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Collective self-optimization of binary mixed heterogeneous populations

Zhao-sha Tang,1 Jia-jian Li ,1 Wei-jing Zhu,2 and Bao-quan Ai 1,3,*

1Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education),
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter,

School of Physics, South China Normal University, Guangzhou 510006, China
2School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China

3Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,
and Guangdong-Hong Kong Joint Laboratory of Quantum Matter,

South China Normal University, Guangzhou 510006, China

(Received 1 June 2023; accepted 16 January 2024; published 14 February 2024)

To maximize the survival chances of society members, collective self-organization must balance individual
interests with promoting the collective welfare. Although situations where group members have equal optimal
values are clear, how varying optimal values impacts group dynamics remains unclear. To address this gap, we
conducted a self-optimization study of a binary system incorporating communication-enabled active particles
with distinct optimal values. We demonstrate that similar particles will spontaneously aggregate and separate
from each other to maximize their individual benefits during the process of self-optimization. Our research
shows that both types of particles can produce the optimal field values at low density. However, only one type
of particle can achieve the optimal field values at medium density. At high densities, neither type of particle
is effective in reaching the optimal field values. Interestingly, we observed that during the self-optimization
process, the mixture demixed spontaneously under certain circumstances of mixed particles. Particles with higher
optimal values developed into larger clusters, while particles with lower optimal values migrated outside of these
clusters, resulting in the separation of the mixture. To achieve this separation, suitable noise intensity, particle
density, and the significant difference in optimal values were necessary. Our results provide a more profound
comprehension of the self-optimization of synthetic or biological agents’ communication and provide valuable
insight into separating binary species and mixtures.
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I. INTRODUCTION

Numerous systems in both technological and natural
realms comprise a mixture of diverse particle types. The
combination and subsequent separation of each particle type
yield phenomenology that is extraordinarily rich in compari-
son with monodisperse systems. The separation of particles is
one of the fundamental challenges related to binary mixtures
of particles. Binary mixtures [1–20], made up of different
particles, might demix if their constituents have distinct prop-
erties, such as mass, size, motility, chirality, and so on. Phase
separation (mixed particle separation) is of great importance
in physics as it allows us to study the behavior and properties
of different phases (components) within a system, leading to
a better understanding of phenomena like phase transitions,
critical phenomena, and the formation of complex structures
in materials.

Particle systems capable of intercommunication have gar-
nered substantial interest. Communication is vital for survival
and offers an evolutionary edge to communicating organ-
isms [21,22]. Chemotaxis, which cells have developed as a
simple yet efficient adaptive mechanism, is another striking
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example [23–28]. Numerous examples of communication in
active matter emerge from nature [29–31], including protein
waves facilitating cargo transport [32], auditory cues help-
ing insects create cohesive groups [33], and microrobots and
soft robotic fish utilizing infrared, electric, and sound sig-
nals for communication [34–37]. Further, animal huddling
for warmth, observed in birds [38], mice [39], and notably
penguins [40,41], demonstrates another instance of natural
communication. When the active particles with chemotactic
properties are composed of multiple components, the mixing
characteristics of these particles significantly influence the
system’s dynamic properties.

The chemotactic autoaggregation phenomenon [42,43] has
been modeled in numerous ways, such as the classic Patlak-
Keller-Segel model [44–48]. These models take into account
the volume limits caused by the presence of cells in a certain
area. Such limits can restrict space and block other cells from
invading the area. In a recent study [49], the authors proposed
a simplified model where agents communicate through a com-
mon field that they generate or utilize to attain an optimal
value. Their communication rules ensure that each agent ap-
proaches its individual optimum, and the effective three-body
interactions make the system highly flexible with numer-
ous pathways to reach the desired state. It should be noted
that this model assumes the same optimal field value for all
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FIG. 1. Schematic illustrating the binary system applicable to
our model: type-A particles (blue color) have a target field value
of U op

A , while type-B particles (red color) have a target value of
U op

B , with both types acting as field sources (represented by blue
and red circles) at their respective positions rk. The green arrows
represent the directional movement of particles with respect to their
group members, either moving away from or towards them in order
to optimize the field value in their own individual positions.

individuals. However, in real-world scenarios, individuals
may have varying optimal values. Therefore, it would be inter-
esting to investigate the impact of heterogeneity in the optimal
field on the collective self-optimization of such systems.

To address this issue, we conducted numerical simulation
to investigate collective self-optimization of a binary system
of communicating active particles with different target field
values, based on the findings presented in Ref. [49]. We found
that under low-density conditions, both types of particles
are able to reach their target field values. However, under
medium-density conditions, particles with higher target field
values can reach their targets, while particles with lower target
field values cannot. Under high-density conditions, both types
of particles are unable to reach their target field values. Inter-
estingly, in the process of self-optimization of mixed particles,
the mixture can spontaneously separate under certain condi-
tions. Increasing optimal value differences or noise intensity
facilitates mixture separation, and there exists an optimal par-
ticle number density that maximizes mixture separation. This
research contributes to a more in-depth understanding of the
collective self-optimization of communication particles and
may be valuable in separating species and binary mixtures.

II. MODEL AND METHODS

We consider a model of active particles that communi-
cate through a shared field which they produce or consume,
aiming to achieve a specific target field value. Specifically,
we study a binary system (as shown in Fig. 1) containing
N/2 type-A particles (with a target field value of U op

A ) and
N/2 type-B particles (with a target field value of U op

B ) in a
two-dimensional box of size L × L with periodic boundary
conditions. The active particles attempt to self-optimize their
positions ri with respect to their target field value U op

i of the
collective scalar field U (ri) that they self-produce or consume.
Depending on the system, U op

i may serve as the optimal
oxygen concentration for aerotactic bacteria [29–31], or the
comfortable temperature for emperor penguins [40,41].

The scalar field U (ri ) sensed by particle i at its position ri

is derived from the three-dimensional diffusion equation (refer
to Appendix A for detailed information). It can be expressed
as a superposition of single-particle Yukawa orbitals, as

illustrated in the following formula [49]:

U (ri) =
∑
j �=i

Y (|ri − r j |) =
∑
j �=i

C
exp(−κ|ri − r j |)

|ri − r j | , (1)

where κ and C are the scalar field control parameters.
Each particle i is located at position ri, and it moves in

the direction of ∇iU (ri) if U (ri ) < U op
i , and in the opposite

direction when U (ri) > U op
i . This results in an effective force

Fi acting on particle i [49],

Fi = −λ[U (ri) − U op
i ]∇iU (ri). (2)

Here λ represents the alignment strength along the field gradi-
ent of each particle i. The primary emphasis of this study lies
in the exploration of the realm of heightened heterogeneity
within the optimal field value. Typically, under such circum-
stances, populations exhibit variances in multiple properties,
including κ , C, λ, among others. It should be noted that our
scope narrows to the specific case of heterogeneity in the opti-
mal field value. Thus, we maintain κ = C = λ = 1 throughout
the study.

Considering Eqs. (1) and (2) and defining ri, j = |ri − r j |,
the effective force Fi can be reconstructed as Fi = F p

i + Ft
i .

In this equation, F p
i = − 1

2∇i
∑

j �=i[Y (ri, j ) − U op
i ]2 signifies

pair interactions, exhibiting Hamiltonian nature. Further, the
term Ft

i = −∇i[
∑

j �=i

∑
k �=i,k> j Y (ri, j )Y (ri,k ))] corresponds

to triplet interactions, specifically between particles i, j, and k,
and is characterized by a non-Hamiltonian nature. These inter-
actions make the system non-Hamiltonian and highly flexible,
enabling particles to achieve their desired state through vari-
ous collective pathways.

From an microscopic view, the dynamic of each particle i
follows the overdamped Langevin equation,

dri

dt
= 1

γ
Fi + ηi, (3)

where γ denotes the friction coefficient. The term ηi de-
notes a zero-mean Gaussian noise with 〈ηi(t )η j (t + τ)〉 =
2D0δi jδ(τ )I. Here I denotes the unit matrix, and D0 represents
the noise intensity.

According to the mean-field theory, we can determine a
critical density, denoted as ρ∗, which is approximately equal
to U op/2π (refer to Appendix B for details). Moreover, a
solid (uniform) phase is observed at high number densities
where ρ > ρ∗, thereby hindering the achievement of optimal
equilibration. Conversely, for low densities, where ρ < ρ∗, we
predict a solid-vacuum coexistence (patterned phase), where
clusters of particles form with an optimal mean interparticle
separation and optimal state. It is crucial to note that the
relationship depicted here is also applicable locally. In other
words, given the local area meets the requisite conditions,
the corresponding uniform and patterned phases materialize
locally. For instance, concerning a mixture, when certain con-
ditions are met, a separation of the two types of particles
occurs. This results in one form of particle establishing a
uniform phase, while the other manifests a patterned phase.

In the case of the mixture, we define U op
A = U op − δ/2

and U op
B = U op + δ/2, where U op represents the average tar-

get field value, and δ represents the difference between the
two target fields. The particle number density is defined as
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FIG. 2. Time evolution of the field value of type-A (blue) and -B
(red) particles at D0 = 0.1, δ = 10, and ρ = 1.0.

ρ = N/L2. For convenience in later discussions, we defined
the critical density, ρ∗ ≈ U op/2π for the entire mixed sys-
tem, ρ∗

A ≈ U op
A /2π for type-A particles, and ρ∗

B ≈ U op
B /2π for

type-B particles.
To quantify the spatial distribution and assess the degree

of segregation in our binary mixture, we use the Voronoi
tessellation method to define the separation coefficient [15]

S = 1

N

N∑
i=1

2

(
Ns

i

Nt
i

− 1

2

)
, (4)

where N represents the total number of particles in the
system and Ns

i and Nt
i denote the number of similar neigh-

boring particles and all neighboring particles around particle
i, respectively. Basing on this definition, S = 0 indicates a
completely mixed state, while S = 1 depicts a completely
demixed state.

In our simulations, Eq. (3) were numerically integrated by
using a stochastic Runge-Kutta algorithm with the integration
step time of 10−4. The computational findings, as depicted in
Fig. 2, suggest that once the time exceeds 1000, the mean-
field value of the particles primarily stabilizes. With our
total integration time exceeding 2000, we ensured the system
could reach a nonequilibrium steady state. Particle positions
were initialized using a uniform random distribution within
the two-dimensional box. We conducted 100 realizations to
improve accuracy and minimize statistical errors. Unless oth-
erwise specified, we set N = 1000, γ = 1, and U op = 6. We
tested the presented results for robustness against reasonable
changes in these parameters.

III. RESULTS AND DISCUSSION

In contrast to previous work where the optimal values
pursued by different subjects were equal, our study aims
to explore the effects of heterogeneity in optimal values
among important explorers on collective self-optimization.
Specifically, we investigate to what extent heterogeneity af-
fects collective self-optimization and whether the two types
of particles can undergo spontaneous separation, as well as

the conditions for such separation. It is generally known
that the segregation of two types of particles must sat-
isfy two conditions: (1) significant differences between the
two types of particles leading to disparate motion behav-
iors and (2) particles of the same type clustering together
while those of different types repel each other. This study
focuses on two types of particles with different target field
values, meeting the first condition. Under appropriate con-
ditions, particles with higher optimal values tend to form
larger clusters, while particles with lower optimal values mi-
grate outside of these clusters, meeting the second condition.
In the following sections, we investigate the collective self-
optimization and segregation dynamics of the binary mixture
by varying the noise intensity, particle density, and target
difference.

First, we investigate the effect of δ on the collective self-
optimization of the binary system at ρ = 1.0 and D0 = 0.1.
Figures 3(a)–3(d) illustrate the velocity fields of the binary
system under varying δ. The particles, rather than being static,
exhibit fluctuations attributed to the noise term. Figures 4(a)–
4(d) deliver representative snapshots of the binary system
under differing δ. Meanwhile, Figs. 4(e)–4(h) provide illus-
trations of the corresponding mean-field value, 〈U 〉, derived
from an average of 100 realizations for each particle. When
the two types of particles have identical target field values
(δ = 0), they exhibit no difference in their dynamics and mix
together. Given that the density ρ = 1.0 surpasses the critical
density ρ∗ ≈ 0.955, both types particles are in the fluid state
as depicted in Fig. 4(a). This implies that both types of par-
ticles cannot reach their optimal field values. Consequently,
the field values of particles exceed the target field [shown in
Fig. 4(e)].

Combined with the preceding paragraph, ρ∗ ≈ U op/2π ,
ρ∗

A ≈ (U op − δ/2)/2π , and ρ∗
B ≈ (U op + δ/2)/2π . As a re-

sult, when δ increases, ρ∗
B increases, while ρ∗

A decreases.
When δ > 1.0, ρ∗

A < ρ < ρ∗
B, type-A particles are unable to

reach their optimal field value, while type-B particles are able
to reach their optimal field value [shown in Figs. 4(f)–4(h)].
When examining a scenario such as δ = 3, considering a con-
text of resource limitation, particle type B, owing to its higher
target field value, prioritizes reaching its target field value first.
This allows them to achieve optimized interparticle distances
and facilitate cluster formation. Type-A particles, on the other
hand, are only able to occupy space around clusters formed
by type-B particles. Therefore, the two types of particles tend
to segregate [shown in Fig. 4(b)]. When the value of δ is
sufficiently large (e.g., δ = 6 and 10), the clusters formed
by the type-B particles become significantly large, leading
to the demixing of the two particle types, as illustrated in
Figs. 4(c)–4(d).

It is important to note that the intraparticle spacing differs
between particles A and B. This difference is a consequence
of the critical density ρ∗, directly affecting the optimal mean
interparticle separation, d∗ ∝ 1/(ρ∗)2 ≈ 4π2/(U 2

op). The op-
timal mean separation d∗ therefore decreases as Uop increases.
Given that U op

B is greater than U op
A , the optimal mean sep-

aration between B particles is smaller than that between A
particles. In a situation where spatial resources are insuffi-
cient, type-B particles requires less space to reach its target
field value than type-A particles. An analysis of the forces
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FIG. 3. [(a)–(d)] The velocities of type-A (blue) and -B (red) particles for typical snapshots for different δ at D0 = 0.1 and ρ = 1.0. Type-B
(red arrows) particles form clusters.

exerted on the particles (as depicted in Fig. 5) reveals a siz-
able discrepancy in the force experienced by type-B particles,
which is considerably larger than that experienced by type-A
particles. As a result, type-B particles demonstrate quicker
movement, rapid conquest of space, and expedited achieve-
ment of their target field values. This suggests that type-B

particles place a priority on promptly attaining their target
field.

Figures 4(i) and 4(j) display the average field value, which
is independent of time after system equilibrium (shown in
Fig. 2), denoted as U , and the target value U op of both types of
particles, as a function of δ for various D0 values at ρ = 1.0.

FIG. 4. [(a)–(d)] Typical snapshots of the binary system of 500 type-A particles (blue) and 500 type-B particles (red) for different δ. Type-B
(red disks) particles form clusters. [(e)–(h)] The corresponding mean scalar field value 〈U 〉 of each particle, averaged all 100 realizations. Red
stars (on the right) represent 〈UB〉, while blue dots (on the left) indicate 〈UA〉. The dashed lines represent the desired target field value. The
other parameters are ρ = 1.0 and D0 = 0.1. [(i)–(j)] The average field value and target field value of type-A particles U A, U op

A (i) and those of
type-B particles U B, U op

B (j) as a function of δ for different D0 at ρ = 1.0. The shaded region shows standard deviation above and below the
average. (k) Segregation coefficient S as a function of δ for different D0 at ρ = 1.0.
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FIG. 5. The figure illustrates the effective force, Fx (t ), on parti-
cles of type A and type B in the x direction, fluctuating over time,
given the parameters D0 = 0.1, δ = 10, and ρ = 1.0. The exerted
force on type-B particles is significantly higher than that on type-A
particles. A comparable trend in forces is also observable in the y
direction.

Here the average field value of type-A particles is defined
as ŪA = 1

100

∑
j[

1
NA

∑
i UA,i] j , and the sum runs all particles

i and realizations j. The same goes for type B particles.
When D0 = 0, for low δ (δ < 2.0), type-A particles exhibit
an average value that is roughly equal to the target field value.
However, as δ increases, the density is moving further and
further away from ρ∗

A, U A also gradually diverts from its
target field value. When D0 = 0.1, U A remains greater than
the optimal value especially when δ > 7. Conversely, with
type-B particles, the average value coincides with the target
field value when D0 = 0. Since increasing δ on account of the
formation of larger clusters, the average field value goes up,
which is evident for D0 = 0.1.

Figure 4(k) presents the segregation coefficient S as a func-
tion of δ for different D0 at ρ = 1.0. When the particles in the
system are identical (δ = 0), two types of particles in system
complete mix and S remains 0 irrespective of the noise level.
As δ increases, the dynamic discrepancies between the two
particle types increase, resulting in a particle segregation and
an increase in the S. However, when δ reaches a sufficiently
large value (δ > 6), S becomes stable, indicating a steady
demixing state. Thus, our binary system could separate when
the dynamic difference is significant. From Fig. 4(k), we
can also observe the significant role played by noise in the
separation of mixtures. For instance, in the absence of noise,
separating the mixture can be extremely difficult.

Then, we study the effect of D0 on the collective self-
optimization of the binary system when δ = 10 and ρ =
1.0. Figures 6(a)–6(d) display the typical snapshots of our
binary system for different values of D0, while Figs. 6(e)–
6(h) show the mean corresponding field value 〈U 〉 for each
particle. Notably, with δ = 10, discernible dynamic differ-
ences arise between the two types of particles. Furthermore,
when ρ∗

A < ρ = 1.0 < ρ∗
B, type-A particles display a uniform

state with UA > U op
A , while type-B particles form clusters and

achieve their target field value [shown in Figs. 6(e)–6(h)]. This

conclusion could also been seen in Figs. 6(i) and 6(j), where
the average field value of type-B particles can match their
target value while that of type-A particles exceed U op

A . When
D0 = 0, type-B particles form some small clusters that are
surrounded by type-A particles, so the system is mixed [shown
in Fig. 6(a)]. Small clusters lacked the energy to break through
the surrounding type-A particles to form larger clusters. As D0

increased, thermal motion enabled the interactions between
particles, resulting in small clusters breaking through the
surrounding type-A particles to form larger clusters. Appro-
priately intense noise caused type-B particles to form larger
clusters surrounded by type-A particles, eventually leading to
mixture segregation [Figs. 6(b)–6(d)] Therefore, appropriate
noise levels facilitated the segregation of the mixture.

Figures 6(i) and 6(j) display the average field value, de-
noted as U and the target value U op of both types of particles,
as a function of D0 for various δ values at ρ = 1.0. For low
D0 (D0 < 0.01), the average field value of type-B particles can
match their target value while that of type-A particles exceed
U op

A . As D0 increases, U A remains notably far from its target
field value, while U B also deviates from its optimal value due
to the enlargement of clusters.

The segregation coefficient S for different δ at ρ = 1.0
is plotted as a function of D0 in Fig. 6(k). As previously
noted, for δ = 0, the binary system mixed, and S approached
0 regardless of the noise level. However, when the target field
value difference increased slightly to δ = 3, S increased with
D0, but its value remained less than 0.8. For appropriate δ

values, such as δ = 6 and 10, an increase in D0 led to a swift
rise in S, which then leveled off as long as noise levels were
sufficiently high. These results indicate that under specific
conditions, noise can induce mixture segregation. However,
if the noise intensity is too high and completely controls the
system dynamics, differences between the two particle types
will be eradicated, and the system will be completely mixed
(not presented in this paper).

The particle number density determines the spatial re-
sources available for the particles to occupy. When the particle
density is low, space resources are sufficient, and all particles
can achieve their target field values. However, when particle
density is high, space resources are limited and the two types
of particles need to compete with each other. In this situation,
particles with higher target field values will have a priority
in reaching the optimal interparticle distance. Next, we will
study the impact of the particle density on the collective self-
optimization of the binary system at δ = 10 and D0 = 0.1.
In this particular case, the values of density are ρ∗ = 0.955,
ρ∗

A = 0.160, and ρ∗
B = 1.750.

Figures 7(a)–7(d) shows typical snapshots of the binary
system for different ρ, while Figs. 7(e)–7(h) demonstrates
the corresponding mean-field value 〈U 〉 for each particle. The
particle density values can be categorized into three distinct
intervals: low density, where ρ < ρ∗

A < ρ∗
B; moderate density,

where ρ∗
A < ρ < ρ∗

B; and high density, where ρ∗
A < ρ∗

B < ρ.
At low densities (e.g., ρ = 0.1) and with abundant spatial re-
sources (ρ < ρ∗

A < ρ∗
B), both types of particles can reach their

target field values [shown in Fig. 7(e)], forming small clusters
individually [see Fig. 7(a)]. As these clusters do not increase
in size due to the sufficient space, the mixture remains in a
mixed state. As the particle density gradually increases, the
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FIG. 6. [(a)–(d)] Typical snapshots of the binary system of 500 type-A particles (blue) and 500 type-B particles (red) for different D0. Type-
B (red disks) particles form clusters. [(e)–(h)] The corresponding mean scalar field value 〈U 〉 of each particle, averaged all 100 realizations.
Red stars (on the right) represent 〈UB〉, while blue dots (on the left) indicate 〈UA〉. The dashed lines represent the desired target field value. The
other parameters are ρ = 1.0 and δ = 10. (i) The average field value and target field value of type-A particles U A, U op

A (i) and those of type-B
particles U B, U op

B (j) as a function of D0 for different δ at ρ = 1.0. The shaded region shows standard deviation above and below the average.
(k) Segregation coefficient S as a function of D0 for different δ at ρ = 1.0.

available space naturally becomes inadequate. When the den-
sity of the mixture is between the critical densities of type-A
and type-B particles, i.e., ρ∗

A < ρ < ρ∗
B (for instance, ρ = 0.5

and 1.0), type-B particles can reach their target field value,
while type-A particles cannot [shown in Figs. 7(f)–7(g)]. In
this case, type-B particles tend to form larger clusters while
type-A particles adopt a fluid state and move around these
clusters. This phenomenon allows for the separation of mix-
tures, as shown in Figs. 7(b)–7(c). When ρ > ρ∗

B > ρ∗
A (e.g.,

ρ = 1.9), neither type of particles can reach their target field
value [shown in Fig. 7(h)]. Nonetheless, under the influence
of noise, type-B particles still form large clusters, allowing
for the separation of the mixture [Fig. 7(d)].

Figures 7(i) and 7(j) display the average field value, de-
noted as U and the target value of both types of particles,
as a function of ρ for various D0 values at δ = 10. In this
particular scenario, U op

A is equal to 1 and U op
B is equal to 11,

leading to corresponding values of ρ∗
A and ρ∗

B as 0.16 and 1.75,

respectively. In this analysis, we consider the scenario where
D0 = 0. For type-B particles ρ perpetually remains less than
ρ∗

B. Consequently, type-B particles continuously achieve their
optimal field values, resulting in U B and U op

B maintaining con-
sistency. However, for type-A particles, optimal field values
are only attainable when ρ is less than 0.16, at which U A

and U op
A maintain coherence. Beyond this, as ρ exceeds 0.16,

U A diverges from U op
A . Furthermore, a decrease in the average

distance between particles leads to an increase in their average
field value. With an increase in ρ, the separation between
particles decreases, resulting in a corresponding increase in
the average U A.

Figure 7(k) depicts the segregation coefficient S as a func-
tion of ρ for varying D0 values at δ = 10. At low densities,
the dispersed and small clusters formed by particles blend
together, yielding small values of S. As ρ increases from ρ∗

A
to ρ∗

B, type-B particles cluster together, while type-A particles
remain in a fluid state and move around the clusters. As a
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FIG. 7. [(a)–(d)] Typical snapshots of the binary system of 500 type-A particles (blue) and 500 type-B particles (red) for different ρ. Type-B
(red disks) particles form clusters. [(e)–(h)] The corresponding mean scalar field value 〈U 〉 of each particle, averaged all 100 realizations. Red
stars (on the right) represent 〈UB〉, while blue dots (on the left) indicate 〈UA〉. The dashed lines represent the desired target field value. The other
parameters are δ = 10 and D0 = 0.1. [(i)–(j)] The average field value and target field value of type-A particles U A, U op

A (i) and those of type-B
particles U B, U op

B (j) as a function of ρ for different D0 at δ = 10. The shaded region shows standard deviation above and below the average.
As ρ increases, type-A particles gradually divert from optimal state, especially when D0 = 0, while for type-B particles, the average value
coincides with the target field value when D0 = 0 and increases on account of the formation of larger clusters when D0 = 0.1. (k) Segregation
coefficient S as a function of ρ for different D0 at δ = 10.

result, the two types of particles separate from each other,
and S increases. However, when ρ surpasses both ρ∗

A and ρ∗
B,

although the two types of particles can still be separated, the
increased interaction between them (resulting in a reduction of
the average distance between particles) makes this separation
more challenging, leading to a decrease in the segregation co-
efficient S. Therefore, there exists an optimal particle density
at which S is maximal. In addition to previous statements, we
herein confirm that noise is a critical factor in the separation
of mixtures. For example, even when the density is very high,
the mixture cannot be separated in the absence of noise (e.g.,
D0 = 0).

To further investigate the dependence of the segregation
coefficient S, we plot the phase diagrams of the binary mix-
tures in the D0 − δ representation at ρ = 1.0 and D0 − ρ

representation at δ = 10 [Figs. 8(a) and 8(b)]. The binary
system remains mixed if the target field values of two particles

are identical or the difference between them is insignificant.
Additionally, when D0 is small, the segregation coefficient S
is small. When D0 increases and δ gets large enough, mix-
ture can gradually segregate and the segregation coefficient S
increases. Therefore, when the density ρ is fixed, increasing
target field value difference and noise intensity facilitates the
separation of the mixture [Fig. 8(a)]. When the particle den-
sity ρ or noise density D0 is very low, as mentioned earlier,
demixing does not occur and S remains small. As the density ρ

increases within appropriate noise intensity, two types of par-
ticles are capable of separating, and the segregation coefficient
S increases. Therefore, in our model, with a fixed value of δ,
the two types of particles can separate when the strength of
interactions controlled by the density ρ and noise conditions
D0, are appropriate [Fig. 8(b)].

Finally, we explore the impact of the system size on
the demixing of the mixture, illustrating the relationship
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FIG. 8. (a) Phase diagram of the binary mixtures in the D0 − δ

representation at ρ = 1.0. (b) Phase diagram of the binary mixtures
in the D0 − ρ representation at δ = 10. The background represents
the value of S according to the color bar on the right.

between the segregation coefficient S and particle number
N in Fig. 9. Our findings show an insignificant change in
the segregation coefficient S on alteration of the system size
N , suggesting that this demixing is unaffected by finite size
effects.

Previously, our focus was largely on more pronounced het-
erogeneities in the optimal field value. We have also explored
the impact of less pronounced heterogeneities on the group’s
ability to reach the optimal state, particularly when demixing
is not present as illustrated in Figs. 10(a) and 10(b) at ρ = 0.5,
δ = 1, and D0 = 0.1. Under conditions of low density and
low heterogeneity, the system has sufficient resources, and
two types of particles can approach their target field values.
However, because the differences in the target field values
are too modest, the particles are unable to segregate, result-
ing instead in the formation of independent, small clusters.
Therefore, mixtures with lower heterogeneities are capable of
individually achieving their target field values when subjected
to lower densities, but they may not necessarily be able to
separate. Figure 10(c) illustrates the average field value and
the corresponding target field value as a function of ρ at
δ = 1 and D0 = 0.1. Despite the apparent differences in target
field values, the conditions whereby each particle attains its

FIG. 9. Segregation coefficient S as a function of particle number
N at ρ = 1.0, δ = 10, and D0 = 0.03. We illustrate the nonexistence
of finite size effects, demonstrating that the segregation coefficient S
can be achieved regardless of the system size N .

individual target field value are consistently independent. This
is conditional on the premise that ρ < U op

A(B)/2π .

IV. CONCLUSION AND OUTLOOK

In this study, we have investigated the collective self-
optimization and segregation dynamics of a binary system
comprising communicating active particles with different tar-
get field values by varying the noise intensity, particle density,
and target value difference. Our main focus was to deter-
mine how heterogeneity in optimal field affects the collective
self-optimization in such a system. We found that under
low-density conditions, both types of particles were able
to reach their target field values. However, under medium-
density conditions, particles with higher target field values
could reach their targets, while particles with lower target
field values could not. Under high-density conditions, both
types of particles were unable to reach their target field values.
Interestingly, we also observed that in the process of self-
optimization, the mixture of particles could spontaneously
separate under certain conditions. Suitable noise intensity,
particle density, and significant differences in optimal values
for both types of particles were necessary for the separation
of the mixture. Increasing the optimal value differences or
noise intensity facilitated mixture separation, and there exists
an optimal particle number density that maximizes mixture
separation.

In order to maximize the chances of the survival of
members in a social group, collective self-organization must
strike an optimal balance between maximizing individual
interests and enhancing collective welfare to the highest pos-
sible extent. Therefore, it is necessary to investigate how
multiple populations can achieve this balance under con-
ditions of limited resources. Our study reveals that during
the self-optimization process of multiple population entities,
similar entities will naturally cluster together and separate
from one another to maximize their respective benefits. These
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FIG. 10. (a) Typical snapshots of the binary system of 500 type-A particles (blue) and 500 type-B particles (red) at ρ = 0.5, δ = 1, and
D0 = 0.1. (b) The corresponding mean scalar field value 〈U 〉 of each particle, averaged all 100 realizations. Red stars (on the right) represent
〈UB〉, while blue dots (on the left) indicate 〈UA〉. The dashed lines represent the desired target field value. (c) The average field value and the
corresponding target field value as a function of ρ at δ = 1 and D0 = 0.1.

findings can aid in the optimization of the aggregation of
multiple active agents within populations, or help to identify
communication protocols that certain social groups employ
to maximize their likelihood of survival. Furthermore, the
task of segregating mixed active particles is of utmost im-
portance [1–20], thus our findings are pertinent to gaining
valuable insights into this process.

Heterogeneity is a universal characteristic observed in all
natural systems at various scales, hence our model has consid-
erable practical applicability. For instance, under specific oxy-
gen conditions, two different types of aerotactic bacteria [37]
coexist, each with distinct optimal oxygen concentration re-
quirements. Similarly, within a defined space, diverse types of
penguins (either different species, or adults and juveniles of
the same species) maintain individual optimum temperature
preferences for comfort [41]. In addition, in the context of
heterogeneous populations, sophisticated mechanisms, such
as differentiation of roles into leaders and followers [50],
are often necessary to foster cooperation among individuals.
The different types of particles in these examples can re-
spectively be viewed as type-A and type-B particles in our
model.

Our work primarily focuses on two dimensions. However,
previous research [51–55] has demonstrated intriguing ag-
gregation patterns in cases involving Morse potentials across
both two and three dimensions. Consequently, extending our
work to three dimensions and exploring three-dimensional
patterns would be a meaningful endeavor. Furthermore,
considering the nonreciprocal interactions between differ-
ent types of mixtures and studying how nonreciprocity
affects the collective dynamics of the group is also of great
interest.
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APPENDIX A: THE SCALAR FIELD U (ri )

We assume that the evolution of the scalar field is governed
by the three-dimensional diffusion equation [49]

∂U3D

∂t
= D∇2U3D − kdU3D − ks

∑
j

δ(r − r j ), (A1)

where D is the diffusion constant of the field, kd represents
the loss rate attributed to potential external factors, and ks

represents the emission rate of each particle source. The sum
is taken over all particle indices j. In many instances, the
chemical dynamics occur at a rapid pace compared to other
relevant timescales within a given system (e.g., the response
time of a microorganism). In such cases, our primary interest
lies in the steady-state profile, which corresponds to ∂U3D

∂t = 0
in the Eq. (A1). The steady-state solution, U3D(r), can be rep-
resented as a superposition of single-particle Yukawa orbitals,
as shown in the following formula:

U3D(r) =
∑

j

Y (|r − r j |) =
∑

j

C
exp(−κ|r − r j |)

|r − r j | , (A2)

where C = ks/(4πD) and κ = √
kd/D.

Note that the particles in our system are confined to
a two-dimensional xy plane. We define the scalar field
U (x, y) = U3D(x, y, 0) for two dimensions. Therefore, the
two-dimensional stationary field U (r) has the same form
as the three-dimensional field, except that in the three-
dimensional equations, the z coordinate is set to zero.

U (r) =
∑

j

Y (|r − r j |) =
∑

j

C
exp(−κ|r − r j |)

|r − r j | . (A3)

In the two-dimensional xy plane, the field sensed by particle
i at its position ri can be expressed as U (ri ) = ∑

j �=i Y (|ri −
r j |), with the self-interaction being ignored. Hence, we obtain
Eq. (1), which is presented in the main text.
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APPENDIX B: THE CRITICAL DENSITY FROM
MEAN-FIELD THEORY

Following the steps outlined in Ref. [49], we now
derive the approximate critical density using mean-field
theory at κ = C = λ = γ = 1. To address the coupled three-
dimensional field equation and two-dimensional density
equation, we introduce two distinct types of quantities: the
three-dimensional variables U3D(x, y, z, t ) and ρ3D(x, y, z, t ),
along with their two-dimensional counterparts U (x, y, t ) and
ρ(x, y, t ). In the context of our model, where particles are
confined to movement on the two-dimensional xy plane, it
follows that ρ3D(x, y, z, t ) = ρ(x, y, t )δ(z) and U (x, y, t ) =
U3D(x, y, 0, t ).

In the context of continuum theories, Eq. (A1) can be ex-
pressed in the following form through nondimensionalization:

∂U3D

∂t
= 1

4π
∇2U3D − 1

4π
U3D + ρ3D. (B1)

From Eq. (3), we can derive the corresponding
Fokker-Planck equation [56], which governs the two-
dimensional density ρ(x, y, t ),

∂ρ

∂t
= ∇[ρ(U − U op)∇U ] + D0∇2ρ. (B2)

By assuming a constant density ρ̄ within the two-dimensional
plane and substituting ρ3D = ρ̄δ(z) into Eq. (B1), we ob-
tain the static solution for the coupled equations [Eqs. (B1)
and (B2)],

ρ = ρ̄, U3D = 2πρ̄ exp(−|z|). (B3)

This solution represents the solid or uniform phase.
A linear stability analysis is conducted around the ho-

mogeneous equilibrium as denoted in Eq. (B3). To examine
the linear stability of the steady state to spatially inhomo-
geneous perturbations, we assume ρ = ρ̄ + ρ̃ exp (ikr − σ t )
and ρ3D = 2πρ̄ exp(−|z|) + ũ(z) exp (ikr − σ t ), where ρ̃ and
ũ(z) are very small quantities. By substituting this ansatz into
Eqs. (B1) and (B2) and neglecting higher-order infinitesimal
terms, we obtain a system of linear equations in terms of ρ̃

and ũ(z). Analyzing the conditions for the solvability of this
system of linear equations reveals that stability is achieved
when the following condition is satisfied:

ρ̄ � U op +
√

(U op)2 − 4D0

4π
. (B4)

Consequently, in situations with zero noise (D0 = 0), the
homogeneous solid phase demonstrates stability if ρ̄ �
U op/(2π ), and instability when the contrary is true.
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