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Intracellular ions, including sodium (Na+), calcium (Ca2+), and potassium (K+), etc., accumulate slowly after
a change of the state of the heart, such as a change of the heart rate. The goal of this study is to understand the
roles of slow ion accumulation in the genesis of cardiac memory and complex action-potential duration (APD)
dynamics that can lead to lethal cardiac arrhythmias. We carry out numerical simulations of a detailed action
potential model of ventricular myocytes under normal and diseased conditions, which exhibit memory effects
and complex APD dynamics. We develop a low-dimensional iterated map (IM) model to describe the dynamics
of Na+, Ca2+, and APD and use it to uncover the underlying dynamical mechanisms. The development of the IM
model is informed by simulation results under the normal condition. We then use the IM model to perform linear
stability analyses and computer simulations to investigate the bifurcations and complex APD dynamics, which
depend on the feedback loops between APD and intracellular Ca2+ and Na+ concentrations and the steepness
of the APD response to the ion concentrations. When the feedback between APD and Ca2+ concentration
is positive, a Hopf bifurcation leading to periodic oscillatory behavior occurs as the steepness of the APD
response to the ion concentrations increases. The negative feedback loop between APD and Na+ concentration
is required for the Hopf bifurcation. When the feedback between APD and Ca2+ concentration is negative,
period-doubling bifurcations leading to high periodicity and chaos occurs. In this case, Na+ accumulation plays
little role in the dynamics. Finally, we carry out simulations of the detailed action potential model under two
diseased conditions, which exhibit steep APD responses to ion concentrations. Under both conditions, Hopf
bifurcations leading to slow oscillations or period-doubling bifurcations leading to high periodicity and chaotic
APD dynamics occur, depending on the strength of the ion pump—Na+-Ca2+ exchanger. Using functions
reconstructed from the simulation data, the IM model accurately captures the bifurcations and dynamics under
the two diseased conditions. In conclusion, besides using computer simulations of a detailed high-dimensional
action-potential model to investigate the effects of slow ion accumulation and short-term memory on bifurcations
and genesis of complex APD dynamics in cardiac myocytes under diseased conditions, this study also provides a
low-dimensional mathematical tool, i.e., the IM model, to allow stability analyses for uncovering the underlying
mechanisms.

DOI: 10.1103/PhysRevE.109.024410

I. INTRODUCTION

The heart rhythms exhibit rich nonlinear dynamics, which
have been widely investigated [1–5]. These dynamics may
be precursors or causes of lethal cardiac arrhythmias [6,7].
The normal heart rate is around 60 to 100 beats per minute,
corresponding to periods of 0.6 to 1 s. If everything recov-
ers fast enough, changes occurring within a heartbeat do not
affect the behavior of the next heartbeat, and thus there is no
memory effect. However, many processes exhibit much longer
timescales, and a temporal change may take many beats or a
much longer time to recover. This long recovery process is
called cardiac memory. Memory in the heart may last seconds
to minutes, which is called short-term memory, or hours to
days, which is called long-term memory [8]. A direct effect
of memory is that it affects the rate dependence [9] of the
action-potential (AP) properties. For example, as shown in
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Fig. 1(a), a sudden change in heart rate takes more than 1 min
for the AP duration (APD) to reach a new steady state in the
human heart [10]. It has been widely shown that short-term
memory affects cellular AP and excitable wave dynamics
[11–20].

There are two major sources of short-term memory. The
first one is slow ion channel recovery which has a timescale
of several hundred milliseconds to seconds. For example, the
recovery time constant of the potassium (K+) channel can
be a couple of seconds [21]. It has also been shown that
there is a very slow component of the recovery of the L-type
calcium (Ca2+) current (ICa,L) [22–24]. The second source
is intracellular ion accumulation which has a timescale of
several seconds to minutes. In cardiac myocytes, as well as
in many other types of excitable cells [25], ion concentration
gradients across the cell membrane are required for a negative
(polarized) resting potential and excitability. The major ions
[Fig. 1(b)] are the sodium ion (Na+), potassium ion (K+), and
calcium ion (Ca2+). Their concentrations in the extracellular
space (denoted as [Na+]o, [K+]o, and [Ca2+]o) are roughly
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FIG. 1. Cardiac memory and intracellular ion accumulation.
(a) Responses of APD to sudden changes (as marked) of pacing
period in a human heart, modified from Franz et al. (Ref. [10]). (b)
Schematic plot of ion cycling between intracellular and extracellular
space via membrane ion channels and pumps. K+ enters the cell via
NKA and extrudes via the K+ channel. Na+ enders the cell via the
Na+ channel and NCX, and extrudes via NKA. Ca2+ enters the cell
via the Ca2+ channel and extrudes via NCX. Ca2+ also has an internal
cycle, which is key to contraction of the heart. In this cycle, Ca2+

releases from the SR via the RyRs on the SR membrane and is reup
taken back into the SR via the SERCA pump. SR is the major Ca2+

store in a myocyte.

[Na+]o = 140 mM, [K+]o = 4 mM, and [Ca2+]o = 1.5 mM,
and in the intracellular space (denoted as [Na+]i, [K+]i, and
[Ca2+]i) are roughly [Na+]i = 10 mM, [K+]i = 150 mM, and
[Ca2+]i = 0.1μM. The ion gradients between the intracellu-
lar space and extracellular space are primarily maintained
by ion pumps, namely, the Na+-K+ ATPase (NKA) and the
Na+-Ca2+ exchange (NCX). During an AP, Na+ and Ca2+

enter the cell via the voltage-gated Na+ channels and Ca2+

channels, respectively, and K+ exits the cell via the voltage-
gated K+ channels. These ions are extruded out or brought
into the cell by the ion pumps, forming an inside-outside
cycle of the ions. In addition to the inside-outside cycle,
Ca2+ exhibits an intracellular cycling loop [Fig. 1(b)]. Ca2+

is mainly stored in the intracellular organelle called the sar-
coplasmic reticulum (SR), and Ca2+ in the SR is released
into the cytosolic space via the Ca2+ release channels on the
SR membrane called ryanodine receptors (RyRs). Since the
intracellular ion concentrations affect ionic currents via ion
channels and pumps, and the ionic currents affect the ion
concentrations, feedback loops form between voltage and the
ion concentrations. Moreover, the recovery of different types
of ion channels and the accumulation speed of different types
of intracellular ions exhibit different timescales. The feedback

loops and the multiple timescales can result in very complex
dynamics, such as bursting behaviors seen in many biological
cells, including neurons [26–28], pancreatic β cells [26], and
cardiac cells [29–31].

In recent studies [19,20,32,33], complex AP dynamics
caused by ion accumulation and the feedback loops between
voltage and ion concentrations in periodically paced ventric-
ular myocytes have been investigated. We have developed
low-dimensional iterated map (IM) models that account for
the different timescales and feedback loops [18–20]. The
IM models can accurately capture the complex dynamics of
the high-dimensional AP models and reveal the underlying
mechanisms and bifurcations for complex APD dynamics,
including bistability, Hopf bifurcations to oscillation, and
period-doubling routes to chaos. In this study, we extend our
previous work [20] to include a detailed description of the
development of the IM model and its validation against simu-
lations of the detailed AP model. We simulate the AP model
under two diseased conditions to demonstrate the bifurcations
and complex APD dynamics. Specifically:

(1) We carry out simulations using a detailed AP model
[34] under normal condition to inform the development of
the IM model, i.e., the formulation of the IM equations and
functions. We use the IM model to simulate the memory
effects observed in the AP model under the normal condition
as a first validation of the IM model. The results are presented
in Sec. III A.

(2) We perform linear stability analyses and carry out com-
puter simulations of the IM model to reveal the dynamical
mechanisms and the roles of ion accumulation and the feed-
back loops in the genesis of complex APD dynamics. The
stability analyses and simulations show that besides the re-
quirement of a steep response of APD to the change of the ion
concentrations, the feedback loops between APD and [Ca2+]i
and [Na+]i play important roles. When the feedback between
APD and [Ca2+]i is positive, a Hopf bifurcation leading to pe-
riodic oscillatory behavior occurs. The negative feedback loop
between APD and [Na+]i is required for the Hopf bifurcation.
When the feedback between APD and [Ca2+]i is negative, a
period-doubling bifurcation leading to high periodicity and
chaos occurs. In this case, Na+ accumulation plays little role
in the bifurcations and dynamics. The results are presented in
Sec. III B.

(3) To validate the theoretical predictions of the IM model,
we investigate the roles of ion accumulation in the genesis of
complex APD dynamics using the detailed AP models under
two diseased conditions that exhibit high risk of arrhythmias
and sudden cardiac death. The first condition is relevant to
long-QT syndrome (LQTS) [35,36] and heart failure [37], in
which APD is lengthened due to increase of inward currents
(mainly Na+ and Ca2+ currents) or decrease of outward cur-
rents (mainly K+ currents). A well-known phenomenon under
LQTS is a behavior called early afterdepolarizations (EADs)
[Fig. 2(a)], which are abnormal depolarizations during the
AP plateau. Theoretical studies have shown that EADs are
also a result of bifurcations caused by dynamical instabili-
ties [38,39]. Alterations of ionic current properties in LQTS
or heart failure promote EADs [40–42] and EAD-related
complex nonlinear dynamics, including alternans and chaos
[7,38,43–45], which are related to lethal ventricular arrhyth-
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FIG. 2. APs under disease conditions and definition of variables
for the IM model. (a) An AP with a low ICa,L and no EAD (dashed,
GCa,L = 0.000035 cm3/μF/s) and one with a high ICa,L and EAD
(solid, GCa,L = 0.00014 cm3/μF/s) from the AP model of the EAD
case. The cyan mark indicates the square-pulse stimulus, which is
given at t = 100 ms. (b) A spike-and-dome AP with an interme-
diate Ito (solid, Gto = 0.19 mS/cm2) and a spike AP with a high
Ito (dashed, Gto = 0.3 mS/cm2) from the AP model of the spike-
and-dome case. (c) Example traces of V, [Ca2+]i, and [Na+]i vs
time from the original TP04 model under periodic pacing with a
period of T. an is the APD of the nth beat, which is defined as the
time duration when V � −75 mV. dn is the diastolic interval of the
nth beat [dn−1 for the (n − 1)th beat], which is defined as the time
duration when V < −75 mV. cn and sn are the values of [Ca2+]i and
[Na+]i measured at the moment before the stimulus is given for the
nth beat. In physiology, the [Ca2+]i trace during an AP is also called
a Ca2+ transient.

mias [7,46]. The second condition is relevant to a disease
called Brugada syndrome [47,48]. A potential mechanism of
arrhythmias for Brugada syndrome is called phase-2 reentry,
which is known to be caused by an AP phenomenon called
spike-and-dome morphology [Fig. 2(b)] [49–55]. It has been
shown that complex APD dynamics, including alternans and
chaos, can occur due to the spike-and-dome AP morphology
[19,54,56,57]. Under both diseased conditions, an all-or-none
behavior (to or not to exhibit an EAD or a spike-and-dome
morphology) gives rise to steep APD responses to the change
of ion concentrations, which are necessary for the complex
APD dynamics as predicted in the IM model. Under both
conditions, we can change the NCX activity to change the
feedback properties between APD and [Ca2+]i to result in
different bifurcations leading to either oscillatory dynamics
or high periodicity and chaos. The results are presented in
Secs. III C and III D.

(4) To quantitatively capture the bifurcations and complex
APD dynamics, we use the simulation data of the AP model
under the two diseased conditions to reconstruct IM functions
and then carry out simulations of the IM model. Under both
conditions, the IM model can accurately capture the bifurca-
tions and APD dynamics of the AP model. The results are
presented in Secs. III C and III D.

The general conclusions from this study are that ion
accumulation can play important roles in the genesis of ar-
rhythmogenic complex APD dynamics in cardiac diseases.
The bifurcations and complex dynamics, as well as the cor-
responding physiological and dynamical mechanisms, can be
accurately revealed using low-dimensional IM approaches.

II. COMPUTATIONAL MODELS AND METHODS

A. The AP model

We carry out single-cell simulations using a human ven-
tricular AP model developed by ten Tusscher et al. in 2004
[34], and we abbreviate it as the TP04 model. The AP model
contains multiple differential equations with complex func-
tions to describe the dynamics of voltage (V), intracellular ion
concentrations, as well as multiple gating variables regulating
ionic currents. The differential equation for V is

Cm
dV

dt
= −Iion + Isti, (1)

where Cm = 1 μF/cm2 is the membrane capacitance and Isti

is the stimulus current density, which is a 2-ms square pulse
of amplitude 26 μA/cm2. Iion is the total ionic current density,
which is composed of the following individual ionic currents,
i.e.:

Iion = INa + IK1 + Ito + IKr + IKs + ICa,L + INCX + INaK

+ IpCa + IpK + IbCa + IbNa. (2)

The ionic currents are functions of V, gating variables, and
ion concentrations. The gating variables are also described by
differential equations in the form of the Hodgkin-Huxley for-
mulation [58]. The ion concentrations are determined by the
balance of the corresponding ionic currents. The differential
equation for [Na+]i is

d[Na+]i

dt
= − INa + IbNa + 3INaK + 3INCX

VcF
, (3)

where Vc is the cell volume and F is the Faraday constant. The
differential equation for [K+]i is

d[K+]i

dt
= − IK1 + Ito + IKr + IKs − 2INaK + IpK + Isti

VcF
(4)

For [Ca2+]i, the differential equation for the total [Ca2+]i
([Ca2+]itotal) is

d[Ca2+]itotal

dt
= − ICa,L + IpCa + IbCa − 2INCX

2VcF

+ Ileak − Iup + Irel, (5)

where [Ca2+]itotal includes both free cytosolic Ca2+ con-
centration ([Ca2+]i) and buffered cytosolic Ca2+ concen-
tration ([Ca2+]ibufc), i.e., [Ca2+]i = [Ca2+]itotal − [Ca2+]ibufc,
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and [Ca2+]ibufc = [Ca2+]i×bufc
[Ca2+]i+Kbufc

. Similarly, for SR Ca2+ con-

centration, the differential equation for the total [Ca2+]SR
([Ca2+]SRtotal) is

d[Ca2+]SRtotal

dt
= Vc

VSR
(−Ileak + Iup − Irel ). (6)

One can then calculate the free SR Ca2+ concen-
tration ([Ca2+]SR) as the total SR Ca2+ concentration
minus buffered SR Ca2+ concentration, i.e., [Ca2+]SR =
[Ca2+]SRtotal − [Ca2+]SRbufc.

For definitions of variables and parameters, detailed math-
ematical formulations of the ionic currents, as well as the
differential equations of the other variables, one is refered to
the original article by ten Tusscher et al. [34]. For numerical
simulations of the differential equations, an adaptive time step
of �t = 0.005 to 0.05 ms is used.

B. Model modifications for the EAD case

To generate EADs, we make the following modifications to
the TP04 model [20]: Ito and IKr are removed, the maximum
conductance of IKs is reduced, i.e., GKs = 0.125 mS/cm2,
and ICa,L is substituted by the formulation by Huang et al.
[59]. We vary the maximum NCX activity (kNCX) to result
in different AP dynamics. Figure 2(a) shows an AP without
EADs at a lower ICa,L conductance and an AP with an EAD
at a highr ICa,L conductance. EAD is an all-or-none behavior
which causes discontinuous changes of APD during the tran-
siotions between an AP without EAD and an AP with EAD.
Except for Fig. 2(a), GCa,L = 0.00014 cm3/µF/s is used in all
simualtions for the EAD case.

C. Model modifications for the case
of spike-and-dome AP morphology

For the case of spike-and-dome AP morphology, we sub-
stitute Ito in the original TP04 model with Ito, f by Mahajan
et al. [60]. Other parameter changes of the original TP04
model include decreasing GCa,L, i.e., GCa,L → 0.89GCa,L, and
increasing GKr, i.e., GKr → 1.45GKr. Spike-and-dome AP
morphology is an AP property induced by Ito: spike-and-dome
AP occurs at intermediate Ito and spike AP occurs when Ito

is large [Fig. 2(b)]. Spike-and-dome AP morphology is also
an all-or-one behavior which causes discontinuous changes
of APD during the transitions between a spike AP and a
spike-and-dome AP. Except for Fig. 2(b), Gto = 0.19 mS/cm2

is used in all simulations for the spike-and-dome case.

D. Definitions of the variables, parameters,
and units for the IM model

In the IM model, we use APD (an), diastolic concentrations
of Ca2+ (cn) and Na+ (sn) as variables [see Fig. 2(c)]. APD is
defined as the time duration in which V > −75 mV. cn and sn

are the corresponding concentrations at the time right before
each beat. In the IM model and the relevant functions, the units
of T and an are milliseconds (ms), and the units of cn and sn

are millimolars (mM). For Ca2+ concentration in the SR (cSR),
the unit is also mM. The values of the parameters in the IM

model are chosen according to this set of units and the units
of these parameters are not explicitly listed in this paper.

E. Plotting the simulation data

For ion concentrations, the unit mM is used, but for label-
ing purpose, micromolar (μM) is used for cn in all plots. For
the bifurcation diagrams in this paper, we drop up to 1000
beats to get rid of the transient process and then plot the
recordings from the following 500 to 2000 beats for each T
or kNCX.

III. RESULTS

A. Memory effects due to intracellular ion accumulation

To show the memory effects of ion accumulation on APD,
we use the same pacing protocol as in the experiments shown
in Fig. 1(a). We first pace the cell at T = 1 s for 1000 s (or
1000 beats) for the cell to reach its steady state, and then
suddenly switch the pacing period to T = 0.5 s. After 2000
beats, we switch it back to T = 1 s. Figure 3(a) shows an,
cn, sn, and pn (diastolic [K+]i right before each beat) versus n.
After switching T from 1 to 0.5 s, it takes more than 2000 beats
to reach the steady state, and an changes from 270 to 230 ms.
Note that the time taken to reach the steady state is much
longer than that from the human heart shown in Fig. 1(a). To
distinguish the contributions of intracellular Ca2+, Na+, and
K+ accumulation, we clamp [K+]i and [Na+]i at constants
separately. Clamping [K+]i at a constant exhibits only very
small effects on APD, [Na+]i, and [Ca2+]i [Fig. 3(b)]. How-
ever, clamping [Na+]i at a constant exhibits large effects on
APD, [K+]i, and [Ca2+]i [Fig. 3(c)]. After the sudden switch
of T, APD only exhibits a 5-ms change, from 263 to 258 ms,
much smaller than that in the free-running case. [Ca2+]i
changes from 0.072 to 0.12 µM, which is also smaller. Note
that during the 2000 beats faster pacing time window (from
n = 1000 to n = 3000), [K+]i changes from 140 to 125 mM,
but APD only changes less than 1 ms and a very small change
occurs in [Ca2+]i, indicating again that [K+]i only exhibits
very small effects on APD and [Ca2+]i. Therefore, in this
study, we do not include [K+]i in the IM model and will clamp
[K+]i in certain simulations of the AP model as clarified
later.

B. Development of the IM model

As shown in previous studies [18–20,32,33], ion accu-
mulation can induce complex APD dynamics. In our recent
study [20], we developed an IM model incorporating the
ion accumulation to describe the APD dynamics. Here, we
describe in detail the process of developing the IM model
[see Fig. 2(c) for the definition of the variables used in
the IM model]. Since [K+]i exhibits little effects on APD
dynamics (Fig. 3), we ignore its contribution in the IM
model.

1. Formulating the IM equations for cn and sn

We first seek to formulate the IM equations for cn and sn.
Based on simulation data of the AP model [Figs. 4(b) and
4(c)], for fixed T and APD, sn decays exponentially and cn

decays biexponentially. If sn is also fixed ([Na+]i clamped),
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FIG. 3. Responses of APD, [Ca2+]i, [Na+]i, and [K+]i to sudden changes of pacing period T in the original TP04 model. (a) an, cn, sn, and
pn (diastolic [K+]i right before each beat) vs beat number n in a simulation in which T is switched from T = 1 s to T = 0.5 s and back to
T = 1 s. (b) Same as (a) but [K+]i is clamped at [K+]i = 138 mM. (c) Same as (a) but [Na+]i is clamped at [Na+]i = 12 mM.

cn then decays exponentially. Based on this observation, we
describe cn and sn by the following IM equations:

cn+1 = cn − βc(cn − c̄), (7)

sn+1 = sn − βs(sn − s̄), (8)

where c̄ and s̄ are the steady-state concentrations, and βc and
βs are two parameters determining how fast cn and sn ap-

proach their steady states. These two parameters describe the
accumulation rates of the two ions. One can rewrite Eqs. (7)
and (8) as

cn+1 − c̄ = (1 − βc)(cn − c̄), (9)

sn+1 − s̄ = (1 − βs)(sn − s̄). (10)

FIG. 4. [Ca2+]i and [Na+]i behaviors under voltage-clamp conditions. (a) Schematic plot of the voltage-clamp protocol. T is the period,
an is APD, and dn is the diastolic interval. cn and sn are the values at the time when the voltage is changed from −85 to 0 mV. (b) Left: sn vs
n starting from an initial condition away from its steady-state value s̄. an = a = 300 ms and T = 1.5 s. The line is a single-exponential fit:
sn = 13.26−1.71e−n/124.2 mM. Right: cn vs n from the same simulation. The line is a biexponential fit: cn = (94−16e−n/8.1 − 14e−n/127.8) ×
10−6 mM. (c) cn vs n for [Na+]i clamped at 13.26 mM. The line is a single-exponential fit: cn = (94−28e−n/8.1) × 10−6 mM. (d) Left: c̄
vs clamped [Na+]i. The line is a linear fit: c̄ = (−14.6 + 8.2s̄) × 10−6 mM. Right: c̄SR vs clamped [Na+]i. The line is a linear fit: c̄SR =
−0.68 + 0.12s̄ mM.
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If c̄ and s̄ are constant, then the solution of Eq. (9) or
Eq. (10) takes the following form: yn−ȳ = (1−β )n(y0−ȳ) =
enln(1−β )(y0−ȳ). When βc = 1 or βs = 1, cn or sn instanta-
neously reaches its steady state, c̄ or s̄. When βc = 0 or βs =
0, cn or sn will never reach its steady state, which corresponds
to the case of holding the concentration constant or being
clamped. Therefore, the values of βc and βs are between 0
and 1. One can calculate β using data from simulations of
the AP model under voltage-clamp conditions as in Fig. 4(a).
For instance, using the data and the fitting functions (cn =
0.000 094−0.000 028e−n/8.1 and sn = 13.26−1.71e−n/124.2)
shown in Figs. 4(b) and 4(c), one obtains βc and βs as fol-
lows: ln(1 − βc) = −1/8.1, giving rise to βc = 0.116, and
ln(1 − βs) = −1/124.2, giving rise to βs = 0.008. In the
computer simulations of the IM model, we set βc and βs close
to these values. Since the accumulation speed of [Na+]i is
much slower than that of [Ca2+]i, βs is much smaller than βc,
i.e.,

0 < βs � βc < 1. (11)

2. Determining the dependence of c̄ and s̄ on an and T

When T and an are fixed in the voltage-clamp protocol, c̄
and s̄ are constants. However, their values are different with
different T and an. In other words, c̄ and s̄ are functions of T
and an. Moreover, c̄ also depends on [Na+]i, which is mainly
determined by the NCX activity. Therefore, we assume that c̄
is a function of T, an, and sn, i.e.,

c̄ = u(T, an, sn). (12)

Theoretically, s̄ may also depend on [Ca2+]i; however, we
ignore this dependence and assume that s̄ is a function of T
and an, i.e.,

s̄ = w(T, an). (13)

There are two reasons for this assumption. First, due to
intracellular Ca2+ cycling, we cannot clamp [Ca2+]i at a con-
stant to determine the dependence of s̄ on [Ca2+]i. Second,
[Ca2+]i equilibrates much faster than [Na+]i (βs � βc); the
beat-to-beat influence of [Ca2+]i on [Na+]i is small, i.e., a
large change in [Ca2+]i may only cause a very small change to
[Na+]i due to very slow response. For example, in Fig. 4(b),
in the presence of varying cn, sn still decays exponentially.

To reveal the dependence of c̄ and s̄ on T, an, and sn, we
use the voltage-clamp protocol shown in Fig. 4(a) in which we
can either fix or vary T and an (as parameters) to observe the
responses of [Ca2+]i and [Na+]i. We can also clamp [Na+]i to
observe the response of [Ca2+]i alone.

a. Dependence of c̄ on sn. To determine this dependence,
besides fixing T and an, we also clamp [Na+]i at different
levels to obtain c̄. As shown in Fig. 4(d), c̄ increases almost
linearly with the clamped [Na+]i. Similar linear relationships
are obtained under the EAD and the spike-and-dome condi-
tions. Note that the steady-state SR Ca2+ concentration (c̄SR)
also increases linearly with the clamped [Na+]i, indicating
that c̄ is linearly proportional to c̄SR. Since [Ca2+]i accu-
mulates much faster than [Na+]i does, c̄ can quickly adjust
to the [Na+]i change, and thus we assume the following c̄
formulism: c̄ = u(T, an) + δ(sn−�).

b. Dependence of c̄ and s̄ on T. Here we use the
voltage-clamp protocol with a fixed an. Figure 5 shows the
simulation results for the three cases: The original TP04
model [Fig. 5(a)], the EAD case [Fig. 5(b)], and the spike-
and-dome case [Fig. 5(c)]. Since we fix an = 300 ms, we
scan T starting at 320 ms to cover the short diastolic interval
(dn = T − an) range. The simulation data indicate that for
large T, both c̄ and s̄ exhibit inverse relations with T in the
form A

T +T0
+ B. For short diastolic intervals, one observes

(1 − e−(T −an )/τ ). We give the specific functions fitted from the
simulation data for each case in the Fig. 5 caption, which are
in the following form: A(1−e−(T −an )/τ )

T +T0
+ B.

c. Dependence of c̄ and s̄ on an. We fix T but vary an to
obtain the dependence of c̄ and s̄ on an (lower panels in Fig. 5).
For large an, c̄ and s̄ exhibit linear dependence on an, i.e.,
A + Ban. For small an, they follow (1−Ce−(an+D)/τ ). We give
the specific functions fitted from the simulation data for each
case in the Fig. 5 caption, which are in the following form:
(A + Ban)(1−Ce−(an+D)/τ ). However, for simplicity and ar-
guments mentioned below, we set C = 1 and D = 0 for the
functions we construct. This choice allows that when an → 0,
c̄ and s̄ approach their quiescent state values (see below).

Based on the information above, we construct the follow-
ing explicit functions for c̄ and s̄:

c̄ = u(T, an, sn) = (γc0 + γcan)

T + Tc

(
1 − e−an/τac

)
(1 − e−(T −an )/τdc )

+ δ(sn − �) + c0, (14)

s̄ = w(T, an) = (γs0+γsan)

T + Ts

(
1−e−an/τas

)
(1 − e(T −an )/τds ) +s0.

(15)

When T → ∞, or an → 0, or dn = (T − an) → 0, c̄ →
δ(s0−�) + c0 and s̄ → s0, which correspond to the steady-
state values of [Ca2+]i and [Na+]i of a quiescent cell.
Equations (14) and (15) will be used for simulations of the
IM model in this study.

3. Determining the dependence of an on cn and sn

We then seek the functional dependence of an on cn and
sn. In general, one can define an = g(dn−1, cn, sn), i.e., APD
depends not only on ion concentrations but also on diastolic
interval. Here, we assume that at slow pacing, the ion channels
completely recover at each beat, and thus an is independent of
dn−1 but only a function of cn and sn, i.e.,

an = g(cn, sn). (16)

Since g(cn, sn) is a two-variable function depending on
both cn and sn, it becomes nontrivial to be defined. To gain
insights into how an depends on cn and sn, we carry out
simulations using random initial conditions for sn, cn, and cSR,
and measure the quantities many beats later to avoid transient
effects. We plot an (color map) versus cn and sn in Fig. 6(a),
an versus sn in Fig. 6(b), and an versus cn in Fig. 6(c). Al-
though the plots are scattered, as shown in the color map, the
boundaries between two color scales (iso-APD contour lines)
are almost linear, indicating that cn and sn are constrained with
a linear relationship. Therefore, one can introduce a variable
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FIG. 5. Dependences of c̄ and s̄ on T and an under different conditions. Solid (s̄) and open (c̄) circles are simulation data using the same
voltage-clamp protocol as in Fig. 4(a) and lines are plots of the corresponding fitting functions. (a) Original TP04 model. Upper: c̄ and s̄ vs T
for an = 300 ms. c̄ and s̄ were taken at the 1200th beat for each T. The fitting functions are c̄ = 0.115(1 − e−(T −300)/72)/(T −250) mM and s̄ =
6.2 + 14300

T +520 (1 − e−(T −300)/60) mM. Lower: c̄ and s̄ vs an for T = 1500 ms. The fitting functions are c̄ = (87 + 0.058an )(1−0.8e−an/160) × 10−6

mM and s̄ = (15−0.0052an)(1−0.4e−(an+25)/105) mM. (b) The EAD case with kNCX = 3 nA/pF. Upper: c̄ and s̄ vs T for an = 300 ms.
The fitting functions are c̄ = 0.055(1 − e−(T −300)/1.5)/(T −120) mM and s̄ = 5.7 + 22400

T +2000 (1 − e−(T −300)/40) mM. Lower: c̄ and s̄ vs an for
T = 2500 ms. The fitting functions are c̄ = (13 + 0.049an)(1 − e−an/2.2) × 10−6 mM and s̄ = (10.3 + 0.0012an )(1 − e−an/1.5) mM. (c) The
spike-and-dome case with kNCX = 3 nA/pF. Upper: c̄ and s̄ vs T for an = 300 ms. The fitting functions are c̄ = 0.096(1 − e−(T −300)/20)/(T −35)
mM and s̄ = 6.95 + 17 085(1 − e−(T −300)/65)/(T + 970) mM. Lower: c̄ and s̄ vs an for T = 1600 ms. The fitting functions are c̄ =
(51 + 0.023an )(1−0.7e−an/120) × 10−6 mM and s̄ = (15−0.005an )(1−0.32e−(an+25)/75) mM.

FIG. 6. Transforming a two-variable function into a one-variable function for the original TP04 model. (a) Color map of an vs cn and sn.
At t = 0 (after the system reaches steady state), [Ca2+]i, [Na+]i, and [Ca2+]SR are reset randomly by drawing from the intervals [0.000 05,
0.000 09], [9.75, 13.75], and [0, 1] mM, respectively. The cell is paced with T = 1 s, and cn, sn, and cSRn are taken at the end of beat No. 10.
(b) an vs sn from the same dataset. (c) APD vs cn from the same dataset. (d) an vs zn after the transformation zn = sn + 43 000cn. The straight
line is a linear fit with the following function: an = 402−9.2zn. (e) cn vs cSRn from the same dataset. (f) an vs zn using the transformation
zn = sn + 3.2cSRn. The straight line is a linear fit with the following function: an = 392−9.3zn.
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zn with the following linear transformation:

zn = sn + αcn, (17)

and then use this transformation to reduce the two-variable
function Eq. (16) into a one-variable one, i.e.,

an = g (zn). (18)

Figure 6(d) replots the data in Figs. 6(a)–6(c) using the
transformation zn = sn + 43 000cn, which causes the data
points to fall in a very narrow band. A linear fit of the
transformed data gives rise to an = 402−9.2zn. Therefore,
with the linear transformation, we can reduce the two-variable
function into a one-variable function, and we will show later
that the linear transformation works well under the diseased
conditions.

Note that cn is the diastolic [Ca2+]i before each beat, and
APD is affected by the Ca2+ transient, which is more related
to the peak and duration of the Ca2+ transient. These proper-
ties are more causally related to SR Ca2+ level and the Ca2+

release channels (RyRs). One may also seek the functional
relation of APD with SR Ca2+ concentration (cSR). Using
the same data, if one plots cn against cSRn, they exhibit a
linear relationship [Fig. 6(e)]. Therefore, one can use a similar
linear transformation, i.e., zn = sn + αcSRn to transform the
two-variable function into a one-variable function, as shown
in Fig. 6(f).

4. Feedbacks between [Ca2+]i and APD
and between [Na+]i and APD

Because APD affects both [Ca2+]i and [Na+]i, and [Ca2+]i
and [Na+]i affect APD, feedback loops form between APD
and the ion concentrations. Here we describe the feedback
loops based on our simulations of the AP model under the
three conditions.

a. Feedback between APD and [Ca2+]i. In previous stud-
ies [61–66], the couplings between [Ca2+]i and APD were
referred to as Ca2+-to-APD coupling and APD-to-Ca2+ cou-
pling. The APD-to-Ca2+ coupling and Ca2+-to-APD coupling
form a feedback loop, and depending on the signs of the
couplings, the feedback can be negative or positive. For
instance, for the original TP04 model, the APD-to-Ca2+ cou-
pling is positive since longer APD results in a higher [Ca2+]i
[Fig. 5(a)], and the Ca2+-to-APD coupling is negative since
a higher [Ca2+]i gives rise to a shorter APD [Fig. 6(c)].
Therefore, the feedback between [Ca2+]i and APD is negative
for the original TP04 model. As we will show later, we can
change a negative feedback loop between [Ca2+]i and APD to
a positive one by enhancing NCX, which then alters the dy-
namics for both the EAD and spike-and-dome cases. Note that
the coupling relationship also depends on the pacing period
T [65], and we only focus on slow pacing in this study. Note
that the Ca2+-to-APD coupling determines the sign of α in the
transformation [Eq. (17)], i.e., for negative coupling, α > 0,
and for positive coupling, α < 0. Because the APD-to-Ca2+

coupling is always positive ([Ca2+]i is higher for a longer
APD; see Fig. 5), then the sign of α determines the sign of
the feedback loop, i.e., the feedback is positive if α < 0 and
negative if α > 0.

b. Feedback between APD and [Na+]i. The feedback loop
between [Na+]i and APD is more complex since the depen-
dence of [Na+]i on APD is nonmonotonic. For the original
TP04 and the spike-and-dome case, [Na+]i first increases and
then decreases with APD. Because we observe that in general
APD decreases with [Na+]i [e.g., Fig. 6(b)], therefore, when
APD is small, the feedback is negative, but it becomes positive
when APD is large. For the EAD case, [Na+]i increases with
APD, and thus the feedback is always negative. Note that the
dependence of c̄ and s̄ on an shown in Fig. 5 are obtained
under voltage-clamp conditions, and they may differ from
those under free-running conditions.

5. Using the IM model to capture the memory effects
of the original TP04 model

As a first check of the IM model, we examine if the IM
model can capture the memory effects of the TP04 model
shown in Fig. 3. Figure 7(a) plots the dependence of c̄ and
s̄ on T and APD using Eqs. (14) and (15), which are similar
to those in Fig. 5(a). Figure 7(b) uses the IM model [iterating
Eqs. (7), (8), (14), (15), and (19)] to simulate the decay of cn

and sn using the same protocol as in Figs. 4(b) and 4(c), i.e.,
fixing an = 300 ms with free-running sn (upper two panels)
and clamped sn (lower panel). The results are the same as
those shown in Figs. 4(b) and 4(c). That is, for free-running sn,
sn decays exponentially with n but cn decays biexponentially
with n, and for clamped sn, cn decays exponentially with n.
Figure 7(c) shows an, cn, and sn versus n for the pacing period
switching from T = 1 s to T = 0.5 s and back to T = 1 s
with free-running sn. The IM model gives rise to the same
responses of an, cn, and sn as those in the original TP04 model
shown in Fig. 3(a). After sn is clamped at 12 mM, an and cn

exhibit responses similar to those in Fig. 3(c). These results
show that the IM model can well capture the properties of the
detailed AP model, not only qualitatively but also quantita-
tively.

C. Bifurcations and complex dynamics revealed
by the IM model

We use the IM model to perform stability analyses and
carry out computer simulations to reveal the bifurcations and
the mechanisms of the complex APD dynamics.

1. Linear stability analysis

Note that only two equations of the three equations are free,
and one can eliminate an by substituting it in Eqs. (7) and (8)
with Eq. (16) [or Eq. (18)]. The linearization of Eqs. (7) and
(8) around the steady state is

�cn+1 =
[

1 − βc

(
1 − ∂ c̄

∂cn

)]
�cn + βc

∂ c̄

∂sn
�sn, (19)

�sn+1 =
[

1 − βs

(
1 − ∂ s̄

∂sn

)]
�sn + βs

∂ s̄

∂cn
�cn, (20)

where ∂ c̄
∂cn

= ∂u
∂an

∂an
∂cn

, ∂ c̄
∂sn

= ∂u
∂sn

+ ∂u
∂an

∂an
∂sn

, ∂ s̄
∂sn

= ∂w
∂an

∂an
∂sn

, and
∂ s̄
∂cn

= ∂w
∂an

∂an
∂cn

. Using an = g(zn) and zn = sn + αcn, one has
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FIG. 7. Memory effects simulated using the IM model. (a) c̄ (open circles) and s̄ (solid circles) vs T with an = 300 ms (left) and c̄ and s̄
vs an with T = 1 s using Eqs. (14) and (15) with the following parameters: γc0 = 0.0075, γc = 0.000 058, τac = 100, τdc = 70, Tc = −250,
δ = 8.2 × 10−6, � = 6.2, c0 = 0, γs0 = 13 500, γs = −5.2, τas = 70, τds = 60, s0 = 6.2, and Ts = 520. βc = 0.12 and βs = 0.01. These
parameters are either the same as or similar to the ones in the fitting functions in Fig. 5(a) for the original TP04 model [Note: due to T
in the denominator in Eqs. (14) and (15) being in the order of 1000, the γ values are 1000-fold of the corresponding values in the fitting
functions in the lower panel in Fig. 5(a)]. (b) Simulating the voltage-clamp condition with an = 300 ms and T = 1 s in the IM model. Upper
and middle panels: cn and sn vs n. The lines are exponential fits: sn = 13.95−2.45e−n/99.5 mM and cn = (95−13e−n/7.8 − 22e−n/99.5) × 10−6

mM. Lower panel: cn vs n when sn is clamped at 13.95 mM. The same functions of c̄ and s̄ as in (a) are used. The line is an exponential fit:
cn = (95−38e−n/7.8) × 10−6 mM. (c) Simulating the memory effect in the IM model. an, cn, and sn vs n for T changes from 1 s (n < 500) to
0.5 s (500 < n < 1200) and back to 1 s (n > 1200). (d) Same as (c) but sn is clamped at 12 mM. For (c) and (d), the same functions for c̄ and
s̄ as in (a) are used except γs0 = 10 000. an = g(zn) = 402−9.2zn and zn = sn + 43 000cn are used.

∂an
∂cn

= ∂g(zn )
∂zn

∂zn
∂cn

= α
∂g(zn )
∂zn

and ∂an
∂sn

= ∂g(zn )
∂zn

∂zn
∂sn

= ∂g(zn )
∂zn

. Denot-

ing ua = ∂u
∂an

, us = ∂u
∂sn

, wa = ∂w
∂an

, and g′ = ∂g(zn )
∂zn

, then
Eqs. (19) and (20) become

�cn+1 = [1 − βc(1 − αuag′)]�cn + βc(us + uag′)�sn,

(21)

�sn+1 = [1 − βs(1 − wag′)]�sn + βsαwag′�cn. (22)

We rewrite Eqs. (21) and (22) into the vector form, i.e.,(
�cn+1

�sn+1

)
= J

(
�cn

�sn

)
, (23)

where J is the Jacobian matrix, i.e.,

J =
[

1 − βc + αβcuag′ βc(us + uag′)

βsαwag′ 1 − βs + βswag′

]
. (24)

The stability of the steady state and bifurcations can be
obtained by the properties of the eigenvalues of J in Eq. (24).
However, based on our simulations, there are limitations in
choosing the parameters. As shown in Figs. 4 and 5, the values
of βc and βs are between 0 and 1 and βs � βc [Eq. (11)].
The Na+-to-APD coupling is mainly negative [e.g., APD is
a decreasing function of [Na+]i as shown in Fig. 6(b)]. The
Ca2+-to-APD coupling can be either positive (α < 0, pro-
moted by high NCX activity; see Fig. 13 and Fig. 17) or
negative (α > 0, promoted by low NCX activity; see Fig. 14
and Fig. 18). The APD-to-Ca2+ coupling is positive (red sym-
bols in the lower panels in Fig. 5), i.e., c̄ depends positively
on an, which indicates that ua > 0. [Ca2+]i is proportional
to [Na+]i, i.e., c̄ increases with sn linearly, indicating that
us = δ > 0 [Fig. 4(d)]. For the EAD condition, APD-to-Na+

coupling is positive [lower panel in Fig. 5(b)], i.e., s̄ increases
with an, indicating wa > 0. In the control case [Fig. 5(a)]
or the spike-and-dome case [Fig. 5(c)], s̄ increases and then
decreases as an increases, which indicates that APD-to-Na+
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TABLE I. Coupling conditions observed in the AP model and used in the IM model for simulating the bifurcations and complex APD
dynamics. “+” in parentheses indicates positive coupling and “−” indicates negative coupling.

AP conditions Hopf bifurcation (oscillatory) Period-doubling bifurcation (chaotic)

Na+-to-APD (−): g′ < 0 Na+-to-APD (−): g′ < 0
APD-to-Ca2+ (+): ua > 0 APD-to-Ca2+ (+): ua > 0
Ca2+-to-APD (+): α < 0, αg′ > 0, high NCX Ca2+-to-APD (−): α > 0, αg′ < 0, low NCX

EAD APD-to-Na+ (+): wa > 0 APD-to-Na+ (+): wa > 0
Fig. 9, Fig. 10, Fig. 11, Fig. 13 Fig. 9, Fig. 10, Fig. 12, Fig. 14

Spike and dome APD-to-Na+ (+/−): wa > 0 or wa < 0 APD-to-Na+ (+/−): wa > 0 or wa < 0
Fig. 15, Fig. 16, Fig. 17 Fig. 15, Fig. 16, Fig. 18

coupling can be either positive (wa > 0) or negative (wa < 0).
For βs � βc, wa has little effect on the bifurcations and so
does the sign of wa. Therefore, by applying these constraints,
the major parameter that determines the dynamics in the AP
model is Ca2+-to-APD coupling, i.e., the magnitude and sign
of α. The coupling conditions observed in the AP model are
listed in Table I. We first perform a general stability analysis
but also consider the information or conditions observed in the
AP models. We then carry out simulations of the IM model by
using the conditions of and functions reconstructed from the
AP model to recapitulate the bifurcations and dynamics of the
AP model. The corresponding bifurcations and figures of the
results are listed in Table I.

Here, we perform a general stability analysis and discuss
the bifurcations by considering the parameter information
shown in Table I. Defining τ = tr(J) and � = det(J) to be
the trace and determinant of J, then the two eigenvalues are

λ = (τ ±
√

τ 2 − 4�)/2. (25)

Using the stability criteria for IMs combined with the in-
formation of βc, βs, ua, us, wa, and g′ mentioned above, we
obtain the bifurcations and the physiological conditions for
the occurrence of the bifurcations as follows:

a. τ 2−4� < 0, Hopf bifurcation. In this case, the
eigenvalues are a pair of complex conjugates, i.e., λ =
[τ ± i

√
−(τ 2−4�)]/2. When |λ| = √

� > 1, instability oc-
curs via a Hopf bifurcation, which leads to the following
stability criterion, i.e., when

[waβs(1 − βc) + uaαβc(1 − βs) − βsβcuswaα]g′

> βc + βs − βcβs, (26)

the steady state is unstable. Because βc and βs are between 0
and 1, then βc + βs > βcβs always holds, and thus the right
side of Eq. (26) is always positive. This requires the left side
of Eq. (26) to be positive to satisfy the stability criterion.
Considering the fact that βs � βc, one can simplify Eq. (26)
to uaαβcg′ > βc or

uaαg′ > 1. (27)

Because ua > 0 and g′ < 0, α < 0 is required to sat-
isfy Eq. (27). This implies that for the Hopf bifurcation
to occur, a positive feedback between APD and [Ca2+]i
is required. Theoretically, when βs is large and wa < 0,
Eq. (26) can be satisfied when α � 0. In other words,
when the feedback between APD and [Na+]i is positive,

a positive feedback between APD and [Ca2+]i may not be
required.

A limit case is when βs = 0, corresponding to [Na+]i being
clamped at a constant. Under this condition, the system is
reduced from a two-variable system (both sn and cn) to a
one-variable system (cn only). The stability criterion, Eq. (27),
then becomes the criterion for bistability to occur in the one-
variable system. Bistability under clamped [Na+]i was indeed
observed in the AP models in previous studies [20,32] in
which Hopf bifurcations occur when [Na+]i is free running.

In Fig. 8, we plot the stability boundaries for βs = 0
(short-dashed line) and βs = 0.15 (solid line), showing that
a larger βs requires a steeper g(zn) for the Hopf bifurcation
to occur. This indicates that a faster [Na+]i accumulation rate
suppresses this instability.

b. τ 2−4� > 0, period-doubling bifurcation. In this case,
the two eigenvalues are real and when the smaller one λ =
(τ−√

τ 2−4�)/2 < −1, or τ + 2 <
√

τ 2−4�, instability oc-
curs via a period-doubling bifurcation, which leads to the
following stability criterion, i.e., when

[waβs(2 − βc) + uaαβc(2 − βs) − βsβcuswaα]g′

< −(2 − βc)(2 − βs), (28)

FIG. 8. Stability boundaries of the steady state in the g′-α
space from the IM model. us = δ = 4 × 10−6, ua = 0.04 × 10−6,
wa = 0.005, and βc = 0.3. Period-doubling bifurcations for βs = 0.2
(solid) and βs → 0 (dashed). Hopf bifurcations for βs = 0.15 (solid)
and βs → 0 (short dashed). Saddle-node bifurcation (dashed-dotted).
The steady state is stable above but unstable below these boundaries.
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FIG. 9. Bifurcations and complex dynamics of the IM model with a Hill g(zn) function. (a) Phase diagram showing the unstable regions in
α-T space. (b) Bifurcation diagrams showing an, cn, and sn vs α for T = 2.5 s. (c) An example of oscillatory behavior from unstable region I
with α = −0.03 × 106. (d) An example of chaotic behavior from unstable region II with α = 0.132 × 106. The parameters for the functions
of c̄ and s̄ [Eqs. (14) and (15)] are γc0 = 0, γc = 0.0002, τac = 2.2, τdc = 1.5, Tc = 2000, δ = 4 × 10−6, � = 6.2, c0 = 0, γs0 = 0, γs = 30,
τas = 1.5, τds = 40, s0 = 6.2, and Ts = 2000. The parameters for the Hill function [Eq. (31)] are amax = 1000 ms, amin = 600 ms, h = 500,
and kd = 11.5 + 0.000 05α. βc = 0.3 and βs = 0.01.

the steady state is unstable. Similarly, when βs � βc, Eq. (28)
can be reduced to

uaαβcg′ < −2 + βc. (29)

Because the right side of Eq. (28) or Eq. (29) is always
negative, α > 0 is needed to satisfy the stability criterion, in
particular when βs � βc. α > 0 corresponds to the feedback
between APD and [Ca2+]i being negative. However, when
βs is large, α > 0 may not be always required (e.g., the
period-doubling curve for βs = 0.2 in Fig. 8 ends at α < 0)
to satisfy Eq. (28). This is because the feedback between
APD and [Na+]i is generally negative; this negative feedback
can play the same role as the one between APD and [Ca2+]i
in promoting the period-doubling bifurcation. In Fig. 8, we
plot the stability boundaries βs = 0 (dashed) and for βs = 0.2
(solid). A larger βs requires a less steep g(zn) for the period-
doubling bifurcation to occur, indicating that a faster [Na+]i
accumulation rate promotes this instability.

c. τ 2−4� > 0, saddle-node bifurcation. In this case, when
the larger of the two eigenvalues λ = (τ + √

τ 2−4�)/2 > 1,
or 2−τ <

√
τ 2−4�, instability occurs via a saddle-node

bifurcation, leading to the condition

(wa + uaα + uswaα)g′ > 1. (30)

Note that Eq. (30) is independent of βc and βs. To satisfy
Eq. (30), α < 0 is required since g′ < 0, i.e., this bifurcation is
promoted by the positive feedback between APD and [Ca2+]i.
However, theoretically, because wa < 0 can occur, Eq. (30)
can be satisfied even when α > 0. In other words, when wa <

0, the feedback between APD and [Na+]i becomes positive,
and thus it can give rise to the saddle-node bifurcation. The
dashed-dotted curve in Fig. 8 is a stability boundary of this
bifurcation. The saddle-node bifurcation leads to bistability in
the system. Note that this stability boundary can intersect with
that of the Hopf bifurcation, and thus one may see bistability
or oscillations depending on the choice of the parameters,
such as βs and α.

2. Bifurcations and complex dynamics using
a Hill-type function of g(zn)

To demonstrate the bifurcations predicted by the stability
analysis and the complex dynamics induced by the feedback
loops and slow ion accumulation, we carry out computer sim-
ulations of the IM model [Eqs. (7) and (8)] using the coupling
conditions of the EAD case as shown in Table I and a Hill
function for Eq. (18), i.e.,

an = g(zn) = amin + amax − amin

1 + ( zn
kd

)h
, (31)

where amax and amin are the maximum and minimum APD
values. h is the Hill coefficient and kd is the dissociation
constant.

Figure 9(a) is a phase diagram showing the unstable re-
gions in the α-T plane. Agreeing with the linear stability
analysis, there are two unstable regions: one when α < 0
(unstable I) and one when α > 0 (unstable II). Note that to
maintain the two unstable regions in the same phase diagram
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FIG. 10. Bifurcations and complex APD dynamics in the AP
model under the EAD condition. Plotted are an, cn, and sn vs kNCX

for T = 2.5 s.

as in Fig. 8, we set kd as function of α, i.e., kd = 11.5 +
0.000 05α. The rationale for doing this is as follows. First, in
the linear stability analysis shown in Fig. 8, we do not consider
the actual steady state and its change with parameters. Second,
in the simulations of the detailed AP model, one observes two
unstable regions by altering kNCX (see, e.g., Figs. 10 and 15).
Changing kNCX alters both α and kd (see, e.g., Figs. 13 and
14 and Figs. 17 and 18), and kd is smaller for α < 0 than for
α > 0, agreeing with the way we alter kd . With a constant
kd , it is difficult to maintain the two unstable regions on the
same phase diagram as in Fig. 9(a) without altering another
parameter. Figure 9(b) shows bifurcation diagrams across
the two unstable regions for T = 2.5 s. In unstable region
I, only periodic oscillatory behavior is observed [Fig. 9(c)].
In unstable region II, period-doubling routes to chaos occur,
leading to high periodicity and chaos [Fig. 9(d)]. Comparing
to unstable region I, even though APD varies roughly in the
same range, the [Ca2+]i variation is attenuated and [Na+]i
exhibits almost no variation. Agreeing with the linear stability
analysis, when the feedback between APD and [Ca2+]i is
positive (α < 0), Hopf bifurcation leading to oscillatory dy-
namics occurs. When the feedback between APD and [Ca2+]i
is negative (α > 0), period-doubling bifurcations leading to
high periodicity and chaos occur.

D. Bifurcations and complex dynamics in the presence of EADs

To demonstrate that the IM model can capture the complex
dynamics in the AP model, we first carry out simulations using
the AP model under the condition of EADs. Then, we use the
function g(zn) reconstructed from the simulation data to carry
out simulations of the IM model to recapture the bifurcations
and the APD dynamics. Figure 10 shows bifurcation diagrams
plotting an, cn, and sn versus kNCX (kNCX controls the strength
of NCX) for T = 2.5 s. There are two unstable regions in the
bifurcation diagrams. When kNCX is small (from 0.75 to 1.5

nA/pF), period-doubling routes to chaos occur, intermingled
with periodic windows, corresponding to unstable region II in
Fig. 9. When kNCX is large (from 2.1 to 5.6 nA/pF), periodic
oscillations occur, corresponding to unstable region I in Fig. 9.
Also agreeing with the map results shown in Fig. 9, the APD
variations are in the same range in the two regions, but the
[Ca2+]i and [Na+]i varations are different. In unstable region
II, the [Ca2+]i variation is attenuated, and [Na+]i exhibits
almost no variation.

To show what happens to the APs in the oscillatory regime,
we plot a voltage trace for T = 2.5 s and kNCX = 5 nA/pF in
Fig. 11(a), which shows oscillatory transitions between APs
with EADs and APs without EADs. In this trace, an EAD
occurs in each AP from 20 to 67.5 s (total 19 beats), and APD
is long. No EAD occurs in the APs from 67.5 to 175 s (total
43 beats), and APD is short. The total length of this combined
EAD and no EAD phase is 155 s or 62 beats. This repeats
as time goes on, giving rise to a periodic oscillatory behavior.
Figure 11(b) plots an, cn, and sn versus beat number n from the
same simulation in Fig. 11(a). The period of oscillation is 62
beats (or 155 s). As APD changes from short to long, both cn

and sn elevate, and as APD changes from long to short, both
cn and sn decay. Note that cn responds much faster than sn to
the APD changes. Figure 11(c) shows bifurcation diagrams
plotting an cn, and sn versus T, in which the oscillatory behav-
ior occurs between T = 2.35 s and T = 3.4 s, but stable for
smaller or larger T outside this region.

Because cn is the diastolic [Ca2+]i before each beat, for
comparison, we also plot the peak [Ca2+]i on the same panel
in Fig. 11(b), which shows almost the same oscillatory char-
acteristics. It is known that peak [Ca2+]i is proportional to
SR Ca2+ level (cSR), and as shown in Figs. 4(d) and 6(e), at
steady state, cn is proportional to cSRn. Therefore, cn is also
proportional to peak [Ca2+]i.

Figure 12(a) plots a voltage trace in the chaotic regime
for T = 2.5 s and kNCX = 1 nA/pF, which shows chaotic
traistions between APs with EADs and APs without EADs.
Figure 12(b) plots an, cn, and sn versus beat number n from
the same simulation, showing chaotic variations. Figure 12(c)
shows bifurcation diagrams plotting an, cn, and sn versus T, in
which chaos and high periodicity occur between T = 2.38 s
and T = 2.8 s. In this case, [Na+]i accumulation plays al-
most no role. The bifurcations and complex APD dynamics
are mainly caused by the negative feedback between APD
and [Ca2+]i. In our previous study [19], we showed that the
chaotic dynamics could be well explained by only including
[Ca2+]i accumulation.

To use the IM model to capture the dynamics of the AP
model under the EAD condition, we reconstruct g(zn) from
the simualtion data of the AP model and determine a set of
parameters for the functions of c̄ and s̄ [Eqs. (14) and (15)]
based on the cn and sn levels measured in the AP model.
We first reconstruct a g(zn) for kNCX = 5 nA/pF (oscillatory
regime). Figure 13(a) replots all the data from Fig. 11(c) in
the forms of an against sn (left) and an against cn (middle).
In both plots, the data points are scattered. We then plot
an against zn (right) using the transformation zn = sn + αcn

with α = −13 000. This transformation converts the scattered
plots into a plot with the data being in a narrow band. We
construct a piecewise linear function (solid line in the right
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FIG. 11. Oscillatory behaviors in the AP model under the EAD condition. (a) Voltage trace showing oscillatory transition between APs
with EADs and APs without EADs. The symbol * marks the APs with EADs. T = 2.5 s and kNCX = 5 nA/pF. (b) an, cn (and peak [Ca2+]i),
and sn vs n from the same simulation in (a). (c) Bifurcation diagrams showing an, cn, and sn vs T for kNCX = 5 nA/pF.

panel) for g(zn) based on this plot. To quantitatively match the
bifurcations and the values of cn and sn requires a proper set
of parameters for the functions of c̄ and s̄ [Eqs. (14) and (15)].
Because the parameters of the fitting functions in Figs. 4 and
5 are obtained under voltage-clamp conditions, it may differ
from the free-running conditions, and thus we cannot directly

take them from Figs. 4 and 5. We first determine the ranges
of the parameters based on the results in Figs. 4 and 5. We
then take the steady-state data from the AP model (e.g., the
steady states in the long or short T in the bifurcation diagrams)
and iterate the IM model to adjust the parameters to reach the
same steady states. However, the choice of the parameters is

FIG. 12. Chaotic behaviors in the AP model under the EAD condition. (a) Voltage trace showing chaotic transitions between APs with
EADs and APs without EADs. The symbol * marks the APs with EADs. T = 2.5 s and kNCX = 1 nA/pF. (b) an, cn, and sn vs n from the same
simulation in (a). (c) Bifurcation diagrams showing an, cn, and sn vs T.
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FIG. 13. Bifurcations and oscillatory dynamics of the IM model for the EAD condition in the oscillatory regime. (a) Replotting the data
in Fig. 11 (c). All data points are plotted together. Left: an vs cn. Middle: an vs sn. Right: an vs zn after the transform zn = sn−13 000cn. (b)
an, cn, and sn vs n from the IM model for T = 2.5 s. (c) Bifurcation diagrams showing an, cn, and sn vs T from the IM model. g(zn) used in
the simulation of the IM model is a piecewise linear function based on the transformed data, plotted as the solid curve in the right panel in (a).
The parameters for the functions of c̄ and s̄ [Eqs. (14) and (15)] are γc0 = 0, γc = 0.000 212, τac = 2.2, τdc = 1.5, Tc = 2900, δ = 8 × 10−6,
� = 11, c0 = 0.0, γs0 = 0, γs = 28.3, τas = 1.5, τds = 40, s0 = 6.8, and Ts = 2300. βc = 0.2 and βs = 0.008.

not unique, and many sets of parameters can meet the criterion
equally well. We use one of them for the simulations of the
IM model, which are listed in the figure caption for each
case.

Using the reconstructed functions, we carry out simula-
tions of the IM model [Eqs. (7) and (8)]. Figure 13(b) plots
an, cn, and sn versus n for T = 2.5 s and Fig. 13(c) shows
bifurcation diagrams plotting an, cn, and sn versus T. Oscil-
latory behavior occurs between T = 2.36 s and T = 3.38 s.
The simulation results of the IM model shown in Figs. 13(b)
and 13(c) are almost the same as those from the AP model
shown in Figs. 11(b) and 11(c). Note that we have to use
α < 0 to transform the scattered data into a narrow band to
reconstruct g(zn), and this transformation is not arbitrary but
unique. This indicates that the feedback between APD and
[Ca2+]i is positve, and thus the dynamics remains oscillatory
as predicted by the theory.

We then repeat the process for the chaotic case shown in
Fig. 12. In this case, α = 25 000 converts the scattered plots
into a very narrow-band plot [Fig. 14(a)]. α > 0 indicates
that the feedback between APD and [Ca2+]i is negative and
thus the dynamics is chaotic. Again, the simulations of the
IM model using the reconstructed g(zn) give rise to almost
the same bifurcations and dynamics [Figs. 14(b) and 14(c)]
as those from the AP model shown in Figs. 12(b) and 12(c),
capturing the dynamics not only qualitatively but also quanti-
tatively well.

E. Bifurcations and complex dynamics under the condition
of spike-and-dome AP morphology

Similar to the EAD case, we first carry out simulations
of the AP model under the spike-and-dome AP morphology
condition, and then recapture the bifurcations and APD dy-
namics using the IM model. Differing from the EAD case,
in the spike-and-dome case, we find that [K+]i cannot reach
a steady state under certain parameters in our simulations.
This might be the same steady-state issue of cardiac AP
models that has been addressed previously [67]. To avoid
this, and because [K+]i accumulation exhibits only a small
effect on APD, [Na+]i, and [Ca2+]i (Note this does not
mean that [K+]i is not important, but as long as it is in
the physiological range, its effect on dynamics is small),
we clamp [K+]i = 136 mM for all simulations in this case.
With some changes in parameters of the original TP04
model and substitution of Ito (see Sec. II), we observe the
same complex dynamics as in the EAD case. Figure 15(a)
shows bifurcation diagrams plotting an, cn, and sn versus
kNCX for T = 1.6 s. When kNCX < 1.2 nA/pF, the system
is stable. For kNCX = 1.2 to 4.2 nA/pF, chaos intermingling
with periodic windows occurs. In this regime, the variation
of cn is small, and that of sn is negligible. When kNCX >

4.2 nA/pF, oscillatory behavior occurs. In this regime, the
variations of cn and sn are large. Figure 15(b) shows bifurca-
tion diagrams plotting an, cn, and sn versus T for kNCX = 5
nA/pF, which is in the oscillatory regime. The oscillatory

024410-14



INTRACELLULAR ION ACCUMULATION IN THE … PHYSICAL REVIEW E 109, 024410 (2024)

FIG. 14. Bifurcations and chaotic dynamics of the IM model for the EAD condition under chaotic regime. (a) Replotting the data from
Fig. 12(c). All data points are plotted together. Left: an vs cn. Middle: an vs sn. Right: an vs zn after the transform zn = sn + 25 000cn. (b) an,
cn, and sn vs n from the IM model for T = 2.52 s. (c) Bifurcation diagrams showing an, cn, and sn vs T from the IM model. g(zn) used in the
simulation of the IM model is a piecewise linear function based on the transformed data, plotted as the solid curve in the right panel in (a).
The parameters for the functions of c̄ and s̄ [Eqs. (14) and (15)] are γc0 = 0, γc = 0.000 194, τac = 2.2, τdc = 1.5, Tc = 1470, δ = 8 × 10−6,
� = 5.3, c0 = 0.0, γs0 = 0, γs = 14.3, τas = 1.5, τds = 40, s0 = 7.1, and Ts = 1640. βc = 0.16 and βs = 0.036.

behavior occurs between T = 1280 ms and T = 1850 ms.
Figure 15(c) shows bifurcation diagrams plotting an, cn, and
sn versus T for kNCX = 3 nA/pF, which is in the chaotic
regime. Chaos and high periodicity occur for T > 1360 ms.
Figure 16 shows example traces of voltage [Figs. 16(a)

and 16(b)] and the corresponding an, cn, and sn versus
n for the oscillatory [Fig. 16(c)] and chaotic [Fig. 16(d)]
regimes.

Following the same procedure as in the EAD case, we
reconstruct g(zn) and choose parameters for the functions

FIG. 15. Bifurcations and complex dynamics in the AP model under the spike-and-dome condition. (a) Bifurcation diagrams plotting an, cn,
and sn vs kNCX for T = 1.6 s. (b) Bifurcation diagrams plotting an, cn, and sn vs T for the AP model in the unstable I regime (kNCX = 5 nA/pF).
(c) Bifurcation diagrams plotting an, cn, and sn vs T for the AP model in the unstable II regime (kNCX = 3 nA/pF).
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FIG. 16. Complex dynamics in AP model under the spike-and-dome condition. (a) Voltage vs t for an oscillatory case. kNCX = 5 nA/pF
and T = 1.5 s. (b) Voltage vs t for a chaotic case. kNCX = 3 nA/pF and T = 1.51 s. (c) an, cn, and sn vs n for the oscillatory case in (a). (d) an,
cn, and sn vs n for the chaotic case in (b).

of c̄ and s̄ [Eqs. (14) and (15)] for the two cases shown
in Figs. 15(b) and 15(c). Figure 17(a) replots the data in
Fig. 15(b) in the forms of an against sn (left) and an against
cn (middle), showing two scattered plots. We then plot an

against zn (right) using the transform zn = sn + αcn with α =
−22 000, tranforming the scattered plots into a narrow-band
plot. α < 0 indicates that the feedback between APD and
[Ca2+]i is positive and the dynamics shall be osillatory. Us-
ing the reconstructed g(zn) [red curve in the right panel in
Fig. 17(a)], and a proper set of parameters for the fucntions
of c̄ and s̄ [Eqs. (14) and (15)] for the IM model, we obtain
almost the same bifurcation diagrams [Fig. 17(b)] and oscil-
latory behavior [Fig. 17(c)] as the ones from the AP model
shown in Figs. 15(b) and 16(c).

We repeat the same process for the chaotic case.
Figure 18(a) replots the data from Fig. 15(c) in the forms of
an against sn (left) and an against cn (middle), showing two
scattered plots. We then plot an against zn (right) using the
transformation zn = sn + αcn with α = 250 000, transforming
the scattered plots into a very narrow-band plot. α > 0 indi-
cates that the feedback between APD and [Ca2+]i is negative
and the dynamics shall be chaotic. Using the reconstructed
g(zn) [red curve in the right panel in Fig. 18(a)], and a proper
set of parameters for c̄ and s̄ [Eqs. (14) and (15)] for the IM
model, we also obtain almost the same bifurcation diagrams
[Fig. 18(b)] and chaotic behavior [Fig. 18(c)] as the ones from
the AP model shown in Figs. 15(c) and 16(d).

IV. DISCUSSION AND CONCLUSIONS

In this study, we investigate the roles of ion accumulation
in the genesis of complex APD dynamics using computer sim-
ulations of a detailed AP model under two different diseased
conditions and develop an IM model to reveal the underlying
dynamical mechanisms. We first use simulation of the detailed
AP model under normal condition to inform the development
of the IM equations and construction of the IM functions
for the IM model. We then validate the IM model using
simulations of the detailed AP model under two diseased
conditions in which complex APD dynamics occur. Our major
observations from simulations of the detailed AP model and
theoretical analyses of the IM model are the following: (1)
The occurrence of EADs or spike-and-dome AP morphology
results in a steep dependence of APD on ion concentrations
(as well as other parameters, e.g., ion channel conductance),
and this steep dependence is required for the occurrence of
the complex AP dynamics; (2) When the feedback between
[Ca2+]i and APD is positive, a Hopf bifurcation leading to
oscillatory APD behavior occurs. When the feedback is nega-
tive, period-doubling bifurcations leading to high periodicity
and chaos occur; (3) The slow accumulation of [Na+]i and
its negative feedback with APD are required for the Hopf
bifurcation but not for the period-doubling bifurcations; (4)
Using functions constructed using simulation data from the
detailed AP model, the two-dimensional IM model cannot
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FIG. 17. Recapturing the bifurcations and dynamics using the IM model for the spike-and-dome case in the oscillatory regime.
(a) Replotting the data from Fig. 15(b). All data points are plotted together. Left: an vs cn. Middle: an vs sn. Right: an vs zn after the transform
zn = sn−22 000cn. (b) an, cn, and sn vs n from the IM model for T = 1.5 s. (c) Bifurcation diagrams showing an, cn, and sn vs T from the IM
model. Oscillatory dynamics occurs between T = 1300 ms and T = 1850 ms. g(zn) used in the simulation of the IM model is a piecewise
linear function based on the transformed data, plotted as the solid curve in the right panel in (a). The parameters for the functions of c̄ and s̄
[Eqs. (14) and (15)] are γc0 = 0, γc = 0.000 15, τac = 100, τdc = 70, Tc = −100, δ = 5.3 × 10−6, � = 10, c0 = 0, γs0 = 0, γs = 33, τas = 70,
τds = 60, s0 = 6.6, and Ts = −600. βc = 0.126 and βs = 0.0013.

only qualitatively but also quantitatively capture the bifur-
cations and APD dynamics of the detailed high-dimensional
AP model. Moreover, the IM model can explicitly dissect out
the roles of the feedback loops and the APD responses to
the changes of the ion concentrations in the genesis of the
complex dynamics, unifying the two dynamical regimes under
the same theoretical framework; and (5) Although the under-
lying diseased conditions or causes of the spike-and-dome
case are different from those of the EAD case, the dynamical
mechanisms for the complex APD dynamics are identical,
which can be captured by the same IM model.

It is known that slow ion accumulation is the main contrib-
utor for short-term memory in the heart [33,68]. Short-term
memory has been investigated in many previous theoretical
studies [11,18,69–71] which incorporated phenomenologi-
cally a “memory” variable in the models. Our IM model
incorporates the specific feedback loops and timescales of
[Ca2+]i and [Na+]i accumulation, linking short-term memory
and slow ion accumulation to the genesis of complex APD
dynamics in ventricular myocytes under diseased conditions.
In particular, the roles of the feedback loops between APD
and ion concentrations in generating the bifurcations and non-
linear dynamics are explicitly dissected out in the IM model.

It is shown that both EADs and spike-and-dome AP mor-
phology can generate early spontaneous excitations in cardiac
tissue, called premature ventricular complexes (PVCs) via

dynamical instabilities [55,72]. These PVCs may propagate
into longer APD regions to result in reentry via unidirectional
conduction block [73] or degenerate directly into reentry [46].
The dynamics revealed in this study may provide mechanis-
tic insights beyond the generation of reentry. First, cellular
chaos may synchronize at the tissue scale [44,74] to re-
sult in dynamical dispersion of refractoriness or multifocal
arrhythmias. Second, the cellular oscillatory behavior may
directly manifest at the tissue as Torsade de Pointes or non-
sustained ventricular tachycardia that occur and terminate
spontaneously [75–77]. Nevertheless, how these dynamics
are manifested at the tissue scale and what new tissue-scale
dynamics may emerge from them need to be investigated in
future studies.

In the current IM model, although both [Ca2+]i and [Na+]i
play important roles in generating the complex dynamics,
the instability is still driven by the steep change in APD in
response to the changes of the ion concentrations, i.e., the
steep decreasing g(zn) in the IM model. This instability is still
a voltage-driven one. It is well known that dynamical instabil-
ities can occur in the Ca2+ cycling system itself, independent
of the voltage system [63,65,78–82]. It is known that coupling
between APD and Ca2+ can bring in novel dynamics when
both systems are unstable [61,62,64,66]. We will integrate our
previous IM models [64,82] with the IM model in this study to
form an IM model that couples the voltage-driven and Ca2+-
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FIG. 18. Recapturing the bifurcations and dynamics using the IM model for the spike-and-dome case in the chaotic regime. (a) Replotting
the data from Fig. 15(c). All data points are plotted together. Left: an vs cn. Middle: an vs sn. Right: an vs zn after the transform zn =
sn + 250 000cn. (b) an, cn, and sn vs n from the IM model for T = 1.5 s. (c) Bifurcation diagrams showing an, cn, and sn vs T from the IM
model. g(zn) used in the simulation of the IM model is a piecewise linear function based on the transformed data, plotted as the solid curve
in the right panel in (a). The parameters for the functions of c̄ and s̄ [Eqs. (14) and (15)] are γc0 = 0, γc = 0.000 27, τac = 100, τdc = 70,
Tc = 1000, δ = 4.5 × 10−6, � = 9.7, c0 = 0, γs0 = 0, γs = 37, τas = 70, τds = 60, s0 = 7.2, and Ts = −400. βc = 0.12 and βs = 0.006.

driven dynamics as well as the short-term memory caused
by ion accumulation to investigate the nonlinear dynamics
emerging in cardiac systems.

In conclusion, slow ion accumulation, in particular [Na+]i
accumulation, plays a major role in short-term cardiac mem-
ory. Their memory effects combined with their feedback
loops with APD can generate complex APD dynamics under
diseased conditions. These complex dynamics can be well de-
scribed by a low-dimensional IM model incorporating [Ca2+]i
and [Na+]i accumulation and the feedbacks between APD
and [Ca2+]i and [Na+]i. Furthermore, the same IM model
unifies the bifurcations and complex dynamics under different

dynamical regimes and different diseased conditions into a
single theoretical framework, providing a theoretical tool for
analyzing the dynamical mechanisms of complex dynamics in
cardiac myocytes.
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