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Heterogeneous attenuation of sound waves in three-dimensional amorphous solids
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Sound waves are attenuated as they propagate in amorphous materials. We investigate the mechanism driving
sound attenuation in the Rayleigh scattering regime by resolving the dynamics of an excited phonon in time
and space via numerical simulations. We find sound attenuation is spatiotemporally heterogeneous. It starts in
localized regions, which identify soft regions within the material and correlate with low-frequency vibrational
modes. As time progresses, the regions where sound is primarily attenuated invade the system via an apparent
diffusive process.
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I. INTRODUCTION

The low-frequency vibrational excitations in crystals are
plane waves (phonons). On the contrary, in amorphous solids,
phonons attenuate [1–5], even in the harmonic regime [6].
Sound attenuation originates from the nonaffine response
[7,8] induced by amorphous solids’ spatially fluctuating local
elastic constants [9–15]. Some theories suggest accounting for
the fluctuating elastic constants by describing an amorphous
material as an elastic homogeneous medium punctuated by
localized defects. If this picture holds, the scattering by these
localized defects drives sound attenuation, as in Rayleigh’s
model [16].

Theories suggesting that sound attenuation originates from
localized defects identified with quasilocalized vibrational
modes (QLMs) successfully explain how the attenuation rate
scales with the phonon wave vector and the stability of the
material in the Rayleigh scattering regime [17]. However,
they have difficulty in quantitatively relating the attenuation
rate to the number of QLMs and their features [7]. One
possibility is that the assumption that sound attenuation stems
from localized defects is wrong, which is most likely the case
in glasses that do not have a high degree of stability, and in
two dimensions, where low-frequency modes are not truly
localized, the number of particles involved in these modes
grows with the system size [18,19]. Another possibility is
that QLMs are just some of the scattering defects. In this
respect, one has to consider that as the system size increases,
the number of QLMs of a given frequency decreases as QLMs
increasingly hybridize with plane waves.

In this paper, we establish that localized regions playing the
role of defects drive sound attenuation in three-dimensional
amorphous solids and show that, in small systems, these
defects relate to quasilocalized vibrational modes. We in-
vestigate the nature of the attenuation process by resolving
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it in space and time via the introduction of a nonphononic
displacement field measuring the deviation of the particles’
displacement from the phononic one. At short times, the
nonphononic field is localized in a few regions, suggest-
ing that attenuation is driven by defects. As time advances,
the nonphononic field gradually spreads via a diffusive pro-
cess. Mechanically soft regions may appear as anharmonic
[20,21] or harmonic quasilocalized soft vibrational modes
[17] (QLMs) [19,22–24] in finite-sized disorder systems.
Conversely, in large systems, these soft regions are expected
to be embedded within extended vibrational modes. We show
that the regions where sound attenuation starts to attenuate
correlate with those where QLMs concentrate and that QLMs
strongly influence attenuation in poorly annealed glasses.
Overall, our results indicate that scattering by defects induces
phonon attenuation in three-dimensional amorphous solids
and suggest that these defects emerge as QLMs in small and
poorly annealed systems.

This paper is organized as follows. We introduce our three-
dimensional numerical model in Sec. II and review previous
work investigating the dependence of the attenuation param-
eter on the phonons’ frequency and the material properties in
Sec. III. In Sec. IV, we show that localized defects drive the
attenuation of sound waves by investigating the spatiotempo-
ral features of a nonphononic displacement field. Sections V
and VI use diverse approaches to investigate how these defects
correlate with quasilocalized vibrational modes. In Sec. VII,
we show that the nonphononic field evolves via a diffusive
process. Finally, we summarize our results and discuss future
research directions in Sec. VIII.

II. NUMERICAL MODEL AND PROTOCOLS

We investigate sound attenuation in model amorphous
materials that differ in their degree of mechanical stability.
Particles interact via Lennard-Jones-like (LJ-like) potentials
U (r, xc) that have the same repulsive part but differ in the
extension of their attractive well [25], which depends on the
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FIG. 1. We consider a family of LJ-like interparticle potentials
that have the same repulsive part but are different in the attractive
well, which extends up to ri j/σi j = xc.

parameter xc. Examples of potentials are shown in Fig. 1. Pre-
vious works showed that xc influences the relaxation dynamics
[26] and the mechanical response [25,27–29]. In particular,
the vibrational properties increasingly resemble those of sta-
ble glasses as the attraction range decreases.

We follow the model of Ref. [26] and consider poly-
disperse particles of diameter σi, drawn from a uniform
random distribution in the range [0.8:1.2], in d = 3 spatial
dimensions. The potential has a repulsive component and
an attractive component. The repulsive part of the potential
follows the standard LJ functional form,

Ur (ri j ) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
, (1)

where σi j = (σi + σ j )/2 and acts for ri j � rmin
i j = 21/6σi j .

The attractive part, which only acts for distances in the range
21/6σi j � ri j � xcσi j , is given by

Ua(ri j ) = εi j

[
a0

(
σi j

ri j

)12

− a1

(
σi j

ri j

)6

+
3∑

l=0

c2l

(
ri j

σi j

)2l
]
. (2)

The parameters a0, a1, and c2l are chosen such that the po-
tential U (ri j ) and its first two derivatives are continuous at
the minimum rmin

i j and at the cutoff r (c)
i j = xcσi j , where the

potential also vanishes. In the following, we treat m, σ , and
εi j = ε as the units of mass, length, and energy.

We simulate systems with N = 64 000 particles in a cu-
bic box with periodic boundary conditions at fixed number
density ρ = 1.07. We equilibrate the systems at tempera-
ture 4.0ε, well above the glass transition temperature for the
considered models [26], and then generate amorphous solid
configurations by minimizing the energy via the conjugate
gradient algorithm [30]. In the following, we discuss the
sound-damping and vibrational properties of these amorphous
configurations.

III. DEPENDENCE OF SOUND ATTENUATION
ON MATERIAL PROPERTIES

We investigate sound attenuation by exciting an acoustic
wave excited at time t = 0 [31,32] by giving each particle
a velocity v0

i = AT cos(κr0
i ), where Aκ = 0, considering κ

in which two among κx, κy, and κz are zero and κ is the
wave vector. We then evolve the system in the linear response
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FIG. 2. Velocity autocorrelation function C(t ) of a transverse
phonon of wave vector κ = 2π

L (1, 0, 0) for different xc as a function
of t/T , with T being the phonon’s period.

regime where v̇i(t ) = −∑N
j=1 Hi j · v j (t ) + v̇0

i δ(t ), with Hi j

being the Hessian matrix.
The decay of the velocity autocorrelation function

C(t ) =
∑N

i=1 vi(0)vi(t )∑N
i=1 vi(0)vi(0)

, (3)

illustrated in Fig. 2, demonstrates phonon attenuation. A fit of
C(t ) to a damped exponential function cos(ωt )e−	t/2 allows
extracting the wave-vector dependence of the attenuation rate
	 and frequency ω (or period T = 2π/ω).

In recent work [17], we investigated how 	 depends on the
phonons’ frequency, system sizes, and material properties for
different cutoff xc, focusing on the low-frequency scattering
regime where 	 ∝ ω4. According to the theory of fluctuating
elasticity [9,33] (FET), which assumes that the local elastic
properties are δ correlated in space, 	 depends on the disorder
parameter γ regulating the dependence of the fluctuations of
the shear modulus on the coarse-graining size N , σ 2(N )/μ2 =
γ /N , with μ being the average modulus. Specifically, FET
predicts 	/ω0 ∝ γ (ω/ω0)4, with ω0 = cs/a0, where cs is the
sound velocity of transverse waves and a0 = ρ−1/d , with ρ

being the number density. An extension of FET [34], which
we termed correlated fluctuating elasticity (corr-FET), con-
siders the influence of the shear modulus’s spatial correlation
length ξ . If γ ∝ (ξ/a0)3, as we observed [17] and expected
if the disorder parameter is proportional to the correlation
volume of the shear modulus, then corr-FET predicts 	/ω0 ∝
ξ 3γ (ω/ω0)4 ∝ γ 2(ω/ω0)4. Our previous investigation, sum-
marized in Fig. 3, indicates sound attenuation is described by
corr-FET rather than by FET, indicating the shear modulus’s
correlation length scale ξ changes with xc. We found the same
result holds for a different three-dimensional model. These
three-dimensional results vary from those of previous inves-
tigations of two-dimensional systems, in which FET appeared
to hold [15] and sound attenuation in the Rayleigh regime did
not correlate with localized defects [35].

Interestingly, Rayleigh’s [16] original model, according to
which the scattering by localized defects drives sound atten-
uation, reproduces corr-FET’s prediction provided the defects
satisfy some conditions. While we gave indirect evidence
suggesting that these conditions are met and that the scattering
defects promoting sound attenuation are the quasilocalized vi-
brational modes, the relevance of the defect’s picture remains
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FIG. 3. Dependence of the scaled attenuation rate on the scaled
frequency. The plot combines data for N = 32 000, 64 000, 256 000,
512 000, 2 048 000 and 8 192 000, for which no size effects are
apparent. Symbols refer to different interaction potentials as in Fig. 2.
In the Rayleigh scattering regime, the correlated version of the fluctu-
ating elasticity theory accounts for the dependence of the attenuation
rate on the material properties. In this paper, we resolve in space
and time the evolution of low-frequency phonons with wave number
n = 1 in systems of N = 64 000 particles, as indicated by the black
circles and squares. Adapted from Ref. [17].

controversial [7]. We investigate this issue by resolving the
damping of the phonons in time and space.

IV. LOCALIZED DEFECTS PROMOTE
SOUND ATTENUATION

To unveil the microscopic mechanism driving sound atten-
uation, we spatially resolve the time evolution of the excited
transverse phonons by introducing a nonphononic displace-
ment field

drnp
i (t ) = dri(t ) − drph

i (t ), (4)

where dri(t ) is the displacement of particle i and drph
i (t ) is

the phononic displacement it would have in the absence of
attenuation,

drph
i (t ) = −A

ω
sin(κri − ωt + φ) + A

ω
sin(κri + φ), (5)

with A being the polarization vector, κ being the wave vector,
ω = csκ , dt being the integration time step, φ being a phase,
and cs being the shear wave speed.

We filter out the influence of the slow-varying phononic
field on the nonphononic displacement by studying it at
stroboscopic times sT , with T being the period. We further
compare drnp

i (sT ) to its value at the relaxation time sτ T , with
sτ being the smallest integer ensuring sτ T = τ =� 2	−1.
This comparison leads to the introduction of a local time-
dependent sound attenuation parameter

�2
i (sT ) = 〈|drnp

i (sT )|2〉
〈|drnp

i (τ )|2〉 , (6)

which is defined for sT � τ . Here, 〈·〉 indicates an average
are over phonons with different phases in φ ∈ [0, π/2] and
the same n2 = n2

x + n2
y + n2

z , where κ = 2π
L (nx, ny, nz ).

We have investigated the local sound attenuation parameter
induced by different long-wavelength phonons. We focus on
the Rayleigh scattering regime by considering the longest-
wavelength phonons (n2 = 1; circles in Fig. 3). We average
�2

i (t ) over 30 phonons differing in polarization or phase.

FIG. 4. Probability distribution of the local sound attenuation
parameter �2 at times corresponding to (a) one, (b) four, and (c) eight
phonon oscillation periods. Symbols identify different interaction
potentials, as in Fig. 2. We restrict the analysis to times � 2	−1 and
hence do not show data for large xc values in (c). The vertical dashed
line marks the threshold �2

c used to identify the particles with a large
value of the attenuation parameter.

Figure 4(a) illustrates the probability distribution of �2
i for

the different interaction potentials at a time corresponding to
one period of oscillation. The displacement is close to the
expected phononic one for most particles, �2

i � 1. However,
the distributions have extended right tails, indicating the ex-
istence of a few particles whose motion strongly differs from
the phononic one. As time advances, the distribution’s peak
shifts towards �2

i = 1, and the variance decreases, which is
apparent from Figs. 4(b) and 4(c), which illustrate P(�2

i )
after four and eight oscillation periods. At the relaxation time,
the distribution becomes δ(�2

i − 1). This occurs in Fig. 4(b)
for xc = 2 [τ (xc = 2) = 4T ] and in Fig. 4(c) for xc = 1.6
[τ (xc = 1.6) = 8T ].

The particles with local attenuation parameter �2
i (t ) larger

than a threshold �2
c identify the spatial region where sound

attenuated. The threshold �2
c should be large enough to select

as attenuated only the particles in the tail of the P(�2
i ) dis-

tribution at early times. It should also be smaller than 1, the
value of �2

i (t ) at the relaxation time. We have checked that
the choice of �2

c is not critical as long as the above conditions
are met and fixed in the following �2

c = 0.5.
We illustrate in Fig. 5 (left column) the particles with

�2
i (t ) > �2

c at a time corresponding to one phonon period.
Different rows correspond to different interaction potentials,
with the attraction range increasing from top to bottom. The
field is localized in compact clusters whose typical size in-
creases with the attraction range, i.e., as the system becomes
less stable. Overall, this simple investigation unambiguously
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FIG. 5. The left column illustrates the particles with local
phonon attenuation parameter �2 greater than 0.5 at a time corre-
sponding to the period of the excited phonons. Data are averaged over
phonons with n2 = 1. The right column illustrates the particles with
localized mode participation [Eq. (7)] larger than 5 × 10−5. Different
rows correspond to different interaction potentials, with the interac-
tion range xc increasing from top to bottom. Particles are color-coded
according to their �2 value. The left column demonstrates that scat-
tering defects drive sound attenuation in amorphous materials. The
correspondence between the two columns demonstrates that these
defects are the quasilocalized vibrational modes.

demonstrates that sound attenuation is promoted by localized
regions that identify defects.

This observation poses two questions. One question con-
cerns the relation between the scattering defects and the
quasilocalized vibrational modes [17]. The second question
concerns the growth dynamics of the nonphononic displace-
ment field. We address these two questions in Secs. V and
VII.
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FIG. 6. Probability distribution of the individual particle mode
participation p2

i , for different xc. The fast decay (�1/p2
i ) reveals that

only a small fraction of the particles have large displacements in the
low-frequency vibrational modes.

V. SCATTERING DEFECTS AND LOCALIZED
VIBRATIONAL MODES

The soft localized regions driving phonon attenuation may
be individually apparent as QLMs or may hybridize with
extended waves. How many soft regions emerge as QLMs
depends on the system size and, possibly, on the stability of
the material.

To relate attenuation and vibrational modes we adopt a
standard procedure to identify the particles involved in the
QLMs [36]. First, we determine the vibrational spectrum via
the direct diagonalization of the Hessian matrix Hi j to obtain
k = 1, 2, . . . (normalized) eigenvectors uk with associated
eigenfrequencies ωk , ωk � ωk+1. We average the square dis-
placement of particle i in mode k (u2

k,i) over the 0.015% (30)
of the eigenmodes with the lowest frequency [36] to define an
individual particle participation ratio,

pi = 〈
u2

k,i

〉
. (7)

If particle i only participates in extended modes, then its pi

value is of order O(1/N ). Particles with large pi are those
primarily involved in the soft-localized modes. We verified
that the number of considered modes is not critical, as pi is
dominated by the contribution of the first few localized modes,
with a frequency smaller than that of the boson peak.

We illustrate the probability distribution P(pi ) in Fig. 6.
Regardless of the attractive range, the distribution peaks at
small pi values of order 1/N and decays approximately as
p−2

i at large pi. The decay of P(pi ) indicates that a few parti-
cles have unusually large displacements in the low-frequency
modes. The amplitude of P(pi ) at large pi values depends on
xc, as in short-range attractive potentials (small xc) localized
modes stiffen and shift to higher frequencies, where they
hybridize with extended ones [37].

Figure 5 (right column) illustrates the location of the par-
ticles with pi > 5 × 10−5. These particles are arranged into
clusters that identify the spatial regions where QLMs localize.
The close correspondence between the left and right columns
of Fig. 5 suggests QLMs play a key role in the attenuation
process.

To have a clearer insight into the influence of the modes
on the attenuation process we investigate the �2

i (t = T ) − pi

scatterplot in Figs. 7(a) and 7(b), where �2
i is measured after
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FIG. 7. Scatterplot of the particle attenuation parameter �2
i

against the individual participation ratio pi for (a) xc = 1.35 and
(b) xc = 1.4. �2

i is evaluated after one period of oscillations for n = 1
phonon. Black, red, and cyan points represent particles belonging to
the first, second, and third largest clusters illustrated in left column
of Fig. 5. (c) and (d) show the corresponding plots obtained by
associating with each particle the maximum of �2

i over the modes
with n = 1 and n = 2. The dashed vertical lines mark the expected
pi value (1/N) for particles only participating in extended modes.

exciting n = 1 mode. To interpret this plot, we consider that
the particles that contribute most to the attenuation process
are those with a large �2

i . These particles may occur in soft
regions apparent as individual QLMs, in which case they have
large pi, and in soft regions embedded in extended modes,
in which case they have small pi. Since no particle with a
small attenuation coefficient should occur in a soft region, no
particle should have a small �2

i and a large pi. This prediction
is largely supported by Figs. 7(a) and 7(b). We do observe a

few points representing particles with a somehow large value
of the participation ratio and a small value of the attenuation
parameter, e.g., pi � 10−3 and �2

i � 10−2. We have found
these particles are not involved in the scattering of the consid-
ered n = 1 phonon but of other ones. Indeed, by associating
with each particle the maximum value of �2

i over the modes
with n = 1 and 2, we no longer observe particles with a small
�2

i and a large participation ratio, as in Figs. 7(c) and 7(d).
These findings echo previous results suggesting that, while
quasilocalized modes influence the mechanical properties of
amorphous materials, the relevant ones depend on the loading
direction [38].

Figure 7 demonstrates the absence of a one-to-one corre-
spondence between �2

i and pi. Rather, it suggests different
branches depart from the cloud of points with small pi and �2

i
values. We obtain insights into this organization by perform-
ing a cluster analysis of the particles with �2

i > �2
c , i.e., the

particles visible in Fig. 5 (left column). Two particles are in
the same cluster if they are in contact. In Figs. 7(a) and 7(b),
we color-code the points representing particles belonging to
the three largest clusters in black, red, and cyan and all the
others in gray. This study clarifies that the structures in Fig. 7
reflect the particles’ organization into distinct clusters. Direct
inspection further reveals that, within each cluster, �2

i (t ) is
maximal in the center and decays with the radial distance.

VI. MODE CONTRIBUTION

We obtain further insights into the influence of the QLMs
on sound attenuation via a normal mode analysis. To this
end, we project a phononic displacement field r on the vibra-
tional mode orthonormal basis {ui}, r = ∑

aiui, ai = r · ui.
Exciting this phonon at a time t = 0 by imposing appropriate
velocities on the particles leads to a velocity field varying
in time as ṗ(t ) = ∑

aiωi cos(ωit )ui, where ωi is the eigen-
frequency of mode i. The associated velocity autocorrelation
function is

C(t ) = v̇(t )v̇(0)

v̇(0)v̇(0)
=

∑
a2

i ω
2
i cos(ωit )∑
a2

i ω
2
i

�
∫

P(a2ω2) cos(ωt )dω. (8)

Phonon damping with C(t ) = cos(ω0t )e− 1
2 	t then occurs if

the probability distribution of a2
i ω

2
i is a Lorentzian,

P(a2ω2) = 1

π

1
2	2(

ω − ω2
0

) + (
1
2	

)2 . (9)

Using this projection formalism to investigate sound atten-
uation does not require knowledge of all the eigenmodes of
the Hessian. Rather, one needs the modes contributing to the
considered phonon, e.g., enough modes to ensure that

∑
a2

i
is approximately 1. Equivalently, one needs the modes with
a2

i > 1/dN that contribute more than random directions to
the phonon in d spatial dimensions. In general, more modes
need to be considered as the phonon wavelength decreases. In
our N = 64 000 particle systems, we are able to get enough
low-frequency modes to reasonably describe (

∑
a2

i > 0.96)
phonons with n = 1, 2 for all considered potentials. As an
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FIG. 8. (a) Probability distribution P(a2ω2) for xc = 1.4 for n =
1, 2. The data are averaged over 100 configurations, with 100 un-
derlying phases and d = 3 polarizations, considering all modes with
participation ratios greater than pc = 0, 0.1, 0.2. (b) The sum of
coefficients a2

i as a function of threshold pc. (c) Ratio of 	c/	0 as
a function of pc, where 	c is the value at finite pc and 	0 represents
pc = 0.

example, we illustrate in Fig. 8(a) numerical results for the
distribution P(a2ω2) at xc = 1.4. We show results for n = 1
(blue open squares) and n = 2 (blue solid squares). At each
n, the distribution is averaged over 100 phases and 3 polar-
izations and 100 different samples. The Lorentzian-like shape
of this distribution defines an attenuation coefficient which
is consistent with that estimated from the decay of the ve-
locity autocorrelation function. Practically, to suppress noise,
we obtain 	 from a fit of the cumulative distribution to its

expected functional form, 1
2 + 1

π
arctan( ω−ω0

	
), focusing on a

small range of frequencies close to ω0.
To assess the influence of soft modes on the attenuation

coefficient, we restrict the above analysis to modes with a
participation ratio larger than a threshold pc. Specifically,
rather than describing the whole phonon by projecting it on
the mode eigenbasis, we consider a fraction of it by projecting
on the subspace spanned by the modes with participation ratio
pi > pc. In doing so, we capture a fraction

∑
pi>pc

a2
i of the

exited phonon, as we illustrate in Fig. 8(b), and modify the
P(a2ω2) distribution. As an example, Fig. 8(a) shows how
the original distributions (blue) change when considering only
modes with pi � pc = 0.05 (red) and � 0.1 (magenta). From
this analysis, we are able to extract a pc-dependent sound
attenuation coefficient 	(pc), which is interpreted as the at-
tenuation coefficient obtained after filtering out the influence
of the modes with participation smaller than pc.

We start by describing n = 1 phonon. For n = 1,
∑

a2
i

drops gently as pc increases, as illustrated in Fig. 8(b), in-
dicating that the phonons have a minimal projection on the
localized modes. Nevertheless, the removal of this minimal
projection influences the attenuation rate, as in Fig. 8(c). The
result is particularly apparent for xc = 1.5, whose vibrational
properties have similarities to a poorly annealed glass [17].
Henceforth, in this considered case, QLMs act as scattering
sources at short times and sensibly influence the attenuation
coefficient.

The QLMs’ influence is more dramatic for n = 2. In this
case,

∑
a2

i sensibly drops with pc, as in Fig. 8(b), and P(a2ω2)
strongly depends on pc, as in Fig. 8(a). These results imply
the modes with a small participation ratio critically influence
the modes with n = 2 and their attenuation coefficient. These
modes influence P(a2ω2) so strongly that it can no longer be
reasonably approximated by a Lorentzian. Henceforth, the pc

dependence of the damping coefficient is ill defined, which is
why we do not illustrate 	(pc) in Fig. 8(c).

VII. SOUND ATTENUATION SPATIOTEMPORAL
DYNAMICS

We investigate the spatiotemporal evolution of the local
sound attenuation parameter in Fig. 9 by illustrating the parti-
cles with �2

i > �2
c at times corresponding to one, two, three,

and four oscillation periods, from top to bottom, for xc = 1.4
(left column) and xc = 1.6 (right). The difference in the two
columns reflects the interaction potential dependence of the
attenuation parameter 	. Since 	(xc = 1.6) � 3	(xc = 1.4),
more particles have �2

i > �2
c for xc = 1.6 than for xc = 1.4

after four oscillation periods. Figure 9 reveals that attenuation
proceeds through the growth of the clusters of attenuated par-
ticles observed at early times, rather than via the emergence
of disconnected clusters.

We quantify this growth process by studying the time de-
pendence of the total number of particles with �2

i > �2
c , N�,

and of the linear size of the largest cluster, λ = (NL/ρ)1/3,
with NL being the number of particles in the cluster. Fig-
ures 10(a) and 10(b) show that, at early times, λ2 ∝ t/τ ,
and N� ∝ (t/τ )3/2. While attenuation in the harmonic regime
we are investigating is deterministic as determined by the
dephasing of the excited modes, Eq. (8), these findings are
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FIG. 9. Particles with local phonon attenuation parameter �2 >

0.5 after one, two, three, and four phonon oscillation periods for xc =
1.4 (left) and 1.6 (right).

compatible with a picture according to which the local atten-
uation parameter field �2(r) is localized in a few regions at
very early times and then spreads through a diffusive process.

At later times, both λ2 and N� grow sharply. This fast
growth reflects the time dependence of the P(�2

i ) distribution,
which we illustrated in Fig. 6. This distribution peaks at a �2

i
value that increases with time. λ and N� grow sharply as the
central peak approaches the threshold value �c we used to
identify the attenuated particles. Indeed, we observe the time
of this fast growth depends on the chosen threshold.

VIII. CONCLUSIONS

We resolved phonon attenuation in space and time in
the Rayleigh scattering regime in three-dimensional model
amorphous solids. To do this, we introduced a nonphononic
displacement field measuring the difference between the

10
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3
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λ2
(t

)

∝ t/τ

10
2

10
3

10
4

 0.04  0.08  0.16  0.32  0.64

N
Δ(

t)

t/τ

(a)

(b)

∝ (t/τ)
3/2

FIG. 10. Time dependence of the square linear size λ2 of the
largest cluster of particles with local damping parameter �2

i (t ) > 0.5
and of the overall number of particles with �2

i (t ) > 0.5. The early
time growth of these quantities shows that the nonphononic field
propagates via a diffusive process. These quantities grow quickly at
later times, as the peak of the P(�2

i (t )) distribution approaches the
considered threshold value of 0.5.

actual displacement of the particles and what it would be in
the absence of attenuation. The spatiotemporal evolution of
this field reveals that attenuation begins in specific localized
defects and then spreads diffusively throughout the material.
These localized defects indicate softer areas within the system
and often overlap with regions where low-frequency vibra-
tional modes are concentrated. Overall, these results support
a picture according to which scattering by localized defects
drives the attenuation of sound waves in three-dimensional
amorphous materials.

Previous works suggesting that QLMs drive sound atten-
uation in three-dimensional amorphous solids captured the
dependence of the attenuation parameter on material proper-
ties [17] but were quantitatively inaccurate [7]. Our results
suggest this could occur because the defects inducing atten-
uation are not all apparent as individual QLMs. Rather, the
fraction of defects apparent as QLMs is expected to decrease
with the system size due to their increased hybridization with
extended waves. In large systems, other techniques might
possibly be employed to identify localized soft regions [39].
Relating sound attenuation to the properties of these regions
is an interesting avenue of research that could benefit from
previous approaches used to describe how the heterogeneities
in the size of the grain boundaries affect sound attenuation in
polycrystals [40].

One of the most interesting future research avenues con-
cerns the study of the dimensionality dependence of the
attenuation process. In three dimensions, the few investi-
gations of sound attenuation conducted so far suggest that
the attenuation coefficient scales with material properties as
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predicted by correlated fluctuating elasticity [34], 	/ω0 ∝
ξ 3γ (ω/ω0)4, with ξ being the shear modulus’s spatial cor-
relation length. Conversely, in two dimensions, previous
results supported [9,33] the FET scenario [10,11], 	/ω0 ∝
γ (ω/ω0)3. In addition, in two dimensions, QLMs appear to
be irrelevant [35] because they strongly hybridize with plane
waves [41] and disappear in large enough systems [18,35].
The two- and three-dimensional scenarios may be compatible
if the correlation length ξ , which depends on the material
properties in three dimensions, is weakly dependent on them
in two dimensions, as we observed in a model system [42], so
that the corr-FET prediction reduces to the FET one. Alterna-
tively, the defect picture may be relevant in three dimensions,
not two. In this respect, it is worth noticing that size effects
on sound attenuation are much stronger in two [31] than in
three dimensions [18,32]. This question might be addressed
by investigating the nonphononic field in two-dimensional
systems.

Our findings highlight a similarity between the behavior of
sound attenuation and the dynamical heterogeneities observed
in supercooled liquids [43]. In the case of phonon attenua-
tion, we observed that particles with an attenuation parameter

exceeding a certain threshold initially localize in specific re-
gions, which gradually expand over time to encompass the
entire system. Likewise, in supercooled liquids, particles that
move beyond a microscopic threshold during relaxation also
localize in specific regions that grow over time and eventually
encompass the entire system. Furthermore, as we have found
attenuation correlates with QLMs, relaxation has been shown
to correlate with QLMs [36]. Since sound attenuation oc-
curs in the linear response regime, this analogy indicates that
dynamical heterogeneities may have a reversible component
associated with particles’ vibrations. It explains why they are
not an optimal proxy of structural relaxation [44,45].
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