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Probabilistic measures for biological adaptation and resilience
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This paper introduces an approach to quantifying ecological resilience in biological systems, particularly
focusing on noisy systems responding to episodic disturbances with sudden adaptations. Incorporating con-
cepts from nonequilibrium statistical mechanics, we propose a measure termed “ecological resilience through
adaptation,” specifically tailored to noisy, forced systems that undergo physiological adaptation in the face of
stressful environmental changes. Randomness plays a key role, accounting for model uncertainty and the inherent
variability in the dynamical response among components of biological systems. Our measure of resilience is
rooted in the probabilistic description of states within these systems and is defined in terms of the dynamics of
the ensemble average of a model-specific observable quantifying success or well-being. Our approach utilizes
stochastic linear response theory to compute how the expected success of a system, originally in statistical
equilibrium, dynamically changes in response to a environmental perturbation and a subsequent adaptation.
The resulting mathematical derivations allow for the estimation of resilience in terms of ensemble averages
of simulated or experimental data. Finally, through a simple but clear conceptual example, we illustrate how
our resilience measure can be interpreted and compared to other existing frameworks in the literature. The
methodology is general but inspired by applications in plant systems, with the potential for broader application
to complex biological processes.
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I. INTRODUCTION

Resilience refers to the ability of a system to maintain a cer-
tain degree of functionality in the face of disturbances [1]. In
the seminal work by Holling [2,3], resilience is conceptually
categorized as “engineering” or “ecological.” In engineering
resilience, perturbations are small and the system returns to
an original equilibrium state. Ecological resilience, however,
applies to systems with multiple equilibria and perturbations
that can induce the system to move between different attrac-
tors. Our focus is ecological resilience, in particular applied
to biological systems that operate out of equilibrium and
that respond by sudden adaptations as a result of episodic
disturbances.

Multiple quantitative resilience measures have been pro-
posed for living systems based upon dynamical systems
theory, including linear stability of equilibria, return times,
attractor size and geometry, distance to bifurcation mani-
folds, elasticity, and hysteresis in response to different types
of perturbations: pulses, presses, ramps, deterministic, and
stochastic. See Dakos and Kéfi [1], Angeler and Allen [4],
Yi and Jackson [5], Van Meerbeek et al. [6] for useful re-
views. These measures receive often interchangeable names
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as resilience, resistance, robustness, stability, recovery, mal-
leability, and tolerance. Altogether, these quantities can help
understand how living systems adjust, recover or heal after
perturbations, and account for the degree to which they re-
turn back to an unperturbed state or to transition to another
metastable but viable operating point.

The mathematical framework of preference for quantifying
resilience has been the theory of dynamical systems as in
Guckenheimer and Holmes [7], Krakovská et al. [8], Arnoldi
et al. [9], with random perturbations by Refs. [10,11], or
in networked systems by Refs. [12,13]. Here we argue that
ecological resilience can be better achieved by conceptualiz-
ing the systems of interest as noisy/forced systems, applying
the techniques that occupy the attention of nonequilibrium
statistical mechanics. Such a probabilistic framework will be
conducive to a notion of ecological resilience that emphasizes
persistence and reflects the opportunistic and unpredictable
aspects of change in biological systems. It will measure the
degree to which a system can adapt to a perturbation by
controlling its behavior to increase the probabilities of not
falling into a state of low well-being.

Our argument is based on the observation that the temporal
evolution of observable biological quantities is rich with noise
as a result of the inherent uncertainty in observables and
the variability among individuals, or more generally, subsys-
tems. It also incorporates the epistemic error associated with
incomplete or uncertain model parametrizations. Therefore a
system’s ability to adjust its function to disturbances can be
conceptualized in terms of the effect of the perturbation over
the probability distribution of states and the expected value
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of some measure of well-being. Employing a probabilistic
description of these observables allows for a more nuanced
understanding of these systems, particularly in describing the
living states and behavior that extend beyond the realm of
deterministic dynamics.

We propose a measure of ecological resilience through
adaptation applicable to noisy, forced systems undergoing
environmental perturbations. The goal is to provide a math-
ematical framework in which the dynamic response of the
system to perturbation can be quantified, either from ensem-
bles of models or data realizations. Specifically, we provide a
probabilistic measure of the degree to which a system in sta-
tistical equilibrium can dynamically adapt, recover, or change
equilibrium distribution after an stressful perturbation on the
parameters modeling its environmental conditions. Here, we
use the word “adaptation” in the physiological sense, namely
as the ability of living systems to adjust their dynamics (e.g.,
metabolism) in response to its changing environment. The
degree of “recovery” is conceptualized in terms of a success
function of the state variables designed to model performance,
health, productivity; it is an arbitrary measure of well-being
that the modeler seeks to maintain as high as possible in
average for any given environmental conditions. The prob-
abilistic approach allows, not only for dynamic models of
aleatoric, epistemic or measurement uncertainty (e.g., obser-
vations and parameters in stochastic differential equations),
but also to assess resilience of an aggregate or ensemble
of subsystems exhibiting random variations on their state
variables.

Our formulation uses modern methods in stochastic pro-
cess theory to capture changes in the probabilistic distribution
of the state of a forced/noisy systems that is dynamically
perturbed. Specifically, we rely on linear response theory
to predict how the expected value of the success function
changes in response to environmental disturbances and phys-
iological adaptations. This approach has firm foundations for
both deterministic chaotic dynamical systems [14] and their
stochastic counterpart [15]. Indeed, linear response theory
allows us to compute the system’s response to disturbances
using response operators acting on the unperturbed system,
hence our framework provides practical ways of designing en-
semble experiments from which resilience through adaptation
can be estimated.

Important insights into the intricacies of the effect of dis-
turbances to complex systems have been elucidated through
linear response theory. For example, Held and Kleinen [16],
Lenton et al. [17] showed that the divergence of the response
operator occurs in the proximity of a system to critical be-
havior due to bifurcations. Moreover the presence of very
high sensitivity to perturbations has been showed to be con-
nected to the presence of the so-called critical slowing down,
i.e., the presence of slow decay of correlations [see 18,19].
As shown in Refs. [19,20] both phenomena are due to the
near-prevalence of positive, destabilizing feedbacks over the
negative, stabilizing ones. In other words, adaptation can be
slow and inefficient, which reduces the overall system’s re-
silience.

In the context of ecological resilience, to the best of our
knowledge, this is the first study that applies linear response
theory to perturbations on noisy forced systems. In fact, very

few articles have considered ecological resilience for stochas-
tic systems. The stochastic model of Arnoldi et al. [9], for
example, treats noise as the source of perturbation to a linear
deterministic system and quantifies resilience as the degree
of stochastic variability around the equilibrium point. This
type of analysis, which we call path resilience is not the
focus of the present study. For us, noise is a fundamental
component of the dynamics, and we consider structural pertur-
bations, namely changes to the model parameters. The work
of Ref. [21] shares some similarities with our work but is
much more limited in scope. There, the author investigates
the response of populations interacting via a particular logistic
model to perturbations on intrinsic growth rates. Resilience
in Ref. [21] is not measured with respect to adaptation, but
as a change of the population’s statistical variability per unit
perturbation.

This article focuses on the conceptual and mathematical
basis of ecological resilience rather than on the intricacies of
a given model. The formulation is quite general but inspired
by applications to the quantification of resilience of living
systems, in particular plants and, in principle, should be gen-
eralizable to complex systems comprising multiple biological
processes. Throughout, we highlight along the mathematical
derivations those concepts or processes of plant resilience that
could be modeled by our framework, although application
to real plant-system models is left for future work. For il-
lustration, we use a simple bifurcating stochastic differential
equation to exemplify our notion of resilience, as to not be
encumbered by the complexities of a natural system.

The organization is as follows. In Sec. II, we describe
the model that conceptualizes the dynamics of observables.
These observables are described as time dependent multi-
dimensional probabilistic distributions associated with the
organism function. Section III introduces our measure of
resilient adaptation along with a comparative analysis con-
trasting our proposal with existing methods. In Sec. IV we
carry out the process of quantifying the resilience to adap-
tation to a simple and familiar stochastic dynamics problem
described by a Langevin equation. Finally, in Sec. V we
summarize the proposed measure of resilience to adaptation
measure and discuss the assumptions and conditions required
for its applicability.

II. PRELIMINARIES

We now describe the mathematical framework upon which
ecological resilience through adaptation is formulated. Our
focus is on the temporal dynamics of a state variable X (t ) ∈
RN representing chemical and/or physical variables within
a living system. In the case of plant physiology these could
be the variables involved in a photosynthesis model (e.g.,
water potential, carbohydrate concentrations or flows, chloro-
phyl, stomata aperture). We will also assume that there are
identifiable environmental stressors ε ∈ RP (e.g., solar radia-
tion, ambient temperature, ambient or soil moisture) that have
known or measurable effects on the dynamics of X . The vari-
ables that take on the role of adaptation variables also appear
as parameters in the dynamics of X . We label the adaptation
variables by α ∈ RQ. Our theoretical model for the evolution
of the observable subset of the state variables is a stochastic
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differential equation [22] of the form

dX = Fε,α (X ) dt + σ dWt , t > 0, X (0) ∼ p0. (2.1)

The drift term Fε,α ∈ RN is known for constant values of ε

and α. The incremental Wiener processes dWt has the same
dimensions as Fε,α . The assumed constant σ ∈ RN×N is a
nonnegative symmetric noise amplitude matrix.

Model (2.1) includes two sources of variability in the dy-
namics of X : for any fixed initial starting condition X (0), an
infinite amount of X (t ) histories can be generated (each corre-
sponding to a realization of W ), reflecting the random/noisy
nature of the differential equation itself due to aleatoric or
epistemic error. The other source of variability is encoded in
the initial conditions: To model subsystem variability, we will
assume that X (0) is taken from a known probability distribu-
tion p0 over RN . This aspect of the model accommodates for
variability in the biological system itself (e.g., variability in
leaves of the same plant).

The function Fε,α encodes all the known deterministic reg-
ulatory dynamics of the system. The noise represents random
fluctuations that are present in the dynamics of X and are
modeled by an additive diffusion process which, in this work,
are assumed independent of ε and α although the analysis
can be naturally extended. For current plant function models
at leaf scale [see Refs. 23,24, for example] the state variable
has dimension N ∼ 10 and include concentrations and fluxes
important for carbon assimilation and transpiration, as well as
vascular transport. The environmental variables ε are fewer
and determine atmospheric and soil boundary conditions. The
distinction between the adaptation parameters in α and the
state variables in X is more subtle. Typically, α includes
regulatory or control variables whose dynamics are left out
of Eq. (2.1), because they operate at different length scales,
are poorly understood, or can be deliberately changed in ex-
periments. In the case of plants experiencing water deficit,
for example, regulatory variables include the concentration
abscisic acid, ions of calcium and potassium, and stomatal
aperture [25].

To emphasize the dependence of the system on the pa-
rameters, we denote by Xε,α = {Xε,α (t ) : t � 0} the solution
to Eq. (2.1) for constant values of ε and α. The key to our
proposal is the mean evolution of observables of the process,
namely expectations of the form ES(Xε,α (t )) where S : RN →
R is some measure of success or well-being to be discussed
further below. For now, in what follows, we explain the math-
ematical notation and background required for estimating the
response of ES(Xε,α (t )) to changes in ε and α, in terms of
linear response theory. For details see Ref. [22].

We suppose that that the drift Fε,α (x) in Eq. (2.1) is suf-
ficiently smooth as a function of the state variable x so that
the strong solution to Eq. (2.1) is a diffusion process. We
also assume that Fε,α is differentiable with respect to the
parameters ε and α. For simplicity, we also suppose that the
noise amplitude matrix is diagonal and isotropic σ = σ IN for
some σ > 0. The process Xε,α has an infinitesimal generator

Lε,α[S] = Fε,α · ∇S + σ 2

2
∇2S, (2.2)

for all functions S in the domain Dom(Lε,α ) which is sup-
posed to be independent of ε or α, and dense within a Banach

space B(RN ). The operator Lε,α determines the evolution of
the semigroup

Ex S(Xε,α (t )) = etLε,α [S](x), t � 0 (2.3)

for all S ∈ Dom(Lε,α ). The subscript x in the expectation de-
notes conditioning on the initial value Xε,α (0) = x. For λ > 0,
we denote by R(λ)

ε,α the resolvent operator of Lε,α . Namely,

R(λ)
ε,α[S] = (λ − Lε,α[S])−1 =

∫ ∞

0
e−λt etLε,α [S] dt, (2.4)

for any S ∈ Dom(Lε,α ). The adjoint to Eq. (2.2) is the Fokker-
Planck operator

L∗
ε,α[p] = −∇·(pFε,α ) + σ 2

2
∇2 p. (2.5)

For an initial distribution p0, the probability distribution
pε,α (t, x) of Xε,α (t ) conditional to Xε,α (0) ∼ p0 evolves ac-
cording to the “forward equation,”

∂ pε,α

∂t
= L∗

ε,α[pε,α], pε,α (0) = p0, (2.6)

namely pε,α (t ) = etL∗
ε,α [p0]. Hence, expectations of an ob-

servable can be computed as

Ep0 S(Xε,α (t )) =
∫ t

0
S(x)esL∗

ε,α [p0](x) ds (2.7)

for any bounded S : RN → R. Last, we will assume that for
all ε, α of interest, the diffusion Xε,α is ergodic with unique
invariant probability p̄ε,α . Namely, L∗

ε,α[ p̄ε,α] = 0 and expec-
tations can be computed as

lim
t→∞Ex(S(Xε,α (t ))) = E p̄ε,α

(S(Xε,α (t )))

=
∫

S(x) p̄ε,α (x) dx =: S̄ε,α (2.8)

for all t � 0 and x ∈ RN , which amounts to assuming that for
any ensemble described by p0, the process Xε,α (t ) asymptoti-
cally converges in probability to the invariant measure p̄ε,α .

III. RESILIENT ADAPTATION

We will propose a measure of resilience aimed at quantify-
ing the ability of the system to adapt through changes on α, to
environmental disturbances on ε that are stressful with respect
to some measure of performance, well-being, productivity, or
success.

A. Background

It is common to consider the resilience of deterministic
homeostatic systems evolving along a stability landscape.
Namely, a model of the form dX/ dt = Fε,α (X ) where Fε,α =
−∇Vε,α and Vε,α is a potential surface.. Resilience is studied
by perturbing the state X away from a stable equilibrium
and analyzing its homeostatic relaxation to the same or other
stable equilibria [see Refs. 1,6].

The noisy case presented in Eq. (2.1) has been widely
studied in nonequilibrium statistical mechanics literature as
a model of a system evolving towards a potential energy
minimum with random fluctuations (see Refs. [22,26], for
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example). The paths of X do not necessarily converge to equi-
librium states, but will actually transition randomly between
attractors due to the combination of noise or forcings. This
stochastic homeostatic behavior has been used by Meyer [10],
Arani et al. [11], Krakovská et al. [8] and others to study
what we call “path-wise resilience” to random perturbations.
Namely, paths generated from any initial state drift towards
the neighborhood of the local minima of Vε,α just as in the
deterministic case, but are continuously subjected to random
fluctuations whose magnitude depend on the amplitude σ of
the noise process. If σ is sufficiently large, or enough time
passes, then these fluctuations will drive paths across any
unstable equilibrium into another basin of attraction where
the system will recover in a different homeostatic state. In
fact, estimates for the probability of such changes and the
average time they take are well-known for the dynamics given
by Eq. (2.1) and are described in the weak-noise limit by large
deviation laws [11,27,28]. This, however, is not our focus. We
are interested in structural resilience with respect to parameter
changes, and on the average over all possible paths.

In contrast with the two approaches described above, we
regard biological systems as homeodynamic and assume that
they can transform their dynamics through behavioral changes
in response to perturbations [29]. We refer to this behav-
ioral changes as adaptations and model them as changes
α → α + �α in response to environmental perturbations of
the form ε → ε + �ε. The homeodynamic response, when
described in terms of temporally dependent distributions, can
be analyzed using linear response theory. Specifically, we
can obtain first order estimates to the sensitivity of the ex-
pectation of key observables associated with the perturbations
�ε and �α.

Further, we conceptualize ecological resilience in terms
of a success function S : RN → [0,∞)]; an observable that
measures well-being, fitness, productivity, etc., as a function
of the system state Xε,α (t ) at any given time, and under spe-
cific operating conditions determined by parameters ε and α.
States x for which S(x) is close to zero are associated with
biological stress. For example, in plants, S could represent
photosynthetic output under various environmental condi-
tions. Mathematically, we assume S is a bounded function
belonging to Dom(Lε,α ) for all values of interest of ε, α.

This study focuses on the dynamics of the mean of
S(Xε,α (t )) rather than the potentially complex and high-
dimensional sample paths of Xε,α (t ). Specifically, resilience
is quantified in terms of how the average success, expressed
as ES(Xε,α (t )), reacts to changes to ε and α. The expectation
here is meant as an ensemble mean over a large group of
individuals or subsystems.

B. Perturbation, adaptation, and resilience

The solution Xε,α to Eq. (2.1) represents the dynamics
of the system under constant environmental and metabolic
conditions. In the context of resilience we are interested in
the ensemble properties of the solution under changing values
of ε and adaptations of α. Specifically, we consider a process
X defined by the following three steps: For t < 0 the system is
evolving in probabilistic equilibrium under the operation con-
ditions (ε0, α0), namely X (t ) ∼ p̄ε0,α0 for all t < 0. At t = 0

FIG. 1. Schematic representation of the evolution of the expected
success ES(X (t )) for X given by Eq. (3.1). For t < 0 the system is in
statistical equilibrium under p̄ε0,α0 . At t = 0 the perturbation ε0 → ε1

occurs (e.g., temperature increases) and S(X (t )) starts decreasing in
average. If no adaptation takes place, then the red curve is followed
towards the equilibrium distribution p̄ε1,α0 . Adaptation occurs at the
random time τ and the resilient system recovers to the equilibrium
distribution p̄ε1,α1 .

a sudden environmental disturbance ε0 → ε1 occurs. After
a random time τ ∼ exp(λ) the system adapts by switching
α0 → α1. See Fig. 1. For t � 0 the resulting process can be
described as

X (0) ∼ p̄ε0,α0 , X (t ) =
{

Xε1,α0 (t ) 0 < t � τ,

Xε1,α1 (t ) t > τ,
(3.1)

where the continuity condition Xε1,α0 (τ−) = Xε1,α1 (τ+) is as-
sumed to hold with probability one.

Note that the adaptation α0 → α1 is assumed to occur
instantaneously at a random “reaction time” τ representing
the time it takes for the regulatory signals to take effect.
Randomness here means that each individual suffering the dis-
turbance might react at a different time, but in the ensemble,
these times follow the prescribed exponential distribution with
mean 1/λ units of time. This modeling assumption can be
interpreted as consistent with a case in which the underlying
adaptation dynamics dα = g(ε, X ) dt are poorly understood
or deliberately left out of the model (2.1), or unresolved at
the timescales of t . The choice of the exponential distribution
for τ is parsimonious, and has the mathematical advantage of
making X a Markov process.

We are interested in the dynamical behavior of the ensem-
ble mean E(S(X (t )) of the success throughout the sequence
of invariance-perturbation-adaptation. For constant ε, α we
denote by S̄ε,α the mean of S under the invariant distribution
p̄ε,α , i.e., Eq. (2.8). Note that by the construction of X ,

E(S(X (0)) = S̄ε0,α0 , lim
t→∞E(S(X (t )) = S̄ε1,α1 . (3.2)

In the context of resilience we study the trajectory in time of
the ensemble average of the success between the extremes in
Eq. (3.2). See Fig. 1.

Concepts related to resilience to parameter distur-
bances are usually defined with respect to the initial,
worst, and final states of an observable during the pro-
cess of perturbation/response/recovery. See, for example,
Refs. [5,6]. In the context of the time evolution of the ex-
pected success, the usual framework proposes the following
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definition of resilience:

R = S̄ε1,α1 − mint�0 E(S(X (t ))

S̄ε0,α0 − mint�0 E(S(X (t ))
, (3.3)

which in Ref. [5] is called “recovery,” and equals one mi-
nus “recovery capacity” over “resistance” in the notation of
Ref. [6].

One drawback of the definition III.3 is that the term
mint�0 E(S(X (t )) is not an ensemble average. Furthermore,
its computation requires estimation of ES(X (t )) at all times.
To address this, we exploit the assumption of the existence
of a population-wide reaction time with known probability
distribution and define “resilience adaptation” as follows.

Definition III.1. Let X be the solution to Eq. (3.1), S the
success function and τ the adaptation time. Denote S̄τ

ε1,α0
:=

ES(X (τ )). Then the resilience of X to the perturbation ε0 →
ε1 and through the adaptation α0 → α1 is

Rτ = S̄ε1,α1 − S̄τ
ε1,α0

S̄ε0,α0 − S̄τ
ε1,α0

. (3.4)

We will argue that Rτ is a practical and informative
measure of ecological resilience, and that is consistent with
existing methodologies.

C. Computing and interpreting resilience

The resilience Rτ in Eq. (3.4) can be any real number and
has the following interpretation:

(1) A value 0 < Rτ < 1 measures the fraction of the suc-
cess that the system was able to recover with the adaptation,
with respect to the total loss of success due to the disturbance.

(2) A value R > 1 indicates a very resilient system, in
which the long-term success after the adaptation S̄ε1,α1 is
larger than the initial S̄ε0,α0 .

(3) In the case of stressful environmental perturbations,
where S̄ε0,α0 > S̄τ

ε1,α0
, Rτ is negative only if the adaptation

α0 → α1 is also detrimental with respect to the mean state
of the system when the adaptation occurs.

With respect to the usual definition or resilience R in
Eq. (3.3), we note that is not equal to Rτ in general, although
the example in Sec. IV shows that it can be a good approxima-
tion. We argue, however, that Rτ is a more practical measure of
ecological resilience than R because can be computed in terms
only of averages. The main argument stems from the fact that
while minES(X (t )) is a deterministic ensemble diagnostic,
the reaction time τ pertains to the physiological ability of the
system to adapt or heal, and is hence a random variable that
can be modeled. This, as described below, opens up several
possibilities for computation of Rτ .

The usual resilience R can be, in principle, computed from
experiments that involve the comprehensive monitoring of a
large population. In such an experiment, up to Gaussian errors,
each individual must be subjected to the same environmental
disturbance ε0 → ε1 and react with the (possibly unknown)
adaptation α0 → α1 that has measurable effects on the suc-
cess throughout time. The average of S must be computed at
enough times to discern the minimum value of ES(X (t )). In
this experimental context, computing Rτ might not be very
practical because estimating S̄τ

ε1,α0
would require measuring S

on each individual at the exact moment it adapts. However, if
a model for the dependence of X on ε and α as in Eq. (3.1) is
available, then Rτ is a more practical measure than R because
it can be estimated from an ensemble of simulations of fixed
dynamics under fixed initial distributions.

Furthermore, note that by Eq. (3.1), we can write S̄τ
ε1,α0

by taking expectations jointly over τ and the paths of Xε1,α0

conditioned on Xε1,α0 (0) ∼ p̄ε0,α0 . This yields the following
expression in terms of the resolvent [see Eq. (2.4)]:

S̄τ
ε1,α0

= E p̄ε0 ,α0
[S(Xε1,α0 (τ ))]

= λ

∫
R(λ)

ε1,α0
[S](x) p̄ε0,α0 (x) dx. (3.5)

Hence, if a model Fε,α is at hand and the operator λ − Lε,α[S]
can be analytically or numerically inverted, then one can
estimate S̄τ

ε1,α0
only from observations or simulations of the

unperturbed system. This feature is key, as we will demon-
strate in Sec. III D, it yields useful estimation methods for Rτ .

Our proposal Rτ can be related to other resilience measures
applicable to noisy systems. First, in Ives [21], resilience
is measured with respect to perturbations that increase the
variability of a dynamically evolving population. Namely, the
variance of X (t ) is used as a an inverse metric of success.
Although the analysis in Ives [21] is limited to the rate of
increase of the variance after an environmental perturbation,
we can write the definition (III.1) with respect to the variance
as

RV ar
τ = V ar(X (τ )) − V arp̄ε1 ,α1

(X )

V ar(X (τ )) − V arp̄ε0 ,α0
(X )

, (3.6)

where V ar p̄ε,α
(X ) simply denotes the variance of the probabil-

ity distribution defined by p̄ε,α and V ar(X (τ )) is the variance
of the process (3.1) at time τ . Note that, with respect to
Eq. (3.1), the signs of the numerator and denominator of
Eq. (3.6) where reversed, which has no effect except for
emphasizing that both are positive quantities. The example in
Sec. IV illustrates the correspondence between Rτ and RV ar

τ .
Another quantity used to measure resilience is that of the

characteristic return time to equilibrium after perturbation
[see Refs. 8,10,21]. In the context of our formulation, this
concept is related to the rate at which ES(X (t )) diverges from
S̄ε0,α0 towards S̄ε1,α0 right after the environmental perturbation,
and the rate at which ES(X (t )) converges to S̄ε1,α1 after the
adaptation. These rates are encoded in the largest nonzero
eigenvalue ρε,α of the forward operator L∗

ε,α in Eq. (2.2) at
the different stages of the process. The proposed resilience
measure Rτ can be viewed as a comparison between the values
of the inverse timescale ρε1,α0 , λ and ρε1,α1 . A resilient system
would be one in which |ρε1,α1 | is large compared to |ρε1,α0 |.

D. Estimating ecological resilience

Linear response theory can be used to estimate the ef-
fect that a perturbation has on the distribution and averages
of a nonlinear stochastic process. Namely, assuming both
�ε := ε1 − ε0 and �α := α1 − α0 are small, we will use
linear response theory to give estimates to S̄ε1,α1 − S̄ε0,α0 and
S̄τ

ε1,α0
− S̄ε0,α0 which can, in turn, be used to give approxima-

tions to Rτ in Eq. (3.1).
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For definiteness, consider the process Xε1,α0 with initial
distribution Xε1,α0 (0) ∼ p̄ε0,α0 . By choosing different values
for ε in the dynamics for t > 0 and the initial distribution, we
are modeling a system that experiences a press disturbance
ε0 → ε1 for all t > 0 (see Fig. 1). Since we are assuming
that Fε0,α0 in Eq. (2.1) is differentiable with respect to ε, the
disturbance produces a perturbation on the drift, which to first
order on �ε is

Fε0,α0 → Fε0,α0 + JεFε0,α0�ε, (3.7)

where JεFε0,α0 denotes the Jacobian of the vector field Fε0,α0

with respect to the vector parameter ε ∈ RP. Linear re-
sponse provides an approximate expression for the probability
density of the disturbed process and averages of any observ-
able, in terms of the un-disturbed distribution p̄ε0,α0 . Note
that the corresponding perturbation on the Fokker-Planck
operator is

L∗
ε0,α0

[p] → L∗
ε0,α0

[p] − ∇·(p JεFε0,α0 �ε)

= L∗
ε0,α0

[p] + �ε · �ε[p], (3.8)

where the operator �ε is defined coordinate-wise as follows:

�ε[p](i) = −
N∑

j=1

∂

∂x( j)

(
p
∂F ( j)

ε0,α0

∂ε (i)

)
, i = 1, . . . , P. (3.9)

If we approximate to first order the expectation of S under
the perturbation as

E p̄ε0 ,α0
(S(Xε1,α0 (t )) ≈ S̄ε0,α0 + �ε · �ε S̄ε0,α0 (t ), (3.10)

then linear response theory says that the correction �ε S̄ε0,α0 (t )
can be written in terms of the forward evolution operator as

�ε S̄ε0,α0 (t ) =
∫ t

0

∫
esL∗

α0 ,ε0 [�ε[ p̄ε0,α0 ]](x) S(x) dx ds. (3.11)

See Ref. [22] for details.
Note that Eq. (3.11) is written in terms exclusively of the

un-perturbed dynamics and, by Eq. (2.7), can be expanded out
as a correlation over paths of the process Xε0,α0 ,

�ε S̄ε0,α0 (t ) =
∫ t

0
E p̄ε0 ,α0

{rε[ p̄ε0,α0 ](Xε0,α0 (0))S(Xε0,α0 (s))} ds,

(3.12)
where rε denotes the operator

rε[p] = �ε[p]

p
(3.13)

for suitable p : RN → R.
The approximation (3.10) at t = τ provides an estimate for

S̄τ
ε1,α0

≈ S̄ε0,α0 + �ε · �ε S̄τ
ε0,α0

. (3.14)

To estimate the perturbation �ε S̄τ
ε0,α0

we can multiply (3.10)
times λe−λt and integrate with respect to t . We obtain

�ε S̄τ
ε0,α0

=
∫∫ ∞

0
e−λsesLα0 ,ε0 [S](x) ds �ε[ p̄ε0,α0 ](x) dx

=
∫

R(λ)
ε0,α0

[S](x)�ε[ p̄ε0,α0 ](x) dx. (3.15)

As previously mentioned, the estimate (3.15) is useful
whenever the resolvent can be computed analytically or
numerically. In general, we can also take expectations of
Eq. (3.12) with respect to τ to obtain an estimate of S̄τ

ε1,α0
as a

correlation suitable for simulations,

�ε S̄τ
ε0,α0

= E p̄ε0 ,α0
{rε[ p̄ε0,α0 ](Xε0,α0 (0))S(Xε0,α0 (τ ))}. (3.16)

Replacing the terms S̄τ
ε1,α0

in the expression of Eq. (3.1) by
its approximation in Eq. (3.14) we obtain the following more
practical expression for the resilience,

Rτ ≈ R̃τ = 1 − S̄ε0,α0 − S̄ε1,α1

−�ε · �ε S̄τ
ε0,α0

. (3.17)

Note that the numerator in Eq. (3.17) contains the extremes
values in Eq. (3.2), namely the “before and after” of a
population that has gone through the invariance-perturbation-
adaptation sequence. The denominator is positive for stressful
environmental perturbations and models the average “dam-
age” caused by the perturbation. It provides an alternative to
calculating the challenging term S̄τ

ε1,α0
in Eq. (3.1). The term

that is subtracted from one is therefore the total long-term
change in average success as a fraction of the total damage.

A further estimate for the numerator S̄ε1,α1 − S̄ε0,α0 in
Eq. (3.17) may be obtained for small �ε, �α by straightfor-
ward differentiation. Assuming smoothness of the invariant
distribution and of S with respect to ε and α, we can write to
first order

S̄ε1,α1 − S̄ε0,α0 ≈ �ε · ∇ε S̄ε0,α0 + �α · ∇α S̄ε0,α0 , (3.18)

where ∇ε and ∇α denote, respectively, the gradients with re-
spect to the parameters ε and α of the invariant expectation of
the success at α = α0, ε = ε0. Equation (3.18) approximates
the numerator in Eq. (3.17) as a combination of the sensitiv-
ities of the system to the different parameters and yields yet
another approximate expression for the resilience

Rτ ≈ R̂τ = 1 − �ε · ∇ε S̄ε0,α0

�ε · �ε S̄τ
ε0,α0

− �α · ∇α S̄ε0,α0

�ε · �ε S̄τ
ε0,α0

. (3.19)

For the sake of argument, suppose the environmental pa-
rameter is one-dimensional (P = 1) in Eq. (3.19), then

R̂τ = 1 − ∇ε S̄ε0,α0

�ε S̄τ
ε0,α0

+ ∇α S̄ε0,α0

−�ε S̄τ
ε0,α0

· �α

�ε
(3.20)

= : 1 − REnv
τ + RAd

τ · �α

�ε
. (3.21)

The approximation R̂τ to Rτ separates the proposed resilience
measured into its competing terms. The term REnv

τ is positive
and depends only on the initial state, the effect of the environ-
mental disturbance, and how much time the system takes to
react. It rescales the sensitivity of the system to changes in ε

with respect to the total damage. The term RAd
τ · �α

�ε
is positive

for resilient systems. Its factor �α/�ε ≈ dα
dε

(ε0) represents
the adaptation strategy (recall the discussion after Eq. (3.1)
around the underlying unresolved adaptation dynamics) and
RAd

τ models the effect of the adaptation as compared to the
damage incurred by the environmental perturbation.

Computing the gradients with respect to α and ε in expres-
sions (3.19) or (3.20) requires evaluation or measurement of
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the dynamics under the invariant distribution of a perturbed
system along each of the P and Q components of the param-
eters. For an alternate expression we can use the following
result that, as in the linear response theory derivations, allows
for computation of derivatives in terms only of expected val-
ues of a particular observable of the un-perturbed system.

Proposition III.2. If S is independent of ε, then

∇ε S̄ε0,α0 =
∫

S(x)∇ε p̄ε0,α0 (x) dx

= E p̄ε0 ,α0
(JεFε0,α0∇ψS ), (3.22)

where ψS is the solution to Poisson equation −Lε0,α0 [ψS] = S.
Similarly for ∇α S̄ε0,α0 .

Proof. By the definition of ψS we can write

∇ε S̄ε0,α0 = −
∫

Lε0,α0 [ψS]∇ε p̄ε0,α0 (x) dx

= −
∫

ψS (x)L∗
α0,ε0

[∇ε p̄ε0,α0 ](x) dx.

Using the particular form of the forward operator (2.5) and the
fact that L∗

ε0,α0
[ p̄ε0,α0 ] = 0, one can write

L∗
α0,ε0

[∇ε p̄ε0,α0 ] = ∇( p̄ε0,α0 JεFε0,α0 ).

Finally, integration by parts yields

∇ε S̄ε0,α0 =
∫

∇ψS (x) p̄ε0,α0 (x)JεFε0,α0 (x) dx

as desired. �
Note that a slightly more convoluted proof of Proposition

III.2 can be obtained using the linear response representation
(3.11), the identity

∫ t
0 esLα0 ,ε0 ds = (I − etLα0 ,ε0 )[(−Lα0,ε0 )−1],

and passing to the limit as t → ∞. See Pavliotis [22, Sec. 9.3].
A closely related formula for the sensitivity of a finite-state
Markov chains to general perturbations has been presented in
Ref. [30].

IV. EXAMPLE: A GRADIENT-DRIVEN STOCHASTIC
DIFFERENTIAL EQUATION

We illustrate the measure of resilience through adapta-
tion in a case where the invariant distribution generated
by Eq. (2.1) can be computed analytically. We consider a
gradient-driven Langevin equation with a one-dimensional
quartic potential (also known as Smoluchowski diffusion
equation),

dX = −∂Vε,α

∂x
(X )dt + σ dWt , t > 0, (4.1)

Vε,α (x) = α(1)x4 − α(2)x3 + εx − c, x ∈ R. (4.2)

The constant c ensures that Vε,α (x) � 0 for all x ∈ R. The
adaptation parameter is two-dimensional α = (α(1), α(2) ) ∈
[0.5, 1] × [1, 2]. The environmental parameter takes values in
ε ∈ [0, 2]. Namely, P = 1 and Q = 2, which exemplifies the
typical case where regulatory parameters are more numerous
than environmental parameters.

For any combination (ε, α) in those ranges, the potential
Vε,α is confining and therefore the solution process Xε,α to
Eq. (4.1) is ergodic with a unique invariant distribution density

(a)

(b)

FIG. 2. (a) Stationary distributions p̄ε,α and potentials Vε,α for an
invariance-perturbation-adaptation sequence with σ 2 = 2, ε0 = 1.2
ε1 = 0.8, α0 = (0.56, 1.12) and α1 = (0.63, 1.07). Note the uni-
modality for (ε0, α0) and (ε1, α0), and bimodality for (ε1, α1). The
success function S is shown in red for comparison. (b) Paths of
S(Xε,α (t )) for one realization of the process (4.1) in each of the
parameters combinations in panel (a). Dashed horizontal lines show
the mean of S with respect to the corresponding invariant distribution.
Note that the process spends much more time in low success states
for the bimodal configuration.

given by

p̄ε,α (x) = 1

Zε,α

exp

(
− 2

σ 2
Vε,α (x)

)
, x ∈ R, (4.3)

where Zε,α is a constant ensuring that p̄ε,α integrates to unity.
The equilibrium states of the potential Vε,α correspond to the
roots of ∂

∂xVε,α and to the local maxima of p̄ε,α . In fact, the
system undergoes a “supercritical pitchfork” bifurcation at

εb(α) = (α(2) )3

2(α(1) )2
, (4.4)

having one stable equilibrium if ε > εb and two if ε < εb [31].
See Fig. 2(a).

The disturbances to ε and α in system (4.1) are performed
according to a specific protocol of invariance-perturbation-
adaptation we now explain. Suppose that “normal” operating
conditions encoded in ε0, α0 satisfy ε0 > εb(α0) so that there
is only one equilibrium solution which, for the range of pa-
rameters considered here, is near x = −1/2 [see Fig. 2(a)].
We will consider this as the preferred/most successful state
of the system. The environmental perturbation ε0 → ε1 is
such that ε1 < εb(α0), inducing a pitchfork bifurcation that
creates a second stable equilibrium in the positive real line.
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FIG. 3. Ensemble mean ES(X (t )) for X given by Eq. (3.1) with
σ, ε0, ε1, α0, α1 as in Fig. 2, and λ = 1/3. The mean was computed
from a sample of 6000 paths. Horizontal dashed lines mark the in-
variant means of S under each scenario and the mean of S(X (τ )). The
vertical line marks t = E(τ ) = 1/λ The resilience is R = 0.44. The
value S̄ε1,α0 is the long-term mean of the success in the do-nothing
scenario, and plays no role in the computation of the resilience.

Paths of Xε1,α0 will then likely spend time in the basin of
attraction of this second stable equilibrium, which we will
presume is highly undesirable. The preference of x = −1/2
over the second equilibrium is is encoded for this example in
the success function by defining

S(x) = e−(x+1/2)2
, x ∈ R. (4.5)

The value of S(X (t )) gives therefore an idea of how close the
system is to “preferred” operating conditions.

The adaptation α0 → α1 takes place instantly at a random
reaction time τ ∼ exp(λ) after the environmental perturba-
tion. We consider the following adaptation strategy: �α is a
vector in the direction of ∇α S̄ε1,α0 such that for α1 = α0 +
�α, εb(α1) < ε1 holds. The resulting adaptation is, by con-
struction, such that the system reverts to the case ε1 > εb(α1)
where only the preferred stable equilibrium remains and p̄ε1,α1

is again unimodal.
The choice of S in Eq. (4.5) and adaptation strategy ensures

that the prescribed environmental and adaptation perturba-
tions are, respectively, stressful and beneficial in average.
Namely, in the notation of Eq. (2.8)

S̄ε0,α0 > S̄ε1,α0 , S̄ε1,α1 > S̄ε1,α0 . (4.6)

This strategy models the case in which the system can correct
the bifurcation while at the same time ensuring a future mean
success better than the do-nothing scenario S̄ε1,α0 .

Figure 2(a) depicts the potentials and stationary distribu-
tions in one example of the whole invariance-perturbation-
adaptation sequence. Superimposed is the success function
S. Figure 2(b) shows the success function S(Xε,α (t )) along
a single path for each regime. It highlights the noisy nature
of the dynamics, including the episodic switches between
basins of attraction in each of the three operating regimes,
namely realizations exhibiting what in Sec. III A we referred
to as “path-wise resilience.” The expectations of the success
function with respect to each of the stationary distributions
are depicted as well.

Figure 3 depicts the time evolution of the ensemble mean
ES(X (t )) for the process constructed as in Eq. (3.1) with

FIG. 4. Values of α0, α1 used in the examples for numerically
computation of R and Rτ . The solid lines are contour lines for the
bifurcation threshold εb in Eq. (4.4) for ε0 and ε1 as in Fig. 2.
Black arrows show that each adaption follows the strategy leading to
Eq. (4.6): from εb(α0) > ε1 and hence having two stable equilibria,
to εb(α1) < ε1 and a single stable equilibrium after adapting.

the dynamics of Eq. (4.1), for a single combination of the
invariance-perturbation-adaptation protocol ε0, ε1, α0, α1 de-
scribed above. All the terms in the usual definitions of
resilience, including R given in Eq. (3.3), can be “read-off”
from this figure. See for example the discussions around
Fig. 4(d) in Ref. [6] and Fig. 5 in Ref. [5]. Note that ES(X (t ))
in Fig. 3 above varies between the initial and final values given
by Eq. (3.2) and that its minimum mint�0 E(S(X (t )) is close
to the value of S̄τ

ε1,α0
.

To robustly test our proposal Rτ in Eq. (III.1) as a coherent
measure of adaptation resilience, we conducted numerical
experiments on different configurations of Eq. (4.1). We
considered 64 different populations, each with a different
value of α0. All populations undergo the same environmental
bifurcation-inducing disturbance ε0 = 0.8 → ε1 = 1.2. The
adaptation strategy followed by the populations is as described
above, and results in different a value of α1 for each example.
Figure 4 shows the location of α0 and α1 for each system with
respect to bifurcation thresholds.

The numerical results are depicted in Fig. 5. The dashed
line indicates a perfect match between R and Rτ . We note
that the data is increasing, from which we conclude that Rτ

FIG. 5. Comparison between R and Rτ for the 64 combination of
parameters shown in Fig. 4. The dashed line marks equality.
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FIG. 6. Comparison between the environmental and adaptation
components of Rτ in Eq. (III.1). In this example, most of the vari-
ability in the resilience comes from the adaptation term.

can be used to establish when one system is more resilient
than other in the usual sense. Note also that the two measures
tend to agree for the most resilient examples, which in this
case simply transpires the good approximation of S̄τ

ε1,α0
to

minES(X (t )). Those examples for which Rτ < 0 correspond
to cases in which S̄ε1,α1 < S̄τ

ε1,α0
, namely the adaptation α0 →

α1 did not increase the mean success as compared with the
mean success at τ .

Figure 6 shows the approximate components of Rτ as per
equation (3.21). The environmental component is essentially
constant throughout our examples, and most of the variation
of the resilience is due to the adaptation component.

In Sec. III C we derived more practical measures to es-
timate R or Rτ , that we foresee as practical since they can
be informed by field data. In Fig. 7 we evaluate how R̃τ

in Eq. (3.17) and R̂τ in Eq. (3.19) compare to the estimate
Rτ . We used the same ensemble and parameter values. The
figures suggest that the empirical versions of these are good
approximations for the resilience of the system.

As mentioned in Sec. III C, Rτ can be compared to ex-
isting measures or resilience for noisy systems. The value
RV ar

τ in Eq. (3.6) aims at quantifying resilience by analyzing

FIG. 7. Comparison between Rτ and its approximations R̃τ

[Eq. (3.17)][ and R̂τ [Eq. (3.19)] obtained through linear response
theory. The dashed line marks equality.

(a)

(b)

FIG. 8. (a) Comparison between Rτ and the measure of resilience
RV ar

τ in Eq. (3.6) based on the variance of Xε,α . (b) Comparison
between Rτ and the ratio between the dominant eigenvalues of the
adapted vs nonadapted system.

the changes to the variance in X [21]. Namely, we make
S(x) = Sε,α (x) = (x − x̄ε,α )2 where x̄ε,α is the mean of the
distribution p̄ε,α . Figure 8(a) shows a comparison between
Rτ and RV ar

τ for all the examples. Again, since the pattern
is increasing, the resilience Rτ can be used as a proxy for
a resilience measure built on the variability induced by the
disturbances. This is simply the result of choosing a suc-
cess function S in Eq. (4.5) that is maximized near the
mean x̄ε0,α0 .

For the model in Eq. (4.1), one can numerically compute
the largest eigenvalues ρε,α of the forward operator L∗

ε,α in
Eq. (2.5) for any ε, α. Thus we can assess whether Rτ gives
any information about the rates of exit and return to the
equilibrium after the perturbation. Note that a resilient system
would be one in which the eigenvalue after adaptation |ρε1,α1 |
is large compared to the eigenvalue after the environmental
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perturbation |ρε1,α0 |. Figure 8(b) shows a comparison between
Rτ and the ratio |ρε1,α1 |/|ρε1,α0 | for each example, indicating
that Rτ is consistent with this interpretation of resilience.

In summary, the functional Rτ provides a measure of
resilience that, at least for the adaptation strategy used in
the examples shown here, is coherent with various no-
tions of resilience used in the context of noisy dynamical
systems.

V. DISCUSSION AND CONCLUSIONS

We have proposed a measure of ecological resilience
which quantifies the success of a forced/dissipative system
to adapt following an initial applied stress. The relevance of
our resilience measure to biological systems, rests upon the
assumption that the time evolution of the biological system is
described by a stochastic differential equation with a initial
stationary probability distribution (prior to the application of
a stress). The stochastic nature of the process means that for
each starting value of the system there is an ensemble of
possible histories (paths). Moreover, our conceptual model
also accounts for the random variability among states or sub-
systems within an organism.

At the mechanistic level, our measure of resilience is
strongly inspired by the homeodynamic nature of biological
systems that react to some type of imposed stress with an
eventual physiological adaptation. Unlike most measures of
resilience, we are suggesting that the time history of a well-
chosen success observable is essential to the determination
of the organism’s resilience to adaptation. Further, we ar-
gue that the resilience can be best captured in the ensemble
mean among a population of individual subsystems which can
have different starting conditions, and random responses to
stress. We are suggesting here that a typical success history
in noisy/forced systems, as typified by Fig. 3, can only be
uncovered by ensemble methods such as those proposed in
this study.

It follows from the approximation for Rτ in Eq. (3.17)
that low resilience will occur in systems with low values of
|�ε S̄τ

ε0,t0 |, which in Eq. (3.16) is written as a temporal corre-
lation between functionals of the process X . The relationship
between correlations and critical transitions in complex sys-
tems is now well-established as in the concept of “critical
slowing down” of correlations [18,19,21]. Indeed, the quantity
�ε S̄τ

ε0,t0 in the example of Sec. IV is related to how often
system paths transition towards the second stable equilibrium.
Resilience, however, must also consider the ability of the
system to recover. Our characterization (3.21) of REnv

τ and
RAd

τ provides the appropriate quantities with respect to which
�ε S̄τ

ε0,t0 must be compared in order obtain a more complete
picture.

We now address the practicality of our definition of re-
silience to adaptation as a proposed measure of resilience.
We do so by showing how it may be estimated using actual
experimental, field, or simulation data.

First of all, a dynamic model is not intrinsic to the defini-
tion of the resilience measures R or Rτ , and it is not required
to estimate resilience from data. Knowing the densities p̄ε,α

over the state space is also not a requirement. The estimation

of Rτ requires only samples from such densities. Namely, to
identify, simulate, or prepare an ensemble of individual sys-
tems that have been operating under constant environmental
conditions, subject them to an environmental disturbance, and
measuring the chosen success function S through the adap-
tation process. The ensemble must be numerous enough to
accurately compute expected values of S from sample aver-
ages. For estimating R, the values of S(X (t )) must be sampled
from the field sufficiently regularly in time to capture (as in
Fig. 3) the initial, minimum, and limiting values of ES(X (t ))
required by the definition (3.3). Our proposal Rτ , however, re-
quires the detection of the moment at which adaptation occurs
in each individual. Measuring success at such moment is the
equivalent of sampling the random variable S(X (τ )). In this
case only three data points are required from each system: the
unperturbed state, the moment of adaptation, and a final state
when the population is observed to revert to its new statistical
equilibrium.

Linear response theory yields further tools to estimate Rτ ,
as detailed in Sec. III D. These estimates take the form of
expectations and correlations of specific functionals of the
process X . See Eqs. (3.5), (3.12), and (3.16) and Proposi-
tion III.2. This estimates can be performed by a combination
of experimental data assimilation, simulation and analytical
tools, depending on the specific model. A key feature of our
framework is that different types of approximation to Rτ can
achieved depending on the level of detail of the available
mathematical model. In its full form, every component of the
resilience in Eq. (3.21) can be estimated by simulating only
the unperturbed process Xε0,α0 .

With regards to the definition of resilience in terms of an
almost arbitrary success function S, we argue that it yields a
more useful and encompassing framework, since notions of
stress, well-being, or health can in many case be subjective
and application-dependent: S can be any observable of interest
that quantifies the degree to which a system is successful.
In principle, S does not have to be positive, bounded, or
continuous for the definition of Rτ to make sense, however,
we suppose that S ∈ Dom(Lε,α ) in Eq. (2.2), which typically
contains only bounded, smooth functions.

This approach is antithetical to the idea that there is a
universal notion of resilience even when confronted with the
same systems biology or biological mechanism. For our il-
lustrative example, in Eq. (4.5), we simply defined S as a
nonnegative function with a mean centered at an equilibrium
point labeled as preferred, with a variance that conveyed how
narrowly should success be defined. Alternatively one can
propose to measure the resilience of an ensemble of organ-
isms with respect to some biomarker, productivity rate with
economic value, or a statistical measure as in the definition
(3.6) in RV ar

τ .
We exemplified our proposal with a very simple model as-

suming low-dimensional gradient flow dynamics, and forced
and adapted the dynamics by simple changes upon the po-
tential. We argue however, that our approach is amiable to
biological systems that not only change through time, but have
inherent hierarchies of biological organization. For real-life
biological systems, assessing resilience will involve a series of
interconnected dynamics described by mathematical or data-
driven models (e.g., modeling cell to leaf, leaf to plant, etc).
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The more complex model might capture the exact relationship
between the state variable and the external forcing, or the
dynamics of adaptation itself. Our proposal for resilience to
adaptation will go through on these more complex systems, so
long as assumptions regarding the stationarity of distribution
of the state vector dynamics hold.

The idea of using ensembles and a success function as the
means to estimate resilience, is very general. It is, however,
limited to situations in which samples from the same distri-
bution can be measured, simulated or observed, and some
control over the environmental perturbations can be exerted.
The estimation of S(X (τ )) in Eq. (3.1) brings the additional
challenge of requiring a way to detect or model when a
threshold into adaptation has occurred. The particular model
(2.1) has some underlying assumptions that limit the scope of
this work. For one, the smoothness and regularity conditions
on F might not hold, but more significantly the existence of
an invariant distribution might be unknown or impossible to
assume. The assumption of linear noise is also problematic in
those systems where environmental perturbations increase in-
herent variability. However, although not explicit in this paper,
linear response theory can also be applied to perturbations on
σ = σε,α [see 22, for example]. The estimation tools provided
in Sec. III D impose more specific limitations which might not
hold in general. Specifically, linear response theory requires

small �ε and �α and the smoothness of Fε,α and p̄ε,α with
respect to ε and α.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [32].

ACKNOWLEDGMENTS

Research sponsored by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the U. S. Department of
Energy. Valerio Lucarini acknowledges the support received
from the Horizon 2020 project TiPES (Grant No. 820970),
from the EPSRC Project No. EP/T018178/1, and from the
University of Reading’s RETF project CROPS.

This manuscript has been authored by UT-Battelle, LLC,
under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy (DOE). The U.S. government retains and
the publisher, by accepting the article for publication, ac-
knowledges that the U.S. government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or repro-
duce the published form of this manuscript, or allow others to
do so, for U.S. government purposes.

[1] V. Dakos and S. Kéfi, Ecological resilience: what to measure
and how, Environ. Res. Lett. 17, 043003 (2022).

[2] C. Holling, Resilience and stability of ecological systems,
Annu. Rev. Ecol. Syst. 4, 1 (1973).

[3] C. S. Holling, in Engineering resilience versus ecological re-
silience, in Engineering Within Ecological Constraints, edited
by P. Schulze (National Academies Press, New York, NY,
1996), pp. 31–44.

[4] D. G. Angeler and C. R. Allen, Quantifying resilience, J. Appl.
Ecol. 53, 617 (2016).

[5] C. Yi and N. Jackson, A review of measuring ecosystem re-
silience to disturbance, Environ. Res. Lett. 16, 053008 (2021).

[6] K. Van Meerbeek, T. Jucker, and J.-C. Svenning, Unifying the
concepts of stability and resilience in ecology, J. Ecol. 109,
3114 (2021).

[7] Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynam-
ical Systems, and Bifurcations of Vector Fields (Springer, Berlin,
1983).

[8] K. Cranmer, M. Drnevich, S. Macaluso, and D. Pappadopulo,
Resilience of dynamical systems, EPJ Web Conf. 251, 03059
(2021).

[9] J.-F. Arnoldi, M. Loreau, and B. Haegeman, Resilience, reac-
tivity and variability: A mathematical comparison of ecological
stability measures, J. Theor. Biol. 389, 47 (2016).

[10] K. Meyer, A mathematical review of resilience in ecology, Nat.
Resour. Model. 29, 339 (2016).

[11] B. M. Arani, S. R. Carpenter, L. Lahti, E. H. Van Nes, and
M. Scheffer, Exit time as a measure of ecological resilience,
Science 372, eaay4895 (2021).

[12] Y. Shang, Matrix-scaled resilient consensus of discrete-time and
continuous-time networks, Q. Appl. Math. 81, 777 (2023).

[13] Y. Shang, Resilient vector consensus over random dynamic
networks under mobile malicious attacks, Comput. J. bxad043
(2023).

[14] D. Ruelle, A review of linear response theory for general differ-
entiable dynamical systems, Nonlinearity 22, 855 (2009).

[15] M. Hairer and A. J. Majda, A simple framework to justify linear
response theory, Nonlinearity 23, 909 (2010).

[16] H. Held and T. Kleinen, Detection of climate system bifur-
cations by degenerate fingerprinting, Geophys. Res. Lett. 31,
L23207 (2004).

[17] T. Lenton, H. Held, E. Kriegler, J. Hall, W. Lucht, S.
Rahmstorf, and H. Schellnhuber, Tipping elements in the
Earth’s climate system, Proc. Natl. Acad. Sci. USA 105, 1786
(2008).

[18] M. Scheffer, J. Bascompte, W. Brock, V. Brovkin, S. R.
Carpenter, V. Dakos, H. Held, E. van Nes, M. Rietkerk, and G.
Sugihara, Early-warning signals for critical transitions, Nature
(London) 461, 53 (2009).

[19] M. S. Gutiérrez and V. Lucarini, On some aspects of the re-
sponse to stochastic and deterministic forcings, J. Phys. A:
Math. Theor. 55, 425002 (2022).

[20] C. Boettner and N. Boers, Critical slowing down in dynamical
systems driven by nonstationary correlated noise, Phys. Rev.
Res. 4, 013230 (2022).

[21] A. R. Ives, Measuring resilience in stochastic systems, Ecol.
Monogr. 65, 217 (1995).

[22] G. Pavliotis, Stochastic Processes and Applications (Springer,
Berlin, 2014).

[23] S. Fatichi, S. Leuzinger, and C. Körner, Moving beyond
photosynthesis: From carbon source to sink-driven vegetation
modeling, New Phytol. 201, 1086 (2014).

024413-11

https://doi.org/10.1088/1748-9326/ac5767
https://doi.org/10.1146/annurev.es.04.110173.000245
https://doi.org/10.1111/1365-2664.12649
https://doi.org/10.1088/1748-9326/abdf09
https://doi.org/10.1111/1365-2745.13651
https://doi.org/10.1051/epjconf/202125103059
https://doi.org/10.1016/j.jtbi.2015.10.012
https://doi.org/10.1111/nrm.12097
https://doi.org/10.1126/science.aay4895
https://doi.org/10.1090/qam/1662
https://doi.org/10.1093/comjnl/bxad043
https://doi.org/10.1088/0951-7715/22/4/009
https://doi.org/10.1088/0951-7715/23/4/008
https://doi.org/10.1029/2004GL020972
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1038/nature08227
https://doi.org/10.1088/1751-8121/ac90fd
https://doi.org/10.1103/PhysRevResearch.4.013230
https://doi.org/10.2307/2937138
https://doi.org/10.1111/nph.12614


JORGE M. RAMIREZ et al. PHYSICAL REVIEW E 109, 024413 (2024)

[24] S. Fatichi, C. Pappas, and V. Y. Ivanov, Modeling plant–water
interactions: An ecohydrological overview from the cell to the
global scale, Wiley Interdiscip. Rev.: Water 3, 327 (2016).

[25] N. Willey, Environmental Plant Physiology (Garland Science,
New York, NY, 2018).

[26] W. Brenig, Statistical Theory of Heat: Nonequilibrium Phenom-
ena (Springer Science & Business Media, Cham, 2012).

[27] M. I. Freidlin and A. D. Wentzell, Random Perturbations of
Dynamical Systems (Springer, New York, NY, 1998).

[28] C. W. Gardiner, Handbook of Stochastic Methods (Springer,
Berlin, 2004), p. 415.

[29] D. Lloyd, M. A. Aon, and S. Cortassa, Why homeodynamics,
not homeostasis? Sci. World J. 1, 133 (2001).

[30] V. Lucarini, Response operators for Markov processes in a
finite state space: Radius of convergence and link to the re-
sponse theory for Axiom A systems, J. Stat. Phys. 162, 312
(2016).

[31] S. H. Strogatz, Nonlinear Dynamics and Chaos with Stu-
dent Solutions Manual: With Applications to Physics, Biology,
Chemistry, and Engineering (CRC Press, Boca Raton, FL,
2018).

[32] https://energy.gov/downloads/doe-public-access-plan.

024413-12

https://doi.org/10.1002/wat2.1125
https://doi.org/10.1100/tsw.2001.20
https://doi.org/10.1007/s10955-015-1409-4
https://energy.gov/downloads/doe-public-access-plan

