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Mean-field method for generic conductance-based integrate-and-fire neurons with finite timescales
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The construction of transfer functions in theoretical neuroscience plays an important role in determining the
spiking rate behavior of neurons in networks. These functions can be obtained through various fitting methods,
but the biological relevance of the parameters is not always clear. However, for stationary inputs, such functions
can be obtained without the adjustment of free parameters by using mean-field methods. In this work, we
expand current Fokker-Planck approaches to account for the concurrent influence of colored and multiplicative
noise terms on generic conductance-based integrate-and-fire neurons. We reduce the resulting stochastic system
through the application of the diffusion approximation to a one-dimensional Langevin equation. An effective
Fokker-Planck is then constructed using Fox Theory, which is solved numerically using a newly developed
double integration procedure to obtain the transfer function and the membrane potential distribution. The solution
is capable of reproducing the transfer function and the stationary voltage distribution of simulated neurons across
a wide range of parameters. The method can also be easily extended to account for different sources of noise
with various multiplicative terms, and it can be used in other types of problems in principle.
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I. INTRODUCTION

The brain is a complex system that organizes itself into
structures ranging in size from fine-scale components [1] to
large-scale arrangements involving the whole organ [2]. These
structures are composed of neurons and supportive cells that
interact with each other in complex ways [3], presenting a typ-
ical phenomenon of complex systems. As a result, the study
of these systems poses significant challenges, requiring the
development of theoretical models and frameworks to bridge
the multiple scales.

Theoretical models and frameworks are essential to ad-
dress the multiscale challenges found in complex systems.
Nature has many examples of such systems, and condensed
matter physics has developed a variety of methods to treat
these types of problems [4–7]. These methods have been co-
opted by theoretical neuroscientists to understand the complex
interactions of neurons and supportive cells in the brain [8].

Mean-field methods are an effective tool for investigating
collective behaviors in neural networks, as neurons are often
influenced by numerous stochastic inputs. By modeling neu-
rons as simple transfer functions, attractor dynamics, network
oscillations, synchronization, pattern formation, and phase
transitions can be better analyzed [9–12]. Through mean-field
approaches, a connection can be made between the individual
spiking neuron at the microscopic scale and the population’s
rate descriptions at the mesoscopic scale [12,13]. Amit and
Brunel’s seminal work introduced a typical approach using
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the Fokker-Planck mean-field formalism to model the simple
leaky integrate-and-fire neuron [14].

However, the mean-field treatment of conductance-based
integrate-and-fire neurons introduces a new level of com-
plexity due to the conductance variables, which increase the
dimensionality of the stochastic system. These complexities
can generate measurable differences, such as the tempo-
ral correlations introduced by synaptic filtering, which have
been shown to alter the spiking statistics [15] and the scal-
ing properties of neurons [16]. Dealing with these temporal
correlations presents a challenge for mean-field methods. Per-
turbative solutions have been found for a single source of
additive exponentially correlated noise [17,18]. For linear
multiplicative noise, it is possible to use the same perturbative
methods by employing the effective time-constant approxima-
tion [19,20]. By combining these two methods, a large set of
problems with linear multiplicative terms can be treated. For
large correlation times, it is also possible to obtain solutions
by using an adiabatic approximation scheme, where the mul-
tidimensional Fokker-Planck is reduced to a smaller region
constrained by the Gaussian distribution of the conductance
variables [21]. But what happens if we want to expand those
methods to include more generic forms of neurons that include
colored noise with nonlinear multiplicative terms?

In this work, we adapted and expanded the Fox the-
ory [22,23] (an approximation scheme for the construction
of a Fokker-Planck from colored noise) to the case of a
conductance-based integrate-and-fire neuron under the influ-
ence of multiple stochastic inputs. We numerically solved the
resulting stationary Fokker-Planck equation and extracted the
transfer function with different assumptions on the boundary
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conditions, comparing the results with proper simulations. We
also proposed a double integration procedure to numerically
deal with the unknown boundary condition at the threshold.

The structure of the paper is as follows: in Sec. II, we
introduce the general model that we will treat in this paper.
The main contribution of this work is then introduced in
Sec. III, where we detailed the calculations and the approx-
imations used to treat the general model. Section IV applies
the method to the simple conductance-based integrate-and-fire
neuron and compares the results with simulations. We then
include NMDA channels to the model in Sec. V to see the
effects of nonlinear multiplicative noise. We finally conclude
in Sec. VI, providing further applications and possible exten-
sions and directions.

II. GENERAL MODEL

We consider the behavior of a pointlike generic leaky
integrate-and-fire neuron with conductance-based input em-
bedded in a network of similar units. The neuron is described
by the membrane potential V that follows from

τL
dV

dt
= −(V − EL ) −

∑
i

gi(t )si(V )(V − Ei ), (1)

where τL is the membrane time constant, EL is the resting
potential, Ei is the reversal potential of the corresponding
channel i, and si(V ) is a modulating function that can depend
on V . It is important to note that the addition of nonlinear
functions of V to the equation (a quadratic or exponential
function for example) is possible in principle, although we
will not deal with this case here. The conductances gi(t )
behave as linear filters of the input signal. Specifically, we
have

τi
dgi

dt
= −gi + wi

∑
j,k

δ
(
t − t k

j

)
. (2)

The summation here is performed over all presynaptic sites
j and all spikes k emitted in that site. w′

is are the synaptic
weights, which are kept the same for all neurons belonging to
the same population.

The membrane potential V evolves according to (1) until it
reaches the threshold θ when a formal spike is emitted. The
potential is then reset to Vr and is not updated for the extent of
the refractory interval τr .

III. MEAN-FIELD ANALYSIS

A. Conductance

As a starting point, we suppose that the neuron receives
inputs from separate populations of neurons corresponding to
different channels in the equation, each of them making Ki

connections. We assume that the inputs from each population
come from Poisson rate neurons with fixed rate νi. If the
number of connections is large (Ki � 1) and the connection
weights small (wi � 1), the diffusion approximation can be
used [14,24] and Eq. (2) becomes

τi
dgi

dt
= −gi + μi + √

τiσiξi(t ), (3)

with

μi = wiKiντi, (4)

σ 2
i = w2

i Kiντi. (5)

The ξi(t )′s here are uncorrelated Gaussian variables with zero
mean and unit variance. Even though the approximation re-
quires wi � 1, no considerable differences were perceived in
the firing rate and membrane potential distribution of simula-
tions with and without the approximation (data not shown).

B. Membrane potential

The membrane potential equation (1) can then be
written as

dV

dt
= − (V − μ)

τ
+

∑
i

hi(V )ηi(t ), (6)

where

τ = τL/

(
1 +

∑
i

si(V )μi

)
, (7)

μ = τ

τL

(
EL +

∑
i

si(V )μiEi

)
, (8)

hi(V ) = si(V )
√

τi

τL
σi(Ei − V ), (9)

and the noise variables are now

ηi(t ) = 1

τi

∫ t

0
e− T

τi ξi(t − T )dT, (10)

with the following correlations:

〈 ηi(t ) η j (t
′) 〉 = 1

2τi
e− |t−t ′ |

τi δi j . (11)

What we have now is a Langevin equation with distinct
sources of colored noise. The n dimensional stochastic system
is now reduced to a single SDE. This happens, however,
with the cost that the noise is no longer Markovian, i.e., the
fluctuations at time t depend on the fluctuations at previ-
ous times t ′ < t . It makes it impossible to obtain an exact
Fokker-Planck equation since it adds an additional temporal
integration. Therefore, in order to be able to use the Fokker-
Planck approach [14], it is necessary to build an approximate
Fokker-Planck equation.

C. Effective time-constant approximation

In some cases, it might also be useful to simplify the prob-
lem by finding an approximation that allows us to eliminate
the multiplicative noise. Observe that in Eq. (6) the stochastic
variable ηi(t ) is multiplied by a function of V implying that the
noise level depends on voltage values. This complexity can be
avoided by using the effective time-constant approximation
[19][20] where the membrane potential in the multiplicative
term [hi(V )] is replaced by the equilibrium potential μ, re-
sulting in

hi(V ) → hi(μ).
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This approximation implies that the modulation of noise can
be seen as dependent on the distance of the equilibrium po-
tential from its reversal potential, at least at first order. In
fact, it can be argued that using this approximation, when the
terms hi(V ) are linear, leads to a more consistent treatment
of the problem, since the error generated by this approach
is of the same order as the error introduced by the diffusion
approximation [20]. However, the most important fact here
is that this approach simplifies considerably the treatment of
the resulting Fokker-Planck equation. A direct consequence
of this is that it lends to more easily interpretable parameters.
We will compare the results with and without the use of this
approximation when it is applicable.

D. Fox theory

Temporal correlations in the noise of Langevin equa-
tions are known to impede the construction of an exact
Fokker-Planck equation. So our task is to find an appropri-
ate approximation that leads to a differential equation of the
probability distribution of the membrane potential. From the
different options available, we use here the Fox theory, since it
is the one with the most direct application and is the easiest to
generalize for multiple noise sources. It also possesses some
relevant properties for this work. First of all, it is important to
note that the approach followed in this method is nonpertur-
bative. In fact, under a certain condition, the convergence of
the approximation for τi → 0 is uniform, that is, it converges
to the white noise case for all values of V in the domain of
interest [23]. The uniformity condition is

1 − τi

(
W ′(V ) − h′

i(V )

hi(V )
W (V )

)
> 0, (12)

where W (V ) is the drift term in the Langevin [in our case
(μ − V )/τ )] and primes indicate derivatives with respect to
the argument V . This condition sets a scale for τi for which
the approximation behaves reasonably well.

The Jung and Hänggi adiabatic method [25] is an approx-
imation that is valid for small and large values τi, whose
stationary solution agrees with the stationary solution of the
Fox theory. Therefore, even though the resulting effective
Fokker-Planck obtained by the Fox theory was derived for
small τi values, the stationary solution is valid also for large τi

[given that condition (12) is obeyed]. The validity for both
limits suggests that the Fox theory is a good interpolation
between both stationary results. A small derivation of the va-
lidity of the stationary solution of the Fox theory for τi → ∞
can also be found in [26].

The application of the Fox theory to Eq. (6) results in the
effective Fokker-Planck

∂P

∂t
= − ∂

∂V

[
W (V )P −

∑
i

hi(V )
∂

∂V
(Si(V )P)

]
(13)

with

Si(V ) = 1

2

⎡
⎣ hi(V )

1 − τi
(
W ′(V ) − h′

i (V )
hi (V )W (V )

)
⎤
⎦ . (14)

The expansion for multiple noise sources can be simply done
by using the same assumptions as in the original papers
[22,23].

E. Transfer function

First, we will explore the result of the application of the
effective time-constant approximation. The resulting effective
Fokker-Planck is then

∂P(V, t )

∂t
= ∂

∂V

[
(V − μ)

τ
P(V, t )

]
+ σ 2

V

2τ

∂2P(V, t )

∂V 2
, (15)

where

σ 2
V =

∑
i

σ 2
Vi

=
∑

i

τ 2

τ + τi
h2

i , (16)

and the notation was simplified by calling hi(μ) = hi.
The effective Fokker-Planck is the same as the one ob-

tained from the simpler Langevin,

dV

dt
= − (V − μ)

τ
+ σV ξ (t ), (17)

with the zero mean unit variance Gaussian white noise ξ (t ).
The independence of the terms in the sum suggests the sep-

aration of the full variance into two independent components.
There is, then, a simple interpretation of the parameters of the
effective Fokker-Planck equation. The first-order term (drift)
corresponds to the deterministic drive of the membrane poten-
tial. The second-order term (diffusion) can be seen as the sum
of the variance of the noise sources, where the noise sources
are treated as white. The combination of both approximations
(effective time constant and the Fox theory), therefore, pro-
duces the same behavior as a Langevin system with white
noise and summed variances. One interesting consequence
of (16) is that the noise dynamics can be dominated by the
channel with the time constant that maximizes the variance.
Not only that but neurons can maximize their noise vari-
ance by appropriately tuning their conductance time constants
(by changing the proportion of fast and slow channels, for
example).

The transfer function can be calculated, resulting in

1

ν
= τr + τ

√
π

∫ θ−μ

σV

Vr −μ

σV

ex2
(1 + erf (x))dx, (18)

where erf (x) is the error function. We can also get the station-
ary probability distribution

PS (V ) = 2ντ

σV
exp

(
− (V − μ)2

σ 2
V

) ∫ θ−μ

σV

V −μ

σV

�

(
x − Vr − μ

σV

)

× ex2
dx, (19)

where �(x) is the Heaviside function. In these results, there
is an implicit assumption of the continuity of the distribution
at the threshold, which implies PS (θ ) = 0. This assumption
is not reasonable, since perturbative results for single channel
conductance-based models show a discontinuity at that point
[17]. We can estimate numerically the value of the distribution
in a procedure that will be described shortly. We will also
provide comparisons between results with and without the
assumption.
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F. Multiplicative noise

The complicated form of (13) allows only a formal station-
ary solution. Using again the continuity of the distribution and
standard procedures [24], we arrive at

1

ν
= τr +

∫ θ

Vr

∫ x

−∞

eF (x)−F (V )

χ (x)
dV dx, (20)

where

F (V ) =
∫ ∑

i hi(V ) dSi
dV − W (V )

χ (V )
dV (21)

and

χ (V ) =
∑

i

hi(V )Si(V ). (22)

The lower limit of the first interval can be limited by the lowest
of the reversal potentials since the dynamics of the membrane
potential cannot be lower than this value. But in a general
sense, the infinity can be written in place as we did.

This formal solution, unfortunately, is not straightforward
to use since a closed form for the integrating factor is gener-
ally not obtainable. Therefore, we have to rely on numerical
methods.

G. Numerical methods and simulations

Efficient results can be obtained by using the numerical
approach developed by Richardson [27]. It takes advantage
of the formal solution to get faster convergence than a typical
Euler integration and uses PS (θ ) = 0 as an initial condition
for the integration. However, since this assumption is not well
founded in our case, we need to develop a different approach.
We opted for using a double integration procedure, starting
with the more reasonable assumption P(EI ) = 0 and integrat-
ing forward. This results in an estimated value for PS (θ ), so
that we can backward integrate to obtain the distribution and
the firing rate.

The simulation data was generated using Brian2 [28], treat-
ing the input layer as Poisson neurons. Firing rates were taken
as the time average of the spikes for a period of 10 s after
waiting for 5 s to eliminate transients. The same strategy was
used for the generation of the distribution.

IV. CONDUCTANCE-BASED
INTEGRATE-AND-FIRE NEURON

We will first apply our method to a simple conductance-
based integrate-and-fire neuron with two input channels: one
excitatory gE (t ), and one inhibitory gI (t ). The equations de-
scribing this system are

τL
dV

dt
= −(V − EL ) −

∑
i=E ,I

gi(t )(V − Ei ), (23)

τE
dgE

dt
= −gE +

∑
j,k

wEδ
(
t − t k

j

)
, (24)

τI
dgI

dt
= −gI +

∑
j,k

wIδ
(
t − t k

j

)
. (25)

The neuron receives input from KE excitatory input neurons
and KI inhibitory. Both populations fire at a fixed firing rate

TABLE I. Table containing the parameters used for the simple
conductance-based integrate-and-fire model.

Parameter Value

EL −60 mV
EE 0 mV
EI −80 mV
wE {0.1, 0.5}
wI {0.1, 0.4, 1.0, 10.0}
τL 20 ms
τE variable
τI 10 ms
τR 2 ms
KE 400
KI 100
θ −50 mV
Vr −60 mV
νi {5, 20, 50} Hz

νi. The parameter values are chosen to be physiologically
plausible and are in the range typically used in simulation
works (for instance [29]), see Table I.

To illustrate the validity of the diffusion approximation,
for the range of values used here, we plotted the mean, the
standard deviation, and the skewness of the analytical con-
ductance and the simulated one (Fig. 1). As expected by the
construction, the expressions for the mean and the standard
deviation are a good representation of the values simulated
even when the synaptic weight wE is large. In contrast, we can
see deviations in the skewness for small values of τE . This is

FIG. 1. Conductance cummulants. Comparison of the analytical
expressions obtained for the statistics of gE using the diffusion
approximation (lines) with simulations (symbols). The analytical
expressions are good descriptions of the simulations for all the range
of parameters tested for the first and second moments. The skewness,
however, exhibits a deviation from the Gaussian approximation for
small τE . Parameters for first column, wE = 0.1, wI = 0.4; second
column, wI = 0.8, νi = 5Hz
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FIG. 2. CoBaIF model with effective time-constant approximation. Comparison of the analytical model (lines) with simulations (symbols)
for the simple conductance-based integrate-and-fire neuron using the effective time-constant approximation. In columns (a) and (b), we use
three different values of input firing rate νi as a function of the excitatory time constant and set wE = 0.1 and wI = 0.4. In columns (c) and
(d), we compare three values of inhibitory weights wI and set wE = 0.5, νi = 5 Hz. In the first row and columns (a) and (c) the mean potential
for a thresholdless model is plotted. Columns (b) and (d) show the standard deviation of the membrane potential for the same thresholdless
model. In the second row, columns (a) and (c) display the firing rates for the model with the continuous distribution assumption, and columns
(b) and (d) display the firing rates using the double integration procedure. The absolute errors for the corresponding models are plotted in the
third row.

somewhat expected since the values of g(t ) can’t be negative
and the diffusion approximation doesn’t take this into consid-
eration. For small τE , we have small μE and the Gaussian form
of the approximation fails to account for the asymmetric shape
of the distribution with a hard boundary at g = 0. Therefore,
as stated in [20], the diffusion approximation introduces errors
at the third-order moment of the distribution.

The resulting form of the Langevin equation for the
conductance-based integrate-and-fire is

dV

dt
= − (V − μ)

τ
+ hE (V ) ηE (t ) + hI (V ) ηI (t ), (26)

where

τ = τL

1 + μE + μI
,

μ = τ

τL
(EL + μE EE + μI EI ),

hE ,I (V ) =
√

τE ,I

τL
σE ,I (EE ,I − V ).

We can now use the effective time-constant approximation
or deal with the full multiplicative problem.

A. Additive noise

With the effective time-constant approximation, the
Langevin simplifies to

dV

dt
= − (V − μ)

τ
+ hEηE (t ) + hIηI (t ), (27)

where the constant coefficients are hE = hE (μ) and hI =
hI (μ). The application of the Fox theory results in the transfer
function (18) and the probability distribution (19) with the
expression for σV given by

σ 2
V = τ 2

τ + τE
h2

E + τ 2

τ + τI
h2

I . (28)

A comparison of the analytical results (calculated numer-
ically) with the simulations can be seen in Fig. 2. Figures
2(a) and 2(c) assume P(θ ) = 0, while Figs. 2(b) and 2(d)
do not. Good agreement is present for most sets of param-
eters tested, the exception being the high inhibition regime
(wI = 10). Figures 2(a) and 2(b) show that the input rate νi

has little effect on the stationary potential μ but changes the
noise variance σ 2

V of the neuron without threshold. Therefore,
in this case, the firing rate behavior is mostly given by the
changes in the input variance. A higher noise variance makes
the transition from silent to firing smoother, as can be seen by
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FIG. 3. CoBaIF model with full multiplicative treatment. We compare the analytical model with simulations for the simple conductance-
based integrate-and-fire neuron, incorporating full multiplicative noise. In columns (a) and (b), we vary the input firing rate νi as a function of
the excitatory time constant and set wE = 0.1 and wI = 0.4. In columns (c) and (d), we compare different values of inhibitory weight wI and
set wE = 0.5, ν = 5Hz. In the first row, columns (a) and (c) display the firing rate for the model assuming continuous distribution, and columns
(b) and (d) display the firing rates using the double integration procedure. The absolute errors for the corresponding models are plotted on the
second row.

the slower convergence of the firing rate curves with higher
input variance.

Figures 2(c) and 2(d) explore the effect of varying the in-
hibitory synaptic weight(wI = 0.1, wI = 1.0, and wI = 10.0)
for a constant excitatory weight wE = 0.5. For low inhibition,
there is a good agreement between theory and simulation.
But for high inhibition (wI = 10.0) the theory produces a
sharp transition of firing rate that is not observed in the sim-
ulations. The discrepancy [see the error in Fig. 2(c), third
row] is larger in the region where μ is between EL and θ ,
that is, in the subthreshold regime. In this region, spikes are
driven by membrane potential fluctuations. The sharpness of
the transition compared to the data suggests that, for those
parameter values, the model underestimates fluctuations. The
high inhibition case also allows us to see that the P(θ ) = 0
brings the transition to lower τE values. The better result of
the double integration procedure stems from the improvement
of the estimation of the transition region since the shape of the
curve is almost the same.

B. Multiplicative noise

The full-multiplicative noise treatment results in a Fokker-
Planck equation with the form

∂P

∂t
= − ∂

∂V
[W (V )P] +

∑
i=E ,I

∂

∂V
hi(V )

∂

∂V
(Si(V )P), (29)

where the functions SE (V ) and SI (V ) are given by the generic
expression in (14). The stationary differential equation that

needs to be solved numerically is then

∂Ps

∂V
+ B(V )Ps = −νH (V ), (30)

with

B(V ) = hE (V )S′
E (V ) + hI (V )S′

I (V ) − W (V )

χ (V )
, (31)

H (V ) = �(V − Vr )

χ (V )
, (32)

χ (V ) = hE (V )SE (V ) + hI (V )SI (V ). (33)

We used this approach to solve the stationary Fokker-
Planck equation numerically for the same set of parameters as
in the last subsection. No appreciable differences were found
between the additive and multiplicative models for different
input firing rates [see Figs. 3(a) and 3(c)]. However, for high
inhibition (wI = 10.0), the full multiplicative treatment with
the continuity assumption (P(θ ) = 0) produced a worse quan-
titative result but with a better overall shape of the curve. This
error was mostly corrected when we dropped this assumption
and used the double integration procedure [see Fig. 3(d)],
concentrating on the region where μ is around the threshold
value.

C. Stationary probability distribution

To complete the analysis of the conductance-based
integrate-and-fire neuron, we look at the stationary probabil-
ity distributions with and without the effective time-constant
approximation and the PS (θ ) = 0 assumption. The top row of
Fig. 4 corresponds to the parameters of the blue curves (full
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FIG. 4. Membrane potential distributions for the CoBaIF model. The stationary probability distributions for the Voltage of conductance-
based integrate-and-fire neurons. Column (a) τE = 1 ms, (b) τE = 5 ms, (c) τE = 10 ms, (d) τE = 20 ms, (e) τE = 70 ms. The first row
corresponds to blue curves (full line) in Fig. 2, that is, νi = 5 Hz and parameters from Table I. The second row corresponds to the yellow
curves (dotted line) on the same figure (wI = 10, wE = 5, and νi = 5 Hz). The different lines correspond to different assumptions in the
model, as can be seen in the legend in column (e).

line) that appear in Figs. 2 and 3. The bottom row of Fig. 4
corresponds to the yellow curves (dotted line) of the same fig-
ures. Each column corresponds to progressive values of τE (1,
5, 10, 20, 70 ms, respectively). As the excitatory time constant
increases, the voltage distribution evolves from a Gaussian
shape with a sharp peak far from the threshold, toward an
increasingly more distorted distribution as it interacts with the
threshold. The area under the curve diminishes (since we are
omitting the refractory period in the graph) corresponding to
the higher firing rate of the neuron.

Comparing the mean-field solutions, we can see that the
major difference comes from the continuity assumption for
intermediary values of τE . It is clear that the simulated distri-
butions are not continuous. In fact, when in the mean-driven
regime (μ > θ ), the distributions concentrate between the re-
set and the threshold. The double integration procedure gives
good results for the distribution in most cases, with an artifi-
cial low-end tail for some values. The difference generated by
the effective time-constant approximation is minor, generating
almost superimposed curves in some cases.

V. NMDA INTEGRATE AND FIRE

In the standard conductance-based integrate-and-fire neu-
ron model, there is no V nonlinearity in the resulting Langevin
equation. In principle, our mean-field method should be able
to handle nonlinearities in either the drift term, the diffusion
terms, or both. Here we will introduce a nonlinearity by
adding NMDA channels, which are excitatory channels whose
activation depends on the membrane potential. A convenient
way to model its behavior is by adding an appropriately tuned
sigmoidal factor to the conductance term [30]. The complete

model can be written as

τL
dV

dt
= −(V − EL ) − (1 − α)gA(t )(V − EE ) −
−αs(V )gN (t )(V − EE ) − gI (t )(V − EI ), (34)

where

τi
dgi

dt
= −gi +

∑
j,k

wiδ
(
t − t k

j

)
, (35)

s(V ) = 1

1 + ([Mg2+]/γ ) exp (−βV )
, (36)

where i can be A, N , or I , representing the AMPA, NMDA,
and inhibitory channels, respectively. We also set wA = wN =
wE . s(V ) is the sigmoidal modulating function, [Mg2+] is the
concentration of magnesium ions, and γ and β are fitting
parameters. For α to represent the proportion of AMPA and
NMDA channels, we kept the number of their inputs equal,
i.e., KA = KN = KE . Like before, the input rate νi is the same
for all the population. Table II displays the values of all the
model parameters.

Applying the diffusion approximation and reducing it to a
one-dimensional Langevin equation, we get the following set
of equations:

dV

dt
= (V − μ(V ))

τ (V )
+

∑
i=A,N,I

hi(V )ηi(t ), (37)

where

τ (V ) = τL

1 + (1 − α)μA + αs(V )μN + μI
,

μ(V ) = τ

τL
(EL + (1 − α)μAEE + αs(V )μN EE + μI EI ),
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TABLE II. Table containing the set of parameters used for the
NMDA model.

Parameter Value

Variable Value
α variable
EL −60 mV
EE 0 mV
EI −80 mV
wE {0.1, 0.5}
wI {0.1, 0.4, 1.0, 10.0}
τL 20 ms
τA 1 ms
τN 100 ms
τI 10 ms
τR 2 ms
KE 400
KI 100
θ −50 mV
Vr −60 mV
νi {5, 20, 50} Hz
[Mg2+] 1 mM
γ 3.57 mM
β 0.062(mV)−1

hA(V ) = (1 − α)
√

τA

τL
σA(EE − V ),

hN (V ) = αs(V )
√

τN

τL
σN (EE − V ),

hI (V ) =
√

τI

τL
σI (EI − V ).

Direct use of the effective time-constant approximation is
no longer possible, since hN (V ) is no longer linear, and the
approximation loses its logic [20]. However, it is worth men-
tioning that for the NMDA model, it is possible to linearize the
term s(V )(V − EE ) around the average membrane potential,
as was done by Brunel and Wang [31]. Since we are trying to
see how well the method performs for nonlinear multiplicative
noise, we will not perform the linearization and the approxi-
mation.

We start with the Fokker-Planck equation,

∂P

∂t
= − ∂

∂V
[W (V )P] +

∑
i=A,N,I

∂

∂V
hi(V )

∂

∂V
(Si(V )P), (38)

where the functions SA(V ), SN (V ), and SI (V ) are given by
(14). W (V ) is no longer linear in V and it results in different
functional forms for the S functions. The linear differential
equation in V is then

∂Ps

∂V
+ B(V )Ps = −νH (V ), (39)

with coefficients

B(V ) =
∑

i=A,N,I hi(V )S′
i (V ) − W (V )

χ (V )
, (40)

H (V ) = �(V − Vr )

χ (V )
, (41)

χ (V ) =
∑

i=A,N,I

hi(V )Si(V ). (42)

FIG. 5. NMDA model. Comparison of the NMDA analytical model with simulations for three different values of input rate νI [columns
(a) and (b)] and inhibitory synaptic weight wI [columns (c) and (d)] as a function of the interpolation parameter α. In (a) and (b), we set
wE = 0.1 and wI = 0.4, while in (c) and (d), we set wE = 0.5 and νi = 5 Hz. Columns (a) and (c) assume the continuity of the distribution,
while (b) and (d) use the double integration procedure. We calculate the error as the absolute distance between the simulation and analytical
results.
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FIG. 6. Membrane potential distribution for the NMDA model. We present the stationary probability distribution for different values of the
interpolation parameter α: (a) α = 0, (b) α = 0.1, (c) α = 0.2, (d) α = 0.5, and (e) α = 0.9. The first row corresponds to the blue curves (full
line) in Fig. 5, with νi = 5 Hz and parameters from Table II. The second row corresponds to the yellow curve (dotted line) on the same figure,
with wI = 10, wE = 5, and νi = 5 Hz. The legend indicates different assumptions in the model for each line.

We proceed to test this model against simulation data for
different input rates [Figs. 5(a) and 5(b)] and for different
inhibitory weights [Fig. 5(c) and 5(d)]. Given the high nonlin-
earities of the model, it is remarkable how good the agreement
between the mean-field results and the simulations is for the
majority of the cases. The transition region is where most of
the error is concentrated. We can also observe an interesting
behavior in this model. The use of the continuity assumption
can result in smaller errors in some situations, especially when
α ≈ 1. However, in the high inhibition regime, the double
integration procedure produces a more accurate result, with
the calculated firing rate following close to the almost qui-
escent simulated neuron. Transitions are then slightly better
estimated with the double integration procedure, which can
be important for phase transition calculations.

A crucial point has to be made regarding the condition
for uniform convergence (12) that is usually used as a metric
for good behavior in approximation methods [23]. For the
linear conductance-based models, it is obeyed for all values.
However, the introduction of the NMDA nonlinearity makes
this condition break for a large range of parameters as can be
seen by numerical calculations of (12). Notably, the failure of
the uniform convergence condition didn’t affect the ability of
the model to describe the system. However, for the method to
work correctly it is necessary to deal with the divergence point
at 1 − τi(W ′(y) − h′

i (y)
hi (y)W (y)) = 0. We were able to remove

the divergence by excluding from the numeric integration an
interval of ±0.5 around the value of V that contains the di-
vergence. No significant impact can be observed in the results
when using this procedure, which indicates that the divergence
cancels out in the integration.

Figure 6 displays the estimated probability distributions for
the NMDA model. The top row [corresponding to the blue full
line curve in Figs. 5(a) and 5(b)], indicates that the estimation

is good when the distribution doesn’t interact heavily with
the threshold but degrades when the interaction is significant.
We see, nevertheless, that the continuity assumption causes a
large error at the end of the left tail of the distribution, which
doesn’t occur as much with the double integration procedure.
It still overestimates the probability of values slightly smaller
than the reset potential. The bottom row [corresponding to
the yellow dotted curve in Figs. 5(c) and 5(d)] shows that
the distribution remains mostly below the reset potential and
little interaction with the threshold happens. The distribution
spreads with higher α but the peak barely moves. The area of
the Ps(θ ) = 0 curve remains lower than the double integration
curve, which helps explain the higher firing rate observed
in 5(c).

VI. CONCLUSION

We developed a new method for constructing a trans-
fer function for conductance-based integrate-and-fire neurons.
This method is based on the mean-field Fokker-Planck ap-
proach and incorporates colored noise through the Fox theory.
We reduced the N-dimensional system into a single Langevin
equation with colored and multiplicative noise and used the
Fox theory to construct an effective Fokker-Planck equation,
which was solved to obtain stationary firing rates. We tested
the method on two neuron models with progressive complex-
ity: a standard conductance based integrate and fire and a
conductance based integrate and fire with nonlinear NMDA
channels.

For the standard conductance-based integrate-and-fire neu-
ron, we compared mean-field results with firing rate data
resulting from simulations as a function of the excitatory time
constant. We found good agreement between the data and
mean-field results in most scenarios, but the continuity as-
sumption generated substantial errors in the transition regions.
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To correct that, we developed a double integration proce-
dure that consists of estimating the probability density at the
threshold with the first integration and using this value to
start a backward integration to better estimate the distribu-
tion and the firing rate. We also observed that the effective
time-constant approximation produced sharper transitions and
the double integration procedure translated the curve to better
match the transition point.

We then added a nonlinear NMDA channel to the model
to test the method’s effectiveness for nonlinear multiplicative
terms. The method produced a good description of the sim-
ulated data even when outside the range of validity given by
Eq. (12), but required extra care for some sets of parameters.
Additionally, we discovered that in this particular scenario,
the application of the double integration procedure does not
always yield superior outcomes compared to utilizing the
continuity assumption. While it generates a more accurate
estimation in the transition region, it slightly underperforms
for high α values. Nevertheless, the continuity assumption
should not be used as it produces bad estimations of the
correct distributions.

When the analytical membrane potential probability dis-
tributions are compared with simulation data, the effects of
the continuity assumption become very clear. As expected, the
distributions observed in the simulations are discontinuous. In
fact, the discontinuity can occur not only at the threshold but
also at the reset potential. Therefore, the continuous mean-
field solution does not correctly estimate the distribution in
most cases. The double integration procedure, however, pro-
duces better results, with P(θ ) approximating the simulated
one more accurately. We can also see that the effective time-
constant approximation generates only small deviations from
the full treatment, and is generally a good approximation.

From the analysis of the probability distribution, it is clear
that the double integration procedure produces good estima-
tions of the distribution at the threshold limit for most cases.
However, when the neuron is in the mean-driven regime, the
discontinuity at the reset potential is not taken into account.
An appropriate study of the correct boundary conditions of the
1D reduced Fokker-Planck equation can most likely generate
better results at the discontinuity points. Since the area of the
distribution is related to the firing rate, this would probably
improve the transfer function resulting from the method.

We have only tested our method on two types of neuron
models, but it has the potential to be applied to a broader range
of models. One possible extension, mentioned in the methods
section, is the introduction of a nonlinear term in the drift ex-
pression. This nonlinear term can represent a quadratic [32] or

an exponential integrate-and-fire neuron [33], for example. It
is also possible to introduce adaptation currents that depend on
the spiking time of the modeled neuron. This would introduce
the firing rate in the resulting Langevin equation, requiring
a self-consistent treatment. Another form of exponentially
correlated noise that our model can treat appears as tempo-
rally correlated afferent currents as treated in [34]. A quick
calculation of the large correlation time limit (τc → ∞) using
our approach results in the same Fokker-Planck as taking the
same limit in Moreno-Bote’s paper. In fact, we can see the
dependence on the correlation variable z disappear, resulting
in a one-dimensional Fokker-Planck.

It is also possible to look for nonstationary solutions when
the input changes over time. For example, if we introduce
an oscillatory Poissonian input, it is possible to construct
a Fokker-Planck equation with the Fox theory, as the noise
terms still have the same form but are now modulated by the
input firing rate. However, only the stationary solutions of
Fox theory are valid for all the ranges of time constants [25].
The nonstationary solutions are valid in the small τi limit, and
careful consideration of this fact is necessary when putting the
method into practice.

We would also like to mention the existence of other ap-
proximation schemes for the Fokker-Planck with exponential
colored noise [25,26,35–38]. In fact, a similar form to the one
obtained here using Fox theory, with the addition of more
terms, can be calculated using an interpolation parameter that
connects different approaches [26]. A study of the effects of
these additional terms can maybe provide fruitful results for
the treatment of some models.

It would also be interesting to do an analytical comparison
of different methods of calculation of the transfer function for
the conductance-based integrate-and-fire neuron without non-
linear effects. This would include our method, the adiabatic
approach of Moreno-Bote et al. [34], and the combination of
the effective time-constant approximation and the perturba-
tion approach of Brunel and Sergi [17].

We finish by stating that an analytical comparison between
the different approaches to the problem of linear multiplica-
tive colored noise is needed. This would provide a better
understanding of the correct use cases of each model and for
what parameter spaces they are more suitable.
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