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Anti-aligning interaction between active particles induces a finite wavelength
instability: The dancing hexagons

Daniel Escaff
Universidad de los Andes, Chile, Avenida Monseñor Álvaro del Portillo No 12.455, Las Condes, Santiago 7620060, Chile

(Received 29 July 2023; revised 15 October 2023; accepted 11 January 2024; published 6 February 2024)

By considering a simple model for self-propelled particle interaction, we show that anti-aligning forces induce
a finite wavelength instability. Consequently, the system exhibits pattern formation. The formed pattern involves,
let us say, a choreographic movement of the active entities. At the level of particle density, the system oscillates
between a stripe pattern and a hexagonal one. The underlying dynamics of these density oscillations consists of
two counterpropagating and purely hexagonal traveling waves. They are assembling and disassembling a global
hexagonal structure and a striped lineup of particles. This self-assembling process becomes quite erratic for
long-time simulations, seeming aperiodic.
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I. INTRODUCTION

The capability of out-of-equilibrium entities to exhibit col-
lective behaviors has captured the attention of scientists for
decades. For example, the appropriate coupling of out-of-
equilibrium oscillators may lead to synchronization, where the
collective oscillates as a single oscillator. In 1975, Kuramoto
[1,2] proposed a phase equation that traps the main features
of synchronization near the critical point where the system
starts to self-organize. This model has become one of the main
paradigms of out-of-equilibrium self-organization [3–6].

Another paradigmatic example is the chemical origin of
morphogenesis. Reacting chemical species may undergo a
finite wavelength instability of their densities, forming spa-
tially structured patterns. Earlier reported by Zeldovich [7],
this mechanism became popular after the works of Turing [8]
and, later, the Brussels school [9]. Afterward, the idea of finite
wavelength instabilities (first used in the context of hydrody-
namics [10]) has been applied to many different systems, such
as nonlinear optic [11] or population dynamics [12,13], just to
mention some examples (see Ref. [14] for a comprehensive
review).

In the context of active matter, the starting paradigm is
Vicsek’s model [15]. It is a simple model that captures the
essential features of the flocking transition, that is, how a set
of self-propelled entities can synchronize to move in unison.
It is simple for numerical studies but complicated for analyti-
cal investigations. Consequently, during the 2000s, there was
much debate about the nature of the flocking transition: Is it a
first- or second-order transition [16]? In fact, Vicsek’s model
has strong size effects; it is pretty sensitive to discretization
(it is a discrete-time stochastic dynamics) and how noise is
introduced. More recently, a kinetic theory for Vicsek-type
microscopic rules has been developed [17,18].

Here, we will consider a Kuramoto-type of interaction,
sometimes called a continuous-time variant of Vicsek’s model
[19], which is more suitable for analytical explorations. For
aligning interaction, this model exhibits a zero wave number

(or infinite wavelength) instability that leads to flocking transi-
tion [19,20]. It is a second-order transition for large interaction
ranges, leading to a spatially uniform flux. While for short
interaction ranges, the transition becomes first order, leading
to clusterization [20]. The last process might be related to a
spinodal decomposition similar to the one reported for Vic-
sek’s model [21]. Furthermore, this model can exhibit pattern
formation if a density-dependent speed is considered [19]; the
formation mechanism is highly nonlinear and is not associated
with linear instabilities. These patterns might be related to the
ones observed in a lattice variant of Vicsek’s model [22]. On
the other hand, finite wavelength instabilities can be observed
in conservative generalizations of this interaction [20] (which
induce cohesive forces). The transition is highly subcritical,
leading to a spinodal decomposition that ends in a single
self-propelled cluster. Moreover, apolar generalizations of this
type of interaction lead to the formation of counterpropagat-
ing clusters, which collide, behaving as dissipative solitons
[23]. In addition, including a phase shift in the Kuramoto-
like interaction term, the system may form self-propelled
chimeras [24]. Furthermore, by considering chiral Kuramoto-
type active particles with randomly distributed frequencies,
synchronized rotations have been observed, and opposite chi-
rality cooperation of particles [25]. It is worth mentioning that,
using a similar velocity-aligning force, it has been reported
that simple Brownian particles (non-self-propelled particles,
which are just driven by fluctuations) can also exhibit collec-
tive motion [26].

In this paper, we will address the case of anti-aligning
interaction (some kind of antiferromagnetic interaction, if
the magnetic analogy applies). Although one may specu-
late that no macroscopic self-organization is expected, there
is evidence that antisynchronous interactions might lead to
the formation of oscillatory patterns in out-of-equilibrium
systems. For instance, a mixed population of globally cou-
pled Kuramoto oscillators, ones with synchronous coupling
(conformists) and the others with antisynchronous one (con-
trarians), might exhibit surprising self-organized behaviors,
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as the formation of an oscillatory phase [27]. In the context
of Vicsek’s model, including anti-alignment as fluctuations
may induce a zero wave-number Hopf bifurcation, leading to
oscillating time-dependent flockings [28]. Another example
is the case of lattices of Wood-type [29] three-state stochastic
oscillators. Although waving patterns can be observed in such
lattices for synchronous interactions [30], antisynchronous
coupling induces a finite wavelength instability, which leads
to the formation of traveling waves [31].

The paper is organized as follows. In Sec. II, we show that
the Kuramoto-type model has a finite wavelength instability
for negative coupling (anti-aligning interaction). The instabil-
ity takes place with a nonzero imaginary part of the critical
modes (it is a type-Io instability in the Cross-Hohenberg
nomenclature [14]). In Sec. III, we present some numerical
observations above the instability. The formed pattern con-
sists of two counterpropagating hexagonal traveling waves,
which are assembling and disassembling a global hexagonal
structure and a striped lineup of particles. Because of this
choreographic movement of the active particles, we call this
dissipative structure the dancing hexagons. In Sec. IV, we an-
alyze the spatiotemporal dynamics of the dancing hexagons,
showing that the self-assembling process is quite erratic in
time, seeming aperiodic. In Sec. V, we perform a brief numer-
ical exploration in Vicsek’s model, finding dancing hexagons
for anti-aligning interaction. In Sec. VI, we present our con-
clusions, remarks, and future perspectives.

II. FINITE WAVELENGTH INSTABILITY
FOR ANTI-ALIGNING INTERACTION

Let us consider a set of N self-propelled particles, charac-
terized by their positions {�rl}N

l=1 (in two dimensions), and the
orientation angles {θl}N

l=1. Each particle moves with a constant
speed v in the direction θ̂l = (cos θl , sin θl ), and obeys the
equations of motion

�̇rl = vθ̂l , (1)

θ̇l = a

πσ 2

∑
�r j∈Dσ (�rl )

sin(θ j − θl ) + √
ηξl (t ), (2)

where Dσ (�r ) represents a circular domain of radius σ and
centered in the position �r. ξl (t ) are independent Gaussian
white noises, 〈ξl (t )〉 = 0 and 〈ξ j (t ′)ξl (t )〉 = δ jlδ(t ′ − t ). η is
the noise intensity. The parameter a is related to the coupling
strength, normalized by the area of the circle.

Aligning forces are characterized by a > 0. That is, for
the pair {l, j} interaction, the configuration θ j − θl = 0 is an
attractor, while θ j − θl = ±π is repulsive. For that reason,
this type of interaction promotes a global flocking [19,20].
On the other hand, anti-alignment tendencies are related to
a < 0 (attractive θ j − θl = ±π and repulsive θ j − θl = 0). In
this paper, we will focus on the last case.

At the macroscopic level, the system may be described by
the particle density

n(�r, θ, t ) =
N∑

l=1

δ(�rl (t ) − �r)δ(θl (t ) − θ ). (3)

Neglecting the inherent fluctuations of a finite N ensemble
(which typically scales as

√
N), the interaction term may be

approached by its mean value∑
�r j∈Dσ (�rl )

sin(θ j − θl )

=
∫
Dσ (�r )

d2r′
∫ 2π

0
dθ ′n(θ ′, �r ′, t ) sin(θ ′ − θ )

≈ N
∫
Dσ (�r )

d2r′
∫ 2π

0
dθ ′ρ(θ ′, �r ′, t ) sin(θ ′ − θ ),

where ρ corresponds to the one-particle probability distribu-
tion. At this level of approximation ρ satisfies the nonlinear
Fokker-Planck equation

∂ρ

∂t
= −vθ̂ · �∇�r ρ + η

2

∂2ρ

∂θ2
− ∂

∂θ
{ρT ρ}, (4)

where θ̂ = (cos θ, sin θ ) and

T ρ = aN
∫
Dσ (�r)

d2r′

πσ 2

∫ 2π

0
dθ ′ρ(θ ′, �r′, t ) sin(θ ′ − θ ).

The asynchronous state is represented by the uniform dis-
tribution

ρ = 1
2πA ,

where A is the area occupied by the system. Introducing a
perturbation in the Fourier space

ρ(θ, �r, t ) = 1
2πA + ε̄ exp(λ(k)t + i�k · �r)�(θ ),

with k = |�k|, and linearizing respect to the small perturbation
parameter ε̄, it is obtained a eigenvalues problem to compute
the λ(k) spectrum [20],

(L0 − ivkL1)� = λ(k)�, (5)

L0 is diagonal in the basis {eimθ }∞m=−∞,

L0eimθ = λ[0]
m (k)eimθ ,

with the eigenvalues

λ[0]
m (k) = −η

2
m2 + n0a

(
J1(kσ )

kσ

)
(δm,1 + δm,−1), (6)

where n0 = N/A is the global density, and J1 is a Bessel
function of the first kind. On the other hand,

L1eimθ = (ei(m+1)θ + ei(m−1)θ )/2,

where, without loss of generality, we have defined the orien-
tation angle θ respect to de direction �k.

Therefore, the asynchronous state is stable if Re[λ(k)] � 0
for any value of the wave number k. For k = 0, the λ(k) spec-
trum corresponds to Eq. (6), and λ

[0]
0 (0) = 0 always, which

is related to the conservation of the number of particles. For
aligning interaction a > 0, the modes m = ±1 destabilize for
k = 0 and n0ac = η, leading to flocking transition [20].

A finite wavelength instability occurs when Re[λ(k)] be-
comes positive for a values k �= 0, and remains negative for
the rest. It does not happen for aligning interaction a > 0
[19,20]. Although conservative generalizations of this inter-
action might induce this type of instabilities for a > 0 [20],
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FIG. 1. λ[0]
m (k) from Eq. (6), for m = ±1 and m = 0. σ = 20 η =

0.5, and n0a = n0ac − 0.1, with n0ac
∼= −3.78. The dashed curve

corresponds to the parabolic approximation ε(k) defined by Eq. (9).

they involve cohesive forces that bring about a highly subcrit-
ical transition, which leads to a spinodal decomposition that
always ends in a single self-propelled cluster.

Here, we will explore the possibility of finite wavelength
instabilities for the case of anti-aligning interaction a < 0.
Taking a as the control parameter, the critical condition is

a = ac ⇒ Re[λ(kc)] = 0 and Re[λ(k)] < 0 ∀k �= kc,

which implies that Re[λ(kc)] is a maximum,

∂Re[λ(k)]

∂k

∣∣∣∣
k=kc

= 0 and
∂2Re[λ(k)]

∂k2

∣∣∣∣
k=kc

< 0.

A. Without self-propulsion

For v = 0, the λ(k) spectrum corresponds to Eq. (6). Here,
the modes with m �= ±1 do not depend on the wave number k.
Therefore, only the modes with m = ±1 can destabilize. For
anti-aligning interaction a < 0, λ

[0]
1 (0) < 0 always. However,

as shown in Fig. 1, the system may undergo a finite wave-
length instability.

At the critical point

λ
[0]
1 (kc) = 0 and ∂λ

[0]
1 (k)
∂k

∣∣∣
k=kc

= 0,

which are equations to determine kc and ac. The critical wave
number, then, satisfies the equation

J2(kcσ ) + 2J1(kcσ )

kcσ
− J0(kcσ ) = 0,

which must be solved numerically, obtaining

kc = γ

σ
with γ ∼= 5.13562. (7)

Hence, the critical condition takes the form

n0ac

η
= kcσ

2J1(kcσ )
∼= −7.59975. (8)

Near the instability and close to the critical wave number, we
may approach the spectrum by the parabola

λ
[0]
1 (k) ≈ ε(k) = −Cn0(a − ac) − η

4 [(k − kc)σ ]2, (9)

where C = −J1(kcσ )/(kcσ ) ∼= 0.066. Figure 1 shows how
this parabolic approximation (dashed curve) fits with λ

[0]
1 (k).

B. With self-propulsion

1. Diffusive effect of the speed for arbitrarily large
wavelength perturbations

Now, all the modes may depend on the wave number
k. λ

[0]
0 (k) is zero only for k = 0. If its real part becomes

positive for arbitrary small k (or arbitrary large wavelength),
the system typically develops a coarsening dynamics, where
the active particles tend to form a single cluster [32]. It is
counterintuitive that anti-aligning interaction, without cohe-
sive forces, will lead to this type of behavior. To discard it,
let us consider the effect of a small k in the mode m = 0
perturbatively.

To do this, we introduce the inner product

〈φ |ψ〉 = 1

2π

∫ 2π

0
φ(θ )∗ψ (θ )dθ,

and the Dirac notation

eimθ = |m〉 ⇒ 〈m|m′〉 = δm,m′ .

Then, the linear problem (5), for the mode m = 0, can be
written as

(L0 − ivkL1)
∞∑

n=0

|φ[n]〉 = (
λ

[1]
0 + λ

[2]
0 + . . .

) ∞∑
n=0

|φ[n]〉,

where,

L0 =
∞∑

m=−∞
λ[0]

m (k)|m〉〈m|,

L1 = 1

2

∞∑
m=−∞

(|m + 1〉〈m| + |m − 1〉〈m|),

and |φ[n]〉 ∼ λ
[n]
0 ∼ kn.

Then, the order zero gives

L0|φ[0]〉 = 0 ⇒ |φ[0]〉 = |0〉.
The first order gives

L0|φ[1]〉 = [
λ

[1]
0 + ivkL1

]|φ[0]〉.
Hence,

λ
[1]
0 = −ivk〈0|L1|0〉 = 0 ⇒ |φ[1]〉 = ivk

2λ
[0]
1 (0)

(|1〉 + |−1〉).

The second order gives

L0|φ[2]〉 = λ
[2]
0 |φ[0]〉 + ivkL1|φ[1]〉.

And then,

λ
[2]
0 = −ivk〈0|L1|φ[1]〉 = −

(
v2

η − n0a

)
k2. (10)

Therefore, near k = 0, and for anti-aligning interaction
a < 0, the m = 0 mode exhibits the diffusion spectrum λ ≈
−Dk2, with D > 0. That is, large-wavelength perturbations
are stabilized.
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2. Finite wavelength instability for low speed

Now, we will analyze the effect of the speed v in the finite
wave instability. More precisely, we will perturb the critical
point obtained in the previous section, taking v ∼ ε(k). In this
case, the linear problem (5) can be written as

[Lc
0 + (ε(k)�L0 − ivkcL1)]|�〉 = λ(k)|�〉,

where

Lc
0 = −η

2

∞∑
m=2

m2(|m〉〈m| + | − m〉〈−m|)

is the linear operator at the critical point for zero speed. That
is, at

a = ac ⇒ λ
[0]
±1(kc) = λ

[0]
0 (kc) = 0.

And

�L0 = |1〉〈1| + |−1〉〈−1|.
Then, we expand

|�〉 = |φ(0)〉 + |φ(1)〉 + |φ(2)〉 + . . . ,

λ(k) = λ(1)(k) + λ(2)(k) + . . . ,

where |φ(n)〉 ∼ λ(n) ∼ vn ∼ ε(k)n. Notice that we have not
considered the order zero in λ because we are perturbing the
critical point. The order zero gives

Lc
0|φ(0)〉 = 0 ⇒ |φ(0)〉 = β1|1〉 + β0|0〉 + β−1|−1〉.

The first order gives

Lc
0|φ(1)〉 = [λ(1)(k) − (ε(k)�L0 − ivkcL1)]|φ(0)〉 = |b(1)〉.

Hence, in the first order, we must impose the solvability con-
ditions

〈1|b(1)〉 = 0, 〈0|b(1)〉 = 0 and 〈−1|b(1)〉 = 0,

which lead to the eigenvalues problem⎛
⎝ ε(k) − ikcv

2 0
− ikcv

2 0 − ikcv
2

0 − ikcv
2 ε(k)

⎞
⎠

⎛
⎝ β1

β0

β−1

⎞
⎠ =λ(1)(k)

⎛
⎝ β1

β0

β−1

⎞
⎠.

Therefore, it is obtained

λ
(1)
1 (k) = ε(k), (11)

λ
(1)
± (k) = ε(k)

2
± i

√
(kcv)2

2
−

(
ε(k)

2

)2

, (12)

with the eigenvectors

|φ(0)〉1 = |1〉 − | − 1〉,

|φ(0)〉± = |1〉 − ikcv

λ
(1)
± (k)

|0〉 + | − 1〉.

Therefore, at least for low speed, the instability always
involves the conjunction of three modes. In contrast with the
case of non-self-propelled particles, here, the mode m = 0 is
always excited during the finite wavelength instability.

Figure 2 compares the perturbation theory and a numerical
computation of the λ(k) spectrum for low speed. To wit, we
have solved the eigenvalues problem (5) in the truncated basis

FIG. 2. Computations of the λ(k) spectrum near criticality for
low speed v = 0.1, and: (top) below criticality n0a = n0ac + 0.1;
(middle) critical point n0a = n0ac; (bottom) above criticality n0a =
n0ac − 0.1, with n0ac

∼= −3.78. Other parameters as in Fig. 1. Con-
tinuous lines correspond to solutions of the eigenvalues problem (5)
in the truncated basis {eimθ }10

m=−10. Dashed lines correspond to the
perturbation theory estimations (11) and (12).

{eimθ }10
m=−10. Both approaches show a good agreement near the

instability and close to the critical wave number.
Furthermore, at the critical point, the instability takes place

with the oscillatory frequency

ω ≈ kcv√
2

+ O(v3), (13)

that is, it corresponds to the type Io in the Cross-Hohenberg
classification of instabilities [14].

3. Finite wavelength instability for arbitrary speed

For arbitrary speed, we have computed the λ(k) spectrum
by solving the eigenvalues problem (5) in the truncated basis
{eimθ }M

m=−M . Figure 3 displays the typical form of the spectrum
above the instability. It shows the same features as for low
speed, the confluence of three modes, two of them with a
nonzero imaginary part. That is, it is a type Io instability.
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FIG. 3. Numerical computation of the λ(k) spectrum in the
truncated basis {eimθ }10

m=−10 with n0a = −12, v = 2.5, σ = 20, and
η = 1.

Far from criticality, as shown in Fig. 4, the intricate split-
ting structure of the λ(k) spectrum branches might occur
inside the band of unstable wave numbers. Nevertheless, close
to the critical point, the instability shows again the same
features (see dashed lines in Fig. 4).

However, the branch that starts from λ(k = 0) = 0 quickly
falls down for high speed. The top panel of Fig. 5 displays this
phenomenon. It can be attributed to the diffusive effect of the
speed, which tends to disorder the particles. In fact, the dashed
curve in the top panel of Fig. 5 corresponds to the perturbative
estimation (10). Hence, in this high-speed case, the instability
involves only two modes. As shown in the middle panel of
Fig. 5, at the critical wave number kc, the unstable eigenvalues
have a nonzero imaginary part. Therefore, it is still a type-Io

instability.
Furthermore, expanding the eigenfunction � in the basis

{eimθ }∞m=−∞,

� =
∞∑

m=−∞
βmeimθ , (14)

FIG. 4. Numerical computation of the λ(k) spectrum in the trun-
cated basis {eimθ }10

m=−10 with v = 1, σ = 20, and η = 0.5. Continuous
lines correspond to n0a = −12, while dashed lines to n0a = −4.5.

FIG. 5. Numerical computation of the λ(k)-spectrum in the trun-
cated basis {eimθ }15

m=−15 for high speed v = 17. Other parameters are
n0a = −20, σ = 20, and η = 0.5. (Top) λ(k) spectrum, the dashed
curve corresponds to the perturbative estimation (10). kc

∼= 0.2521.
(Middle) Eigenvalues at kc. (Bottom) |βm|, as defined in Eq. (14), for
the unstable eigenvalues shown in the middle panel.

one may estimate the coefficients βm by using the truncation
approach. Notice that the β coefficients associated with both
unstable eigenvalues have the same module. The bottom panel
of Fig. 5 shows our results for the most unstable wave number
kc (also showing that the truncation with M = 15 is pretty
conservative). That is, we are displaying |βm| for the unstable
eigenvalues shown in the middle panel. Here, again, the mode
m = 0 is strongly excited during the instability.

III. NUMERICAL OBSERVATIONS ABOVE
THE INSTABILITY

In this section, we present some numerical observations
above the instability. To wit, we have simulated the equa-
tions of motion (1) and (2), using an Euler-Maruyama method,
in a square box of size L = 100 with periodic boundary con-
ditions and null-flux boundary conditions. For the null-flux,
we have considered a perfect reflection of the particles in the
walls.
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FIG. 6. (Top) Non-self-propelled particles v = 0, other parame-
ters are n0a = −12, σ = 20, η = 0.5, N = 4000, and dt = 0.05. The
system is initialized with randomly distributed positions and polar-
izations. The top-left panel shows the particle’s position in the box,
and the top-right panel shows the θ -angle distribution in a unitary
circle after a time t ∼ 104 has elapsed from the initial condition.
(Bottom) Same as top panels, but with v = 0.1. The initial condition
is the state shown in the top panels, and �t is the time elapsed from
this initial condition.

A. Periodic boundary conditions

Let us start exploring the case v = 0. Here, there is no
movement of the particles; therefore, the initial spatial distri-
bution of particles is preserved during the system evolution.
It is like a disordered lattice. The top panel of the Fig. 6
shows the steady state of this non-self-propelled system for
parameters above the finite wavelength instability. The system
has been initialized with randomly distributed positions and
orientations; after a transient, the particle polarizations form a
stripe pattern. This configuration seems static (except by small
fluctuations) for long-time simulations (t ∼ 104). Notice that
the pattern wave number k = 8π/L ∼= 0.251 is inside the band
of unstable wave numbers k ∈ [0.202, 0.328].

The bottom panels of Fig. 6 display the effect of adding
a low speed to the particles in the static stripe pattern. Due
to the movement, the particles begin forming clusters with
mostly the same polarization. These clusters self-organize in
hexagonal configurations. The new pattern becomes clearer
after a long transient (t ∼ 104). Figure 7 shows it. The system
forms a neat hexagonal structure, where the active particles

FIG. 7. Same as bottom panels of Fig. 6, but after a long transient
t0 ∼ 104. �t = t − t0.

perform some kind of dance alternating between a hexagonal
configuration of clusters and a striped lineup of clusters.

For v = 1 the formed pattern is quite similar, as shown
in Fig. 8, where we reinitialized the system with randomly
distributed positions and orientations. Here, again, the system
forms a hexagonal structure, where the active particles are
switching between a hexagonal configuration of clusters, a
hexagonal configuration of empty sites, and a striped lineup
of clusters. The stripe patterns always take place in one of
the three crystal lines of the hexagonal net, which seems to
have a quite stable orientation. The underlying dynamics of
this kind of standing wave consists of the superposition of two
counterpropagating and purely hexagonal traveling waves.
They are assembling and disassembling a global hexagonal
structure and a striped lineup of particles. MOV1 in the Sup-
plemental Material [33] shows it. During the self-assembling
process, the propagation direction of the counterpropagating
hexagonal waves changes. These changes seem quite erratic,
as discussed in the next section. Moreover, the hexagonal
configuration of empty sites is an intermediate step between

FIG. 8. Same as Figs. 6 and 7, except that v = 1. The system has
been initialized with randomly distributed positions and orientations;
after a transient t0 ∼ 103, particle positions are shown at different
�t = t − t0.

024602-6



ANTI-ALIGNING INTERACTION BETWEEN ACTIVE … PHYSICAL REVIEW E 109, 024602 (2024)

FIG. 9. Simulation with v = 17, n0a = −20, σ = 20, η = 0.5,
and dt = 0.01. The system has been initialized with randomly dis-
tributed positions and orientations; after a transient t0 ∼ 102, particle
positions are shown at different �t = t − t0.

the global hexagonal net and the particle’s lineup, which only
sometimes appears because the reassembling might occur in
the same crystalline line where the lineup takes place. As
we discuss in the next section, here, again, the selected wave
number is inside the band of unstable wave numbers.

Furthermore, we have observed similar dancings in many
of our numerical explorations in the parameters space. How-
ever, the two counterpropagating hexagonal waves do not
seem to dance in other cases. For example, the formed pattern
has a more regular behavior in time for high speed. Figure 9
displays it. The system is switching between stripe patterns
with different orientations. The underlying dynamics is, again,
related to two counterpropagating hexagonal waves (with a
higher dispersion of particles in this case). Here, however,
they do not seem to change their propagation direction. Since
the dancing hexagons are the most intricate nonequilibrium
structure formed after the instability, we will focus on them
for the rest of the paper.

B. Null-flux boundary conditions

Null-flux boundary conditions may preclude the counter-
propagation of the hexagonal waves. It is worth noticing,
however, that the finite wavelength instability does not depend
on the boundary conditions. They may affect, at most, the
wave-number selection. Figure 10 displays a simulation for
the same parameters and initial condition as Fig. 8 but with
null-flux boundary conditions. The formed pattern is pretty
defective. In the movie (MOV2 in the Supplemental Material
[33]), it is possible to appreciate its dynamics. There are still
two counterpropagating hexagonal waves colliding with the
walls, precluding the system from reaching the same level
of synchrony as in the case of periodic boundary conditions.
Nevertheless, the phenomenon is still there.

FIG. 10. Same as Fig. 8, but with null-flux boundary conditions.

IV. SPATIOTEMPORAL PATTERN DYNAMICS

In this section, we propose an approach to characterize the
dynamics of dancing hexagons.

A. Spatial structuring

Let us consider the coarse-grained density of particles,

N�(�r, t ) =
∫ x+�/2

x−�/2

∫ y+�/2

y−�/2

dx′dy′

�2

∫ 2π

0
n(�r ′, θ, t )dθ, (15)

with the density n(�r, θ, t ) defined as in Eq. (3), and �r = (x, y).
It is worth noticing that, neglecting the fluctuations inside

the grains, we may approach

N�(�r, t ) ≈ N
∫ 2π

0
ρ(�r, θ, t )dθ,

expanding

ρ(�r, θ, t ) =
∞∑

m=−∞
Pm(�r, t )eimθ ,

it is obtained

N�(�r, t ) ≈ 2πNP0(�r, t ).

Therefore, the excitation of the mode m = 0 seems to be
crucial for observing spatial structuring. Otherwise, we may
only observe polarization patterns, as in the case of zero speed
v = 0 (as, for example, in the top panel of Fig. 6).

Then, we introduce the normalized Fourier transform of
(15),

F�(�k, t ) = 1

N

∫ L

0

∫ L

0
N�(�r, t )ei�k·�rdxdy, (16)

and

f�(�k, t ) = |F�(�k, t )|. (17)

Figure 11 shows f�(�k, t ), and compares with the spatial par-
ticles distribution.

For the parameters shown in Fig. 11 [where we used the
same numerical data as in Fig. 8 and MOV1 in the Supple-
mental Material [33], the system selects, let us say, the wave
vector

�k1 = (6π/L,−6π/L),

together with the resonant ones, �k2 (a rotation on 2π/3 of
�k1) and �k3 (a rotation on 4π/3 of �k1). That is, a resonant
triad �k1 + �k2 + �k3 = 0. These three modes are equally excited
when assembling the global hexagonal structure. The hexag-
onal structure of peaks exhibited by f�(�k, t ), and shown in
the top panel of Fig. 11, corresponds to the tips of the six
vectors ±�k j , with j = 1, 2, 3. In contrast, during the lineups,
one mode dominates over the other two. For instance, in the
bottom panel of Fig. 11, the dominant mode is �k3. Moreover,

k = |�k1| = |�k2| = |�k3| ∼= 0.267

is inside the band of unstable wave numbers k ∈
[0.203, 0.326].

The right panels of Fig. 11 compare the spatial particle
distribution and a reconstructed density from the dominant
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FIG. 11. (Left) Density plots of f�(�k, t ), as defined in Eq. (17),
for � = 5. (Right) The states that are related to the Fourier trans-
forms showing in the left panels. We have used the same numerical
data that we used in Fig. 8 and movie (MOV1 in the Supplemental
Material [33]).

Fourier modes, that is, once the high harmonic components
are filtered. It gives a good picture of the patterns that the
system forms in a given time. Figure 12 displays the time evo-
lution of the module of the amplitudes related to the vectors
of the resonant triad. These amplitudes oscillate, switching
between one predominant amplitude (stripes) to three equally
likely amplitudes (hexagons). The amplitudes oscillation be-
comes quite erratic for longer time simulations, seeming to be
aperiodic.

FIG. 12. Amplitudes extracted from the Fourier transform of
the coarse-grained spatial density (peaks of f�(�k, t ), as defined in
Eq. (17), with � = 5) for the same numerical data used in Fig. 8 and
movie (MOV1 in the Supplemental Material [33]).

FIG. 13. Geometrical average of the amplitudes, as defined in
Eq. (18), for the same numerical data used in Fig. 12 (notice that
we are showing a larger time window).

Denoting by Aj the amplitude related to the wave vector �k j ,
with j ∈ {1, 2, 3}, one may compute the geometrical average

A = 3
√

|A1A2A3|. (18)

Figure 13 shows it. As larger as A is, the three amplitudes are
more similar (hexagons), while the smaller A are related to a
dominant amplitude (stripes).

B. Polarization dynamics

Now, we will consider the normalized coarse-grained den-
sity of orientational angles,

ϑδ (θ, t ) = 1

N

∫ θ+δ/2

θ−δ/2
dθ ′

∫ L

0

∫ L

0
dx′dy′n(�r ′, θ ′, t ), (19)

which may be described by the vector

�ϑδ (θ, t ) = ϑδ (θ, t )θ̂ = (ϑx, ϑy), (20)

where θ̂ = (cos θ, sin θ ). Figure 14 displays lobules that rep-
resent these coarse-grained polarization distributions. More
precisely, a lobule corresponds to the curve described by �ϑδ (θ )
as we move θ .

The lobules rotate in time, also changing their elongation.
To characterize this movement, we have used the inertia tensor

FIG. 14. The two counterpropagating hexagons forming (left)
the global hexagonal network and (right) a striped lineup. Beside
each configuration, it is shown �ϑδ (θ, t ) = (ϑx, ϑy ), as defined in
Eq. (20), with δ = π/12. We have used the same numerical data that
we used in Fig. 8 and movie (MOV1 in the Supplemental Material
[33]).
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FIG. 15. ��(t ) = (�x, �y ), as defined in Eq. (21), with δ =
π/12. The different tonalities of the time series correspond to time
windows of: the first �T = 87.6 (periodic movement); and after
�T = 100 (erratic burst). Since the sign of ê− can be arbitrarily
settled, we have chosen the one that gives continuity to the time
series. We have used the same numerical data that we used in Fig. 8
and movie (MOV1 in the Supplemental Material [33]).

formalism; that is, we have defined the inertialike matrix

I =
∑
θ∈�

(
ϑ2

x −ϑxϑy

−ϑxϑy ϑ2
y

)
,

where � represents all the points of the discretization (2π/δ

in this case). Then, we solve the eigenvalues problem

I ê± = �±ê±,

where �+ is the largest eigenvalue, while �− is the lowest
one (noting that I is positive defined). The unitary vectors
ê± are, then, the principal axis of the lobule. The direction
of maximum elongation is related to the lowest inertial-like
momentum, that is, with the axis ê−. On the other hand, the
elongation may be quantified by the largest inertial-like mo-
mentum �+ (the resistance to a hypothetical rotation around
ê+). Therefore, we define the order parameter

��(t ) = �+ê− = (�x,�y). (21)

Figure 15 displays the time evolution of ��(t ), showing a
pretty intricate movement. Initially, it seems a periodic move-
ment (complicated but periodic); however, as time runs (note
the change in the tonality), the lobule dynamics undergoes
a turbulent burst, where its movement becomes quite erratic.
The last event is a signature of intermittence.

FIG. 16. �+ versus A [as defined in Eq. (18)], for the same nu-
merical data used in Fig. 8 and MOV1 in the Supplemental Material
[33].

Moreover, the lobules’ shape suggests that the level of
anti-alignment synchrony (how many particles are in anti-
alignment) is lower when the system forms the global
hexagonal configuration. In fact, as shown in Fig. 14, the
lobule looks more elongated when the particles are forming
the striped lineup. Note that �+ is a measurement of such kind
of out-of-equilibrium antiferromagnetic ordering (how elon-
gated is a lobule). Figure 16 shows �+ versus the geometric
average of the amplitudes A [as defined in Eq. (18)]. There-
fore, the level of anti-alignment synchrony is lower in the
global hexagonal configuration, probably because the changes
in the counterpropagation direction (along the different crys-
talline lines) occur when the system forms such configurations
(see the rotation of �� in Fig. 15).

V. BRIEF NUMERICAL EXPLORATION
IN THE VICSEK’S MODEL

Although none of the analytical findings we have found
for the Kuramoto-like dynamics are directly accessible for
Vicsek’s model, we may test if anti-aligning interaction in-
duces similar behaviors. To do it, we consider the original
version of this model, that is, with the same discretization,
updates, and noise [15]. But, we modified the interaction term
to incorporate anti-aligning interaction. More precisely, we
consider the discrete evolution of the orientation angles and
positions,

θl (t + 1) = Fl + �θl (22)

�rl (t + 1) = �rl (t ) + vθ̂l (t + 1), (23)

where �θl is a random variable uniformly distributed in
[−η/2, η/2]. For the interaction term, we have considered

Fl = 〈θ (t )〉Dσ [�rl (t )] + π,

where the first term corresponds to the average angle, in the
circular domain Dσ [�rl (t )], computed accordingly with the
Vicsek’s prescription [15]. Therefore, we have only summed
π to Vicsek’s original interaction term. That is, the particle
tends to anti-align with its around.

As shown in Fig. 17, we have found dancing hexagons in
this model. The movie (MOV3 in the Supplemental Material
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FIG. 17. Numerical simulation of the equations of motion (22)
and (23), for v = 0.05, η = 0.2, σ = 2, and N = 4000, in a square
box of size L = 10 with periodic boundary conditions. The system
is initialized with randomly distributed positions and orientations;
after a transient t0 ∼ 105, particle positions are shown at different
�t = t − t0.

[33]) displays its dynamics, which looks quite similar to the
one exhibited by the Kuramoto-like model (see MOV1 in the
Supplemental Material [33]). Furthermore, the system selects
the same wavelength, perhaps, because we used the same ratio
σ/L.

Figure 18 shows ��, as defined in Eq. (21), computed for
the dancing hexagons of the Vicsek’s model. The �� trajectory
looks more dispersed than in the case of the Kuramoto-like
model, perhaps because of the discrete-time dynamics. Notice
that we have emphasized a single rotation of the �� vector.
As in the Kuramoto-like model, the �� vector does not always

FIG. 18. ��(t ) = (�x, �y ), as defined in Eq. (21), with δ =
π/12, for the Vicsek’s model (22) and (23). We have used the same
numerical data that we used in Fig. 17 and movie (MOV3 in the
Supplemental Material [33]). Since the sing of ê− can be arbitrarily
settled, we have chosen the one that gives continuity to the time
series.

show a neat rotation, instead remaining in the same direc-
tion of counterpropagation for a long time (the denser zones
in the Fig. 18). Furthermore, for other parameters, the two
hexagonal waves merely counterpropagate without dancing,
periodically assembling and disassembling a stripe pattern.

VI. CONCLUSIONS AND FUTURE PROSPECTS

In summary, we have found that anti-aligning interac-
tion induces a finite wavelength instability. The instability
takes place with a nonzero imaginary part of the criti-
cal modes of the λ(k) spectrum (it is a type-Io instability
in the Cross-Hohenberg nomenclature [14]). Consequently,
the system exhibits pattern formation. The formed pattern
can be described as the dance of two counterpropagating
hexagons. They are assembling and disassembling a global
hexagonal structure and a striped lineup of particles. These
dance steps become quite erratic for long-time simulations,
showing turbulent bursts and seeming aperiodic. We have
observed similar dancings in many of our numerical explo-
rations in the parameters space; however, the global hexagonal
structure’s reassembling might sometimes be shifted. In con-
trast, striped lineups are always pretty neat. Furthermore, for
other parameters, the two hexagonal traveling waves merely
counterpropagate without dancing (as in the high-speed case
documented here), periodically forming the stripe pattern
across the crystalline line of the hexagonal net.

Of course, a more extensive numerical study of pattern
formation must be addressed in future works. Preliminarily,
we have not observed hysteresis in the formed patterns. More-
over, the dancing hexagons’ dynamics suggests the presence
of spatiotemporal chaos. In particular, burst events are usually
related to intermittence. From direct numerical simulations of
the equations of motion (1) and (2), it is hard to distinguish
chaos from noise. A weakly nonlinear analysis may help to
elucidate both the transition to self-organization and the pres-
ence of chaotic attractors.

To end, we performed a brief numerical exploration in
Vicsek’s model, finding dancing hexagons for anti-aligning
interaction. The occurrence of a finite wavelength instability
here still has to be elucidated, perhaps using the Bonilla and
Trenado approach [28], based on Ihle’s kinetic theory [17]. In
fact, they have put forward the general linear stability problem
when anti-alignments appear as fluctuations. It might be easy
to generalize for the model equations (22) and (23). However,
as Bonilla and Trenado pointed out, it seems complicated to
solve for finite wavelengths; in fact, they presented a per-
turbative solution for small wave numbers, finding a zero
wave-number Hopf instability [28]. This type of instability
should be absent in the fully anti-aligning systems considered
here (as shown in Sec. II B 1 for the Kuramoto-like model). At
any rate, it seems a promising line to explore in future works.
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