω2
1 + D). (d) Frequency of oscillation as a function

of �, as obtained from the largest peak of M⊥(t )′s Fourier transform, the same conventions as in (c); the shaded areas represent the width of
the Gaussian fitted at the vicinity of of largest peak of the M⊥(t ) Fourier transform. Inset: log-log plot of the frequency of oscillation at onset,
f �
osc (defined in the text), as a function of noise D; the dashed black (resp. gray) line indicates slope 1/2 (resp. 1/3). (e, f) Same as (c) and

(d) for systems of increasing number of nodes N ∈ [6, 24, 54, 96, 150] at fixed aspect ration W/L and physical size; D = 10−3; the solid black
line indicates the value �c = 2(ω2

1 + D).

�min
c = ω2

min, where ω2
min is the smallest eigenvalue of the

dynamical matrix M. The eigenvector associated with this
eigenvalue describes a linearized dynamics, where the active
units and the displacements point perpendicularly to the low-
est energy mode [4]. In the present case of active ladders, the
lowest energy mode is the transverse mode |ϕmin〉 = |ϕ⊥,1〉
illustrated in Fig. 1(a). Hence all the configurations where the
active forces point in the longitudinal direction become unsta-
ble when � > ω2

1. The active units orient along the transverse
direction and the ladder adopts a bent shape, the amplitude
of which is set by �. This global deformation of the ladder
spontaneously breaks the transversal symmetry, and separates
the high-dimensional set of fixed points into two subsets of
marginally stable fixed points, respectively polarized along
and opposite to |ϕmin〉 = |ϕ⊥,1〉.

The dynamics thus effectively reduces to a one-
dimensional dynamics along the softest mode, and, in the
presence of noise, one would expect to observe stochastic

inversions between these two subsets rather than an oscillation
with a typical frequency. The situation is however not as
simple. First, the dynamics is fully out of equilibrium and not
thermally activated. Second, the two subsets are composed
of marginally stable fixed points and should not be seen as
basins of attraction. The physics associated with this specific
organization of the phase space is already well captured by a
single-particle model, which we describe below.

B. A single particle confined to one dimension

In the case of the previously reported collective actuation
[4], when the dynamics condensates on two modes, the natural
single particle model is that of a self-aligning particle in a
two-dimensional harmonic potential, with stiffnesses given
by the energies of the two selected modes. When the two
modes are degenerated, with the same energy ω2

0, the har-
monic potential is rotationally invariant, thus all fixed points
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are equivalent and become unstable for � > ω2
0, leading to

chiral oscillations in the form of circular orbits [16]. When
the two modes have different energies ω2

1 < ω2
2, invariance by

rotation is broken, the fixed points destabilize progressively in
the range ω2

1 < � < ω2
2, and the chiral oscillations transform

into a family of elliptic regimes elongated along the softer
direction of the potential [17].

The situation one wants to consider here is the limiting case
where ω2

1 � ω2
2 and � remains comparable with the energy

of the lowest energy mode. It corresponds to that of a single
particle moving along a rigid rail, with the elastic restoring
force being parallel to the rail’s axis, while its polarity can
still take all possible orientations. u denotes the displacement
along the soft direction (say, of axis êx), and θ ∈ [−π, π ]
denotes the orientation of n̂ with respect to êx. In such a
setting, Eq. (1) read

u̇ = � cos θ − ω2
1u, (2a)

θ̇ = − sin θ
[
� cos θ − ω2

1u
] +

√
2Dξ . (2b)

The specificity of this model is that the amplitude of the
active force effectively depends on its orientation. In this sim-
ple geometry, one can further rescale time t → t̃ = ω2

1t and
displacements u → v = ω2

1u/� to reduce to two the number
of independent parameters and have them both in the equa-
tion for the angular dynamics:

v̇ = cos θ − v, (3a)

θ̇ = − �

ω2
1

sin θ [cos θ − v] +
√

2D

ω2
1

ξ . (3b)

In the absence of noise, there is one fixed point (v, θ ) =
(cos θ0, θ0) for each orientation θ0 of the active force. Lin-
earizing the dynamics around any of these fixed points, one
finds a zero eigenvalue for all values of �. The destabilization
threshold below which the considered fixed point is marginal
and above which it is unstable is �c(θ0) = ω2

1/ sin2 θ0. Hence
all fixed points are stable for � � ω2

1. One recovers, as in
the N-body problem, that the first fixed points to destabilize
are those where the active force points perpendicularly to the
soft direction, here in the direction θ0 = ±π/2. Conversely, in
contrast with the N-body problem, for which it was shown that
there is an upper bound for �c, above which all fixed points
are unstable [4], here there always exist stable fixed points:
more specifically the fixed points where the active force points
in the soft direction, θ0 = 0 or ± π , are stable for any finite
value of �.

Figures 4(a) and 4(b) display the simulated dynamics of the
polarization m = cos(θ ) below and above the linear destabi-
lization threshold of the first fixed point �c = ω2

1. Below the
instability, the orientation diffuses along the continuous set of
marginal fixed points. Above the instability, the marginal fixed
points lie in the ranges [−θ0, θ0] and [π − θ0, π + θ0], with
θ0 = arcsin(ω1/

√
�) (indicated with black dashed horizontal

lines on the figure). The dynamics alternate between long
periods of diffusion along one or the other subset of marginal
fixed points and rapid jumps between the two subsets. An
intriguing visual impression is that the stochastic jumps occur
with some temporal regularity. This is confirmed when look-
ing at the power spectrum of the polarization, |m̂|2, with m̂, the

FIG. 4. Dynamics of a single active particle moving along a rail:
(a, b) Temporal evolution of the polarization m = cos(θ ), below and
above the instability, (a) � = 0.9 < ω2

1; (b) � = 5.0 > ω2
1 (ω2

1 = 1,
D = 10−1). The black (resp. blue) dashed horizontal lines in (b) rep-
resent θ0 (resp. θ1). (c, d) Power spectrum of m for (c) D = 10−1 and
� = 1, 2, 3, 4, 5 and (d) � = 5 and D = 10−n with n = 4, 3, 2, 1, 0;
shifted vertically for the sake of clarity.

Fourier transform of m, as shown on Figs. 4(c) and 4(d). When
increasing � above the instability threshold, one observes
a peak in the spectrum revealing the periodic nature of the
polarization dynamics. The amplitude of the peak increases
with �, while its frequency exhibits only a weak dependence
on �. The dependence of the amplitude and location of the
peak on the noise is more significant. As in the case of the N-
particle simulations, the peak emerges for large enough noise,
D � 10−2. The scaling of the oscillating frequency with the
noise amplitude on the contrary is different from the square
root dependence reported in the N-particle simulations. The
D1/3 scaling observed here can be explained by the dynamics
at the edge of the set of marginal fixed points and is specific to
the quasi-one-dimensional nature of the spatial dynamics (see
Appendix A).

C. Weak noise limit

For weak noise, the effective dynamics of the orientation
can be determined analytically and provides a good intuition
of the interplay between the noisy dynamics on the set of
marginal fixed points and the essentially deterministic one
in the rest of the phase space. When � � ω2

1 and the noise
is weak, the dynamics diffuse along the continuous set of
marginal fixed points and a stationary distribution of the ori-
entation, corresponding to a zero flux in phase space, can
be found [Figs. 5(a) and 5(b)]. When � � ω2

1, the dynamics
again diffuse along the manifold of marginal fixed points
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FIG. 5. Transition to NICA for the single active particle moving
along a rail in the weak noise limit: (a), (c) Distribution of the
positions in phase space for D = 10−4 and (b), (d) orientations for
D ∈ [10−4, 10−3, 10−2, 10−1, 100], color coded from light to dark
blue as the noise D increases, below, � = 0.9 < ω2

1 (a), (b), and
above, � = 2.0 > ω2

1 (c), (d), the instability (ω2
1 = 1); In (a)–(c) the

black solid (resp. dashed) lines represent stable (resp. unstable) fixed
points. The vector field indicates the dynamics given by Eqs. (3).
The blue solid line integrates the dynamics from the boundary of a
component of the set of stable fixed points θ0 to the other component,
with junction at π − θ1. In (b) the black solid line indicates the
prediction from Eq. (7). In (d) the black solid line indicates the
prediction from Eqs. (8)–(10); the vertical black dashed (resp. blue)
line indicates θ0 = arcsin(1/

√
�) [resp. θ1, as obtained from the

numerical integration of Eqs. (3)]. (e) Probability current in the set
of stable fixed points for � = 2 for the same values of D color coded
as in (b) and (d). The current is computed from Eq. (5) with the
density measured in the simulations. The black solid line is the pre-
diction from Eq. (10). (f) Root-mean-squared polarization

√
〈m2〉 as

a function of �. The black solid line represents the predictions below
and above the instability, respectively, Eq. (7) and Eqs. (8)–(10).
Circles are numerical data for D ∈ [10−4, 10−3, 10−2, 10−1, 10−0],
color coded from light to dark blue as the noise D increases. The
dashed horizontal line indicates the value 1/

√
2, which corresponds

to a homogeneous distribution of θ .

until the system reaches the boundary of one subset of fixed
points, say, when θ reaches θ0 from below. It then escapes the
fixed points manifold and follows a deterministic orbit that
sends it to the other subset of stable fixed points, where it
diffuses again until reaching the symmetric boundary and the
process starts again. This induces a finite probability flux and
a modified stationary distribution of the orientation [Figs. 5(c)
and 5(d)], which we compute below.

If f (v, θ, t ) is the probability density for the variables v

and θ , the marginal distribution of the orientation, p(θ, t ) =∫
f (v, θ, t )dv, obeys the Fokker-Planck equation (see Ap-

pendix B)

∂t p(θ, t ) = −∂θ j(θ, t ), (4)

where the current is

j(θ ) = D

(
� sin(θ ) cos(θ )[
ω2

1 − � sin(θ )2
]2 p(θ )

− ω2
1

ω2
1 − � sin(θ )2

∂θ

[
p(θ )

ω2
1 − � sin(θ )2

])
. (5)

When � � ω2
1, the current is zero and the stationary den-

sity is obtained by defining φ(θ ) = p(θ )/(ω2
1 − � sin2 θ ),

which obeys

∂θφ = �

ω2
1

sin θ cos θφ, (6)

and integrates to φ = exp[� sin2 θ/(2ω2
1 )]. The stationary

density thus reads

p(θ ) ∝ p∗(θ ) = (
ω2

1 − � sin2 θ
)

exp

(
�

2ω2
1

sin2 θ

)
, (7)

matching very well numerical results for small noise
[Fig. 5(b), lightest blue curves].

When � > ω2
1, the current is nonzero and proportional to

D as obtained from Eq. (5). However, on the dynamical paths
connecting the sets of stable fixed points, the advective force
is deterministic and does not depend on D. In that region of
phase space, the probability density itself should therefore be
proportional to D and decay to zero in the limit of vanishing
noise. This provides us with the appropriate boundary con-
ditions to solve for the stationary distribution for θ ∈ [0, θ0].
There is an incoming probability current j at θ1, where the
deterministic dynamics lands on the subset of stable fixed
points, and by conservation of the density, the same outgoing
current j at θ0. The stationary probability thus satisfies Eq. (5)
with p(θ0) = 0 and j(θ ) = DJH (θ − θ1), where H (x) is the
Heaviside function. Introducing

ψ (θ ) = p(θ )

p∗(θ )
= p(θ )

ω2
1 − � sin2 θ

exp

(
− �

2ω2
1

sin2 θ

)
(8)

the solution can be analyzed segment by segment:
(1) For θ ∈ [0, θ1], the current is zero by symmetry and the

density still follows Eq. (7). Thus, ψ (θ ) = ψ (θ1) is constant.
(2) For θ ∈ [θ1, θ0], ψ (θ ) obeys

ψ ′(θ ) = −J
(
ω2

1 − � sin2 θ
)

exp

(
− �

2ω2
1

sin2 θ

)
. (9)

024606-7



BACONNIER, DÉMERY, AND DAUCHOT PHYSICAL REVIEW E 109, 024606 (2024)

Integrating this equation for θ ∈ [θ, θ0] provides an explicit
integral expression for ψ (θ ).

Finally, using the normalization condition,
∫ θ0

0 p(θ )dθ =
1/4 we find an expression for J:

1

4J
=

∫ θ1

0
dθ p∗(θ ) ×

∫ θ0

θ1

dθ ′ p∗(θ ′)e−� sin(θ ′ )2/ω2
1

+
∫ θ0

θ1

dθ p∗(θ )
∫ θ0

θ

dθ ′ p∗(θ ′)e−� sin(θ ′ )2/ω2
1 . (10)

The density probability for θ and the current J obtained
with this method compare well with the numerical simula-
tions of the dynamics conducted with decreasing amplitude
of the noise [Figs. 5(d) and 5(e)]. With this explicit expres-
sion for the probability density for any activity, we compute
the average squared polarization,

√
〈m2〉, as a function of �

[Fig. 5(f)]. We find a continuous crossover between the low-
and large-activity regimes, in good agreement with numerical
results in the limit of small noise. Consistent with the active
ladders’ simulations, the transition gets sharper as noise de-
creases and converges asymptotically.

The above weak noise limit analysis captures the distri-
butions of the orientation and the current in phase space,
obtained numerically, but does not capture the emergence
of a peak in the power spectrum of the magnetization. In
the following, we shall see that considering the large-scale
dynamics as described by coarse-grained equations, the os-
cillation naturally emerges through a Hopf bifurcation, as a
result of the presence of noise. We shall also obtain the square
root scaling of the oscillation frequency with noise reported in
the simulations of the ladder.

IV. COARSE-GRAINED MODEL

At large scale, one introduces the spatially continuous
fields u(r, t ) and m(r, t ), which respectively describe the local
averages of the microscopic displacements ui and polariza-
tions n̂i. Their dynamics are described by the coarse-grained
equations obtained in [4]:

∂t u = �m + Fel[u], (11a)

∂t m = (m × Fel ) × m + 1 − m2

2
∂t u − Dm, (11b)

where the relaxation term −Dm stems from the coarse
graining of the angular noise, and where the elastic force
Fel[u] = divσ is given by the standard constitutive relation
for continuum linear elasticity, i.e., Hooke’s law, σ = E

1+ν
[ε +

ν
1−2ν

Tr(ε)I], where σ and ε are the stress and strain tensors,
respectively, and E and ν are the Young modulus and the
Poisson ratio of the elastic material, respectively. Note that
such an elastic sheet has an infinity of normal modes, and we
keep denoting ω2

1 the energy of the lowest-energy one.
In the absence of noise, D = 0, any active force field bal-

ancing the elastic forces, �m(r, t ) = −Fel[u], is a stationary
solution of the coarse-grained equations. This is not the case in
the presence of noise, however small is D. The noise enforces
the existence of a single fixed point (u = 0, m = 0), which
corresponds to the homogeneous disordered state. Large
enough elasto-active coupling � leads the destabilization of

this fixed point into a limit cycle [see the numerical integration
of the projected equations defined below in Fig. 6(a)], the
amplitude of which seems to grow continuously from zero at
onset [Fig. 6(b)]. The linear stability analysis of the fixed point
(u = 0, m = 0) leads to the following eigenvalue problem (see
Supplementary Information of [4], Sec. 6.5):

λ2 − λ

(
�

2
− ω2

1 − D

)
+ Dω2

1 = 0. (12)

The real part of the two eigenvalues increases from negative
values at small �, where the disordered phase is stable and
becomes positive for � > �c = 2(ω2

1 + D). For any finite D,
the two eigenvalues collide on both sides of the instability
threshold, leading to complex conjugate values at the insta-
bility threshold [Fig. 6(c)], which is the hallmark of a Hopf
bifurcation. From Eq. (12), one easily finds that the frequency
at onset scales like

√
D. Finally, the supercritical nature of

the transition, anticipated from [Fig. 6(b)] is confirmed by the
normal form of the bifurcation, obtained from a multiple scale
analysis [19], which we summarize below (see Appendix C
for the complete derivation).

Starting with the projection of the coarse-grained equa-
tions along the lowest-energy mode,

∂t u = �m − ω2
1u, (13a)

∂t m = 1 − m2

2

(
�m − ω2

1u
) − Dm, (13b)

one uses the fact that, close to the threshold, the dynamics
along the unstable manifold is slow as compared to that in
all other directions in phase space. Introducing the small
parameter ε = (� − �c)/�c, one defines the slow timescale
T = εt and prescribes the scalings u → √

ε u(t, T ) and m →√
ε m(t, T ), in light of the parity symmetry of the problem.

One then looks for solutions of the form

u(t, T ) = u0(t, T ) + εu1(t, T ) + · · · , (14a)

m(t, T ) = m0(t, T ) + εm1(t, T ) + · · · , (14b)

solving order by order in ε. At zeroth order, the solutions
satisfy a system of linearly coupled ODEs and read(

u0(t, T )
m0(t, T )

)
= A(T )

(
a
1

)
ei�t + A�(T )

(
a�

1

)
e−i�t , (15)

where a = 2(1 − i
√

μ), μ = D/ω2
1, and � = ω1

√
D. Further

solving at first order and imposing the so-called Fredholm
alternative as a solvability condition, one finally obtains the
amplitude equation for the complex amplitude A and its mod-
ulus R = |A|:

dR

dT
= ε

2 + μ

4
R − 3D

1 + μ

2
R3. (16)

This normal form describes a supercritical Hopf bifurca-
tion, for which the solution R = 0, linearly stable for ε < 0,
destabilizes into a limit cycle of amplitude R ∼ √

ε and finite
frequency � ∼ √

D for ε > 0. The range of validity of the
analysis is provided by the separation of the slow τrelax ∝
ε−1 and fast τosc = �−1 timescales, that is, ε � ω1

√
D. We

note that the coefficient of the third-order nonlinear saturat-
ing term, the oscillating frequency, and the range of validity
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FIG. 6. Hopf bifurcation toward NICA at the coarse-grained level, for fixed ω2
1 = 1. (a) Nonlinear NICA limit cycles in the u-m plane,

as obtained from the numerical integration of Eqs. (13), for fixed D = 0.1 and � − �c ∈ [0.02, 0.05, 0.08, 0.2, 0.5, 0.8, 1.4, 2.0]ω2
1, color

coded from light to dark green as � increases. The black marker at the origin represents the disordered fixed point, and the gray solid line
corresponds to the vector (a, 1), as given by Eq. (15). (b) Amplitude of oscillations along m as a function of the normalized distance to threshold
(� − 2ω2

1 )/ω2
1 for different noise amplitude D ∈ [3.10−1, 10−1, 10−2, 10−3, 10−4, 10−5], color coded from light to dark blue as D increases.

Markers are obtained from the numerical integration of Eqs. (13). (c) Linear stability analysis of the disordered phase in the coarse-grained
model: solutions of Eq. (12) as a function of �, for D = 10−2. Black (resp. red) curves represent the real (resp. imaginary) parts of the solutions.
The black dashed line represents the nonzero solution for D = 0, i.e., λ = �/2 − ω2

1. (d) Amplitude of oscillations along m as a function of
the normalized distance to threshold (� − �c )/ω2

1, for D = 0.1. The solid black line represents the prediction from Eq. (16), and the red
markers represent the numerical results, as obtained from the numerical integration of Eqs. (13). The dashed gray line highlights the timescale
separation’s validity threshold in activity. (e) Log-log representation of (d) close to the threshold, with the same conventions. (f) Frequency of
the NICA limit cycle as a function of the normalized distance to threshold (� − �c )/ω2

1, as obtained from the largest peak of the m(t ) Fourier
transform. Same conventions as (d) and (e).

vanish in the limit of zero noise, pointing at the singularity of
this limit.

Figures 6(d)–6(f) provide a comparison of the prediction
from the multiple-scale analysis, Eq. (16), to the numerical in-
tegration of the coarse-grained equations (13). The amplitude
of oscillation found numerically matches very well the predic-
tion close to the threshold � = �c, with a clear square root
power law [Fig. 6(e)]. The oscillation frequency fosc of the
NICA limit cycle, as given by the largest peak of the Fourier
transform of m(t ), is in agreement with a Hopf bifurcation at
� =

√
Dω2

1 [Fig. 6(f)].
The results obtained from the coarse-grained model and

multiple scale analysis are also in good qualitative agreement
with the transition found numerically for the N-particle active
ladders. For not too large noise, the thresholds �c = 2(ω2

0 +
D) indicated with the vertical shaded blue lines in Fig. 3(c) are

good estimates of the inflection points marking the crossover
in the transversal polarity from the disordered state to the
oscillating regime. The scaling of the oscillation frequency
in

√
D at onset, reported in Fig. 3(d) is correctly predicted.

Farther from the threshold, we finally note a gentle increase of
the oscillation frequency computed from the coarse-grained
equations [Fig. 6(f)], also in agreement with the numeri-
cal simulations of the N-particle active ladders [Figs. 3(d)
and 3(f)].

V. DISCUSSION

The noise-induced collective actuation is a rich, yet simple
enough, example of the role of noise in a nonequilibrium
system. The phase space structure and the noise combine to
promote regular oscillations between two regions of the phase
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space, which contrasts with the equilibrium picture of stochas-
tic jumps between two wells of a free energy landscape.

This picture is well captured by the model of a single
particle moving along a rail. In this case, the phase space
structure is exactly known with a clear separation of the set of
marginal fixed points in two disconnected subsets connected
by deterministic trajectories, akin to heteroclinic orbits, in
the language of dynamical systems. The diffusion within one
subset of marginally stable fixed points is thus followed by
a quasideterministic run along these orbits towards the other
subset. The system does not have to overcome any barrier to
do so, and the dynamics is therefore very different from an
activated one. This simple model captures the spontaneously
broken symmetry of the low-activity frozen-polarized phase,
while properly considering the stochastic nature of angular
noise in the polarity dynamics and polarization reversals.
However, the activity threshold predicted, �c = ω2

1, conspicu-
ously deviates from that reported in the N-particle simulations
by a factor 2, and the scaling of the oscillation frequency with
noise is in D1/3 instead of the reported D1/2. Also, the system
is doomed to exhibit a finite polarization in the nonoscillating
phase, while the latter averages to zero in the disordered phase
of the N-particle system.

In contrast, the coarse-grained model with finite noise
offers the possibility of a disordered phase with vanishing
polarization. In this case we explicitly find a supercritical
Hopf bifurcation between a fully disordered, frozen phase
and a nonlinear NICA limit cycle at �c = 2(ω2

1 + D), with
a frequency at the onset of oscillations scaling like

√
D, both

matching well with numerical simulations of active ladders.
Remarkably, the derivation of the NICA limit cycle does
not require specifying the lowest-energy mode’s geometry,
emphasizing the generality of NICA. Therefore, in the pres-
ence of noise, we expect that large enough activity leads to
the emergence of spontaneous oscillations along the lowest-
energy mode in any active elastic structures whose normal
mode spectrum is gapped enough.

Collective actuation in elastic structures was first studied
in the absence of noise [4,6]. In that case, the oscillations take
place on a pair of modes that are nonlinearly selected. The
dynamics projected on this pair of modes is equivalent to that
of a single self-aligning polar particle in a two-dimensional
harmonic potential, the stiffnesses of which are given by the
energies of the selected modes. In this context, noise-induced
collective actuation appears to be the limiting case of collec-
tive actuation, when the two selected modes are gapped, and
the elasto-active feedback alone cannot give rise to oscilla-
tions. We thus infer that, in the presence of noise, when the
two selected modes are nondegenerated, the noiseless tran-
sition is likely to be preceded by a noise-induced collective
actuation regime with condensation on the one of the two
selected modes with the lowest energy. This could explain the
spontaneous oscillations of an active solid along its lowest-
energy mode as reported in [2] in the context of jammed active
solids or in Vertex models [11,12]. More generally, a better
understanding of the crossover between these two regimes of
collective actuation would certainly be of interest.

Let us comment on the connections between collective
actuation in active solids and synchronization of coupled

oscillators [20–26]. Indeed, such systems also exhibit a dis-
ordered phase for small enough coupling, and an increasing
fraction of synchronized oscillators for couplings larger than
a critical value. There are, however, two important differences
to be made with collective actuation. First, the active units are
not oscillators in that they don’t have an intrinsic frequency;
they push and reorient upon being displaced, but they do not
rotate spontaneously. The oscillations and the synchronization
emerge concomitantly. Second, in the specific case of NICA,
it is the noise and not the coupling strength that promotes the
synchronized oscillations.

Finally, a transition to spontaneous oscillations via a Hopf
bifurcation was observed in another system of elastically-
connected self-propelled robots [27], but in that case the
instability results from the coupling between activity and
elastic nonlinearities. Extending the current framework where
elasticity is purely linear to the nonlinear regime is a promis-
ing route to decipher the mechanisms at the origin of
spontaneous oscillations observed in dense living systems
[2,9–15]. First, in this context, noise can trigger plastic spatial
rearrangements of the structure, affecting its vibrational prop-
erties [28]. Second, investigating the influence of quenched
disorder on the transition to collective actuation [29] could
provide valuable insights into the interplay between system
and environmental variability [30], and the emergence of col-
lective oscillations.
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APPENDIX A: ARGUMENT FOR THE D1/3 SCALING
OF THE POWER SPECTRUM OF A SINGLE PARTICLE

In this Appendix, we present an argument for the D1/3 scal-
ing arising in the power spectrum of a single particle (Fig. 4).
The fixed point at the edge of the marginal fixed points is
close to its instability threshold. The dynamics around this
point is therefore extremely slow. We assume that the particle
spends most of the time “turning around” the edge of the
marginal fixed points, and expand the dynamics around this
point [θ = θ0, v = cos(θ0)].

Writing θ = θ0 + φ, v = cos(θ0) + x with φ, x � 1 in
Eq. (3), we obtain

ẋ = − sin(θ0)φ − x, (A1)

φ̇ = �

ω2
1

sin(θ0)[sin(θ0)φ + x] +
√

2D

ω2
1

ξ . (A2)

We introduce the variable y = sin(θ0)φ + x, which follows

ẏ =
[

�

ω2
1

sin(θ0)2 − 1

]
y + sin(θ0)

√
2D

ω2
1

ξ =
√

2D

�
ξ,

(A3)
where we have used sin(θ0) = ω1/

√
�. The variable y thus

follows purely Brownian dynamics.
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Assuming that the system starts at the edge of the stable
fixed points at t = 0, then

〈y(t )2〉 = 2Dt

�
. (A4)

We now focus on x, which follows ẋ = −y, and compute
its variance:

〈x(t )2〉 = 2Dt3

3�
. (A5)

If a distance � from the point (cos(θ0), θ0) has to be
reached, after which the fast deterministic dynamics takes
over, it takes a time τ = �2/3(�/D)1/3, leading to a charac-
teristic frequency

f ∼ D1/3. (A6)

APPENDIX B: EQUATION FOR THE ORIENTATION
FOR THE SINGLE PARTICLE

To obtain the effective evolution equation of the marginal
distribution of the orientation p(θ, t ) in the limit of weak
noise, we start with the Fokker-Planck equation for the phase
space density f (v, θ, t ) and use a technique reminiscent of
the adiabatic elimination of a fast variable ([31], Sec. 8.3).
Here the fast variable is the deviation from the manifold of
marginally stable fixed points.

We start with the Fokker-Planck equation for the phase-
space density f (v, θ, t ) associated with the Langevin equa-
tions (3a) and (3b):

∂t f (v, θ, t ) = −∂v jv (v, θ, t ) − ∂θ jθ (v, θ, t ), (B1)

where the currents are

jv (v, θ ) = [cos(θ ) − v] f (v, θ ), (B2)

jθ (v, θ ) = �̃ sin(θ )[v − cos(θ )] f (v, θ ) − D̃∂θ f (v, θ ).
(B3)

We have defined �̃ = �/ω2
1 and D̃ = D/ω2

1; we omit the
tilde in the following.

We are interested in the equation satisfied by the marginal
density p(θ ) = ∫

f (v, θ ) dv. Integrating Eq. (B1) over v, we
obtain its evolution equation

∂t p(θ, t ) = −∂θ j̄θ (θ, t ), (B4)

where we have defined the integrated current j̄θ (θ ) =∫
jθ (v, θ ) dv. The integrated current can be obtained from

Eq. (B3),

j̄θ (θ ) = � sin θ f1(θ ) − D∂θ f0(θ ), (B5)

where we have defined the moments

fn(θ ) =
∫

[v − cos(θ )]n f (v, θ ) dv, (B6)

for n � 0; note that p(θ ) = f0(θ ).
To compute the moments, we assume that the phase-space

density is stationary:

− ∂v{[v − cos(θ )] f (v, θ )}
= −∂θ {� sin(θ )[v − cos(θ )] f (v, θ )}

+ D∂2
θ f (v, θ ). (B7)

Multiplying Eq. (B7) by [v − cos(θ )]n and integrating, we
get

n fn(θ ) = −�

∫
[v − cos(θ )]n∂θ {sin(θ )[v − cos(θ )]

× f (v, θ )}dv + D
∫

[v − cos(θ )]n∂2
θ f (v, θ ) dv,

(B8)

where we have integrated by parts to get the left-hand side,
assuming that the boundary terms vanish. We now use that,
for a generic function g(θ ),

[v − cos(θ )]n∂θg(θ ) = ∂θ {[v − cos(θ )]ng(θ )}
− n sin(θ )[v − cos(θ )]n−1g(θ ),

(B9)

to rewrite the second term in the r.h.s. of Eq. (B8):∫
[v − cos(θ )]n∂θ {sin(θ )[v − cos(θ )] f (v, θ )}dv

= ∂θ [sin(θ ) fn+1(θ )] − n sin(θ )2 fn(θ ). (B10)

For the third term in the r.h.s. of Eq. (B8), we need

[v − cos(θ )]n∂2
θ f (v, θ ) = ∂2

θ {[v − cos(θ )]n f (v, θ )} − 2∂θ {[v − cos(θ )]n}∂θ f (v, θ ) − ∂2
θ {[v − cos(θ )]n} f (v, θ ) (B11)

= ∂2
θ {[v − cos(θ )]n f (v, θ )} − 2∂θ (∂θ {t ([v − cos(θ )]n} f (v, θ )) + ∂2

θ {[v − cos(θ )]n} f (v, θ ) (B12)

= ∂2
θ {[v − cos(θ )]n f (v, θ )} − 2n∂θ {sin(θ )[v − cos(θ )]n−1 f (v, θ )} + {n cos(θ )[v − cos(θ )]n−1

+ n(n − 1) sin(θ )2[v − cos(θ )]n−2} f (v, θ ). (B13)

Integrating over v thus gives∫
[v − cos(θ )]n∂2

θ f (v, θ ) dv = ∂2
θ fn(θ ) − 2n∂θ [sin(θ ) fn−1(θ )] + n cos(θ ) fn−1(θ ) + n(n − 1) sin(θ )2 fn−2(θ ). (B14)

We can now write all the terms of Eq. (B8) with the moments fn(θ ):

n fn(θ ) = −�∂θ [sin(θ ) fn+1(θ )] + n� sin(θ )2 fn(θ ) + D
[
∂2
θ fn(θ ) − 2n∂θ [sin(θ ) fn−1(θ )

]
+ n cos(θ ) fn−1(θ ) + n(n − 1) sin(θ )2 fn−2(θ )]; (B15)

we obtain a hierarchy of equations.
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For n = 0, n = 1 and n = 2, Eq. (B15) reduces to

0 = −�∂θ [sin(θ ) f1(θ )] + D∂2
θ f0(θ ), (B16)

[1 − � sin(θ )2] f1(θ ) = −�∂θ [sin(θ ) f2(θ )] + D
[
∂2
θ f1(θ ) − 2∂θ [sin(θ ) f0(θ )] + cos(θ ) f0(θ )

]
, (B17)

2[1 − � sin(θ )2] f2(θ ) = −�∂θ [sin(θ ) f3(θ )] + D
[
∂2
θ f2(θ ) − 4∂θ [sin(θ ) f1(θ )] + 2 cos(θ ) f1(θ ) + 2 sin(θ )2 f0(θ )

]
. (B18)

To close the hierarchy, we consider the situation where D → 0. The relations above are compatible with the scalings f0 ∼ D0,
f1 ∼ f2 ∼ D, fn>2 = o(D). Restricting ourselves to the leading orders, the relations (B17) and (B18) read

[1 − � sin(θ )2] f1(θ ) = −�∂θ [sin(θ ) f2(θ )] + D[−2∂θ [sin(θ ) f0(θ )] + cos(θ ) f0(θ )], (B19)

[1 − � sin(θ )2] f2(θ ) = D sin(θ )2 f0(θ ). (B20)

From these equations we deduce f2(θ ) and then

f1(θ ) = − D

1 − � sin(θ )2

{
∂θ

[
sin(θ )

1 − � sin(θ )2
f0(θ )

]
+ sin(θ )∂θ f0(θ )

}
. (B21)

Finally, the integrated current (B5) is

j̄(θ ) = D

{
� sin(θ ) cos(θ )

[1 − � sin(θ )2]2
p(θ ) − 1

1 − � sin(θ )2
∂θ

[
p(θ )

1 − � sin(θ )2

]}
. (B22)

Inserting back the expressions for D̃ and �̃, we get

j̄(θ ) = D

{
� sin(θ ) cos(θ )

[ω2
1 − � sin(θ )2]2

p(θ ) − ω2
1

ω2
1 − � sin(θ )2

∂θ

[
p(θ )

ω2
1 − � sin(θ )2

]}
. (B23)

APPENDIX C: MULTIPLE SCALE ANALYSIS

We start from Eqs. (13). Then we provide the derivation
of the nonlinear NICA limit cycle’s explicit expression, as
the elasto-active coupling � exceeds the disordered phase
stability threshold, �c = 2(ω2

1 + D).

1. Scaling variables

We consider the elasto-active coupling very close to the
disordered phase’s stability threshold: � = �c + δ, where
δ = λ�, with λ a small parameter, and introduce a slow
timescale T = λt . We propose the scalings U = √

λU (t, T )
and m = √

λm(t, T ), and look for solutions of the form

U (t, T ) = U0(t, T ) + λU1(t, T ) + · · · , (C1a)

m(t, T ) = m0(t, T ) + λm1(t, T ) + · · · . (C1b)

2. Perturbation

Reinjecting Eqs. (C1) into Eqs. (13), we next separate the
different orders in λ. At zeroth order in λ, we find

∂

∂t

(
U0(t, T )
m0(t, T )

)
=

(
−ω2

1 �c

−ω2
1/2 �c

2 − D

)(
U0(t, T )
m0(t, T )

)

= D

(
U0(t, T )
m0(t, T )

)
. (C2)

The eigenvalues of D are ±i�, where � =
√

Dω2
1. Impos-

ing real solutions, we find(
U0(t, T )
m0(t, T )

)
= A(T )

(
a
1

)
ei�t + A�(T )

(
a�

1

)
e−i�t , (C3)

where a = 2(1 − i
√

D
ω0

); where the complex number A(T ) de-
pends on the slow timescale T , and where the two vectors
t (a, 1) and t (a�, 1) are, respectively, the eigenvectors associ-
ated with the eigenvalues i� and −i�.

At first order in λ, we find

∂

∂t

(
U1(t, T )
m1(t, T )

)
= D

(
U1(t, T )
m1(t, T )

)

+
(

�m0 − ∂U0
∂T

1
2�m0 − �c

2 m3
0 + ω2

0
2 m2

0U0 − ∂m0
∂T

)
,

(C4)

where the matrix D is the same as in Eqs. (C2). There is no
need to solve explicitly for U1 and m1: some terms drive the
system at the resonance frequency ω = ±�, and the system
will generally have no solution. It will only have a solution,
leading to a bounded solution for Eq. (C4), if the right-hand
side satisfies a certain constraint. This constraint we get from
the Fredholm alternative theorem.

3. Fredholm alternative theorem

The resonant terms of the right-hand side of Eqs. (C4) must
be orthogonal to any vector of the kernel of the matrix (i�I −
D)�. A basis for this subspace is the vector t ( 1

2
ω2

1+iω0
√

D
ω2

1+D
, 1).
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Thus, the solvability condition reads

(
�m0 − ∂U0

∂T

1
2�m0 + ω2

1
2 m2

0U0 − �c
2 m3

0 − ∂m0
∂T

)
�t

·
(

1
2

ω2
1+iω0

√
D

ω2
1+D

1

)
= 0,

(C5)
where �t denotes that the associated expression is restricted
to terms oscillating at �t . Performing the tedious algebra and
the scalar product, we find

1

ω2
1

dA

dT
= A

�

ω2
1

2 + μ + i
√

μ

4
− A|A|2 (1 + μ)(3μ + i

√
μ)

2
,

(C6)
where μ = D/ω2

1.

4. Amplitude equation

Finally, introducing A = Rei� , we obtain the amplitude
equation for the real amplitude R:

1

ω2
1

dR

dT
= R

�

ω2
1

2 + μ

4
− R3 3μ(1 + μ)

2
. (C7)

At first order, we thus find that for � < �c (� < 0), the
only stable solution is the disordered fixed point; A = 0; and
for � > �c (� > 0), the only stable solution is the non-
linear limit cycle spontaneously oscillating along the lowest
energy mode. As one approaches the bifurcation from above,
the activity-independent frequency � =

√
Dω2

1 remains the
same, while the amplitude vanishes like a square root. The
normal form, Eq. (C7), and the linear stability analysis are
the hallmarks of a supercritical Hopf bifurcation. Importantly,
in contrast with synchronized chiral oscillations [4], at the
level of homogeneous solutions of the coarse-grained model,
we find a continuous transition from the disordered phase to
NICA.

5. Timescale separation

The long timescale corresponds to the typical relaxation
timescale of the transitory regime τrelax � 1/δ; and the short
one to the period of the oscillations τosc � 1/ω2

1
√

μ. The
timescale separation condition can be written as follows:

δ � ω0

√
D, (C8)

which is verified close enough to the threshold.
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