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Curvature sensing of curvature-inducing proteins with internal structure
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Many types of peripheral and transmembrane proteins can sense and generate membrane curvature. Laterally
isotropic proteins and crescent proteins with twofold rotational symmetry, such as Bin/Amphiphysin/Rvs super-
family proteins, have been studied theoretically. However, proteins often have an asymmetric structure or a higher
rotational symmetry. We studied theoretically the curvature sensing of proteins with asymmetric structures and
structural deformations. First, we examined proteins consisting of two rodlike segments. When proteins have
mirror symmetry, their sensing ability is similar to that of single-rod proteins; hence, with increasing protein
density on a cylindrical membrane tube, a second- or first-order transition occurs at a middle or small tube
radius, respectively. As asymmetry is introduced, this transition becomes a continuous change and metastable
states appear at high protein densities. Protein with threefold, fivefold, or higher rotational symmetry has laterally
isotropic bending energy. However, when a structural deformation is allowed, the protein can have a preferred
orientation and stronger curvature sensing.
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I. INTRODUCTION

In living cells, biomembranes are primarily composed of
lipids and proteins. Transmembrane proteins span the mem-
brane, while peripheral proteins bind and unbind to the
membrane surface. Many of these proteins modify membrane
properties, such as bending rigidity, spontaneous curvature,
membrane thickness, and viscosity. Curvature-inducing pro-
teins, such as the Bin/Amphiphysin/Rvs (BAR) superfamily
of proteins, regulate cell and organelle membrane shapes
[1,2]. The BAR superfamily proteins have a crescent binding
domain (BAR domain), which is a dimer with twofold rota-
tional symmetry. The BAR domain bends membranes along
its axis and generates a cylindrical membrane tube [1–7].
Clathrin and coat protein molecules assemble to form spher-
ical cargo, generating spherical membrane buds [3,8–12].
These curvature-inducing proteins sense membrane curvature
and are concentrated at the membrane locations of their pre-
ferred curvatures. Curvature sensing of BAR proteins [13–17],
dynamin [18], annexins [19], G-protein coupled receptors
(GPCRs) [20], ion channels [21,22], and Ras proteins [23]
has been reported using tethered vesicles. The dependence
of protein binding on vesicle size also indicates curvature
sensing [23–25].

Theoretically, curvature-inducing proteins have been mod-
eled as laterally isotropic or crescent objects. For isotropic
objects, the Canham-Helfrich model [26,27] was applied
to the bending energy [16,17,28–31]. For crescent objects,
anisotropic bending energies were considered [28,32–37]. An
elliptical shape was typically considered, such that a twofold
rotational and mirror-symmetric shape was assumed. How-
ever, actual proteins often have more complicated shapes.
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BAR domains have twofold rotational symmetry but are chiral
and are not mirror symmetric [see Fig. 1(b)]. Their chirality
is the origin of the helical assembly of the BAR domains
[6,7] and is important for generating membrane tubes with a
constant radius [38]. Many BAR and other curvature-inducing
proteins have intrinsically disordered domains [39], and recent
experiments have demonstrated that these disordered domains
have significant effects on curvature generation [25,40,41].
Theoretically, they are treated as excluded-volume linear
polymer chains. At a low polymer density on the membrane
surface, polymer-membrane interactions can weakly induce a
spontaneous curvature in a laterally isotropic manner [42–46].
Conversely, at high densities, interpolymer interactions can
induce a large spontaneous curvature [42,46–49] and promote
membrane tubulation or prevent it because of the repulsion
between polymers [50].

In this study we consider two types of curvature-inducing
proteins: asymmetric proteins and proteins with threefold or
higher rotational symmetry (see Fig. 1). Dynamin [51–53]
has an asymmetric structure and its helical assembly induces
membrane fission by choking a membrane neck. Melittin
and amphipathic peptides [54–57] bind onto the membrane
and their circular assembly forms a membrane pore. Gómez-
Llobregat et al. reported the curvature sensing of three
amphipathic peptides using a coarse-grained simulation of a
buckled membrane [58]. They revealed that melittin and the
amphipathic peptides LL-37 (PDB: 2k6O) exhibited asym-
metric curvature sensing, which means the angle distribution
with respect to the buckled axis was not symmetric. We use
a protein model consisting of two crescent-rodlike segments
connected by a kink, like melittin [see Fig. 2(a)], and investi-
gate how the asymmetry modifies curvature sensing.

Many transmembrane proteins, such as ion channels
[59,60] and GPCRs [61–64], form rotational symmetric struc-
tures. Several types of microbial rhodopsins form a trimer
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FIG. 1. Lateral symmetries of proteins on a membrane. (a) Later-
ally isotropic proteins, modeled as a circular shape on the membrane.
Intrinsically disordered protein (IDP) domains and the insertion
of a hydrophobic α helix can bend the membrane isotropically.
(b) Twofold rotational symmetry. BAR superfamily proteins form a
dimer that has twofold symmetry. (c) Asymmetric proteins. Dynamin
and amphipathic peptides such as melittin do not have rotational
symmetry. (d) Threefold rotational symmetry. The clathrin monomer
has a threefold symmetric shape (left image). The trimers of pro-
teins such as annexin and microbial rhodopsins also have threefold
symmetry (right image). (e) Fivefold rotational symmetry. Trans-
membrane proteins, such as ion channels, and their assemblies often
have fivefold or higher symmetries.

or pentamer with threefold or fivefold symmetry, respec-
tively [64]. Moreover, peripheral proteins can have threefold
symmetry. For example, the clathrin monomer has threefold
symmetry [8] and annexin A5 molecules form a trimer with
a triangular shape [65,66]. Recently, deformation of the lipid
bilayer induced by the hydrophobic mismatch of rotationally
symmetric transmembrane proteins was studied theoretically
[67]. In this study we investigate curvature sensing of N-fold
rotationally symmetric proteins with N � 3. The rigid rota-
tionally symmetric proteins exhibit isotropic bending energy.
However, the anisotropy can be induced by protein deforma-
tion.

The paper is structured as follows. The previous theoretical
models of curvature-inducing proteins are outlined in Sec. II.
The curvature sensing of asymmetric proteins is described in
Sec. III. The protein model is presented in Sec. III A. Cur-
vature sensing at low-density limits and at finite densities is
described in Secs. III B and III C, respectively. Section IV dis-
cusses proteins with threefold or higher rotational symmetries.
Section V summarizes the paper.

II. PROTEIN MODELS WITH ANISOTROPIC
BENDING ENERGY

Crescent proteins were modeled to have different bending
rigidities and spontaneous curvatures along the protein axis

FIG. 2. Schematic of an asymmetric curvature-inducing protein.
(a) Model of the protein with two rodlike segments. (b) Protein on a
cylindrical membrane. The angles between the nematic direction S,
azimuthal direction, and/or protein axis are depicted.

and in the perpendicular (side) direction. Note that this protein
axis is set along the main preferred curvature of the protein on
the membrane so that it can be different from the protein axis
of the elliptical approximation (e.g., BAR-PH domains [5,6]).
The membrane curvatures along these two directions are given
by

C�1 = C1 cos2(θpc) + C2 sin2(θpc) = H + D cos(2θpc), (1)

C�2 = C1 sin2(θpc) + C2 cos2(θpc) = H − D cos(2θpc), (2)

where θpc is the angle between the protein axis and the
direction of either principal membrane curvature [the az-
imuthal direction is chosen for a cylindrical membrane as de-
picted in Fig. 2(b)], H = (C1 + C2)/2 and D = (C1 − C2)/2
represent the mean and deviatoric curvatures of the mem-
brane, respectively, and C1 and C2 represent the principal
curvatures. The bending energy of a protein is expressed as
[28,36,68]

U1rod = κpap

2
(C�1 − Cp)2 + κsap

2
(C�2 − Cs)2 (3)

= ap

[
(κp + κs)

2

(
H2 + D2

2
[cos(4θpc) + 1]

)

− (κpCp + κsCs)H + κpC2
p + κsC2

s

2
+ (κp − κs)HD cos(2θpc)

− (κpCp − κsCs)D cos(2θpc)

]
, (4)

where ap is the contact area of the bound protein, κp

and Cp are the bending rigidity and spontaneous curva-
ture along the protein axis, respectively, and κs and Cs

are along the side axis. From the comparison of the ex-
perimental data of tethered vesicles [16,17], the bending
rigidity and spontaneous curvature along the protein axis were
estimated as κp/kBT = 82 ± 20 and Cp (nm−1) = −0.047 +
0.0003(κp/kBT − 82) ± 0.001 for the I-BAR domain and
30 � κp/kBT � 60 and 0.06 � Cp (nm−1) � 0.09 for the N-
BAR domain [37].

Different forms of the anisotropic bending energy have also
been used. In Ref. [32] only the linear terms of H and D were
considered in addition to the tilt energy. In Ref. [33] the energy
was considered to be

Ugrad = km

2
(H − H0)2

+ km + kd

4

[
D2 − 2DD0 cos(2θpc) + D2

0

]
. (5)

The second term assumes an energy proportional to a rota-
tional average in the squared gradient of the normal curvature
C� − Cp with respect to the protein rotation. In this form,
the protein depends only weakly on the protein orientation;
the cross term of HD does not appear and the D2 term is
independent of the angle θpc.

In these protein models, the bending energy depends on the
angle only as a function of cos(2θpc), owing to symmetry. For
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asymmetric proteins, the energy can include an odd function
of the angle θpc. Such a term was previously considered in the
model by Akabori and Santangelo [34]. They added the term

Uasy = kasy[D sin(2θpc) − Casy]2 (6)

to Eq. (3), where D sin(2θpc) is the nondiagonal element of the
curvature tensor. In Ref. [58] this model was used to estimate
the bending rigidities of amphipathic peptides. However, this
model does not have a microscopic basis. In this study we
examine the bending energies of asymmetric proteins using a
two-rod protein model.

III. PROTEIN CONSISTING OF TWO RODS

A. Protein model

We consider a protein or peptide consisting of two seg-
ments [segments a and b in Fig. 2(a)]. Each segment is
modeled as the symmetric protein model (in the absence of
side bending rigidity for simplicity) and the orientations of
the two segments have an angle ω on the membrane surface.
Melittin is an example of this type of molecule, in which two
α helices are connected by a kink. The bending energy of one
protein is expressed as

U2rod = κpaapa

2
(C�1a − Cpa )2 + κpbapb

2
(C�1b − Cpb)2

= κpmap

(
(H − Cpm )2 + C2

pd + 2(H − Cpm )D cos(ω) cos(2θpc)

+ 2CpdD sin(ω) sin(2θpc) + D2

2
[cos(2ω) cos(4θpc) + 1]

)

+ κpdap

(
− 2HCpd + 2CpmCpd − 2CpdD cos(ω) cos(2θpc)

−2(H − Cpm )D sin(ω) sin(2θpc) − D2

2
sin(2ω) sin(4θpc)

)
, (7)

where Cpm = (Cpa + Cpb)/2, Cpd = (Cpa − Cpb)/2, κpmap =
(κpaapa + κpbapb)/2, and κpdap = (κpaapa − κpbapb)/2. We
use κpm = 50kBT and apC2

pm = 0.1. These values are typical
of curvature-inducing proteins. The angle ω = π/6 is used
unless specified otherwise. Note that κpd varies according
to the bending rigidity difference and the area difference
between the two segments.

In Eq. (7) the deviatoric curvature D and angle θpc always
appear as pairs as a function of D cos(2θpc) and/or D sin(2θpc).
The asymmetric terms proportional to HD sin(2θpc) and to
D2 sin(4θpc) exist in addition to the term proportional to
D sin(2θpc). Therefore, the asymmetric energy described in
Eq. (6) [34] is insufficient to express the asymmetric bending
energy.

For a symmetric protein (Cpd = kpd = 0), the bending en-
ergy is expressed as

U sym
2rod = κpmap

2
[1 + cos(ω)](C�1 − Cpm )2

+ κpmap

2
[1 − cos(ω)](C�2 − Cpm )2

− κpmap

2
D2[1 − cos(2ω)] cos(4θpc). (8)

The first and second terms correspond to the bending energies
along the main and side axes of the protein in Eq. (3), respec-
tively. However, the last term is new. At ω = 0, the second
and last terms vanish, and with increasing ω, they increase.

B. Isolated proteins

First, we consider protein binding at the low-density limit,
in which bound proteins are isolated on a membrane and
interprotein interactions are negligible. Hence, the density

φ of bound proteins is given by φ = (1/2π )
∫ π

−π
exp[β(μ −

U2rod )]dθpc, where μ is the binding chemical potential and
β = 1/kBT . The binding ratio of proteins to a cylindrical
membrane tube with respect to a flat membrane is expressed
as

φcy

φflat
= exp(βU flat

2rod )

2π

∫ π

−π

exp
( − βU cy

2rod

)
dθpc, (9)

where U flat
2rod is the bending energy for the flat membrane (H =

D = 0) and U cy
2rod is that for the cylindrical membrane (H =

D = 1/2Rcy). This ratio φcy/φflat is independent of μ at the
low-density limit (φcy � 1 and φflat � 1).

Figure 3 shows the dependence on the curvature 1/Rcy of
the cylindrical membrane for symmetrical proteins [Eq. (8)]
with a fixed angle ω. The binding density reaches a maximum
at 1/RcyCpm � 1.2, and the maximum level decreases with
increasing ω. Hence, the preferred curvature of the protein
is slightly higher than that of each segment, Cpm. The den-
sity distribution is mirror symmetric with respect to θpc = 0
and has one or two peaks θpeak at low or high membrane
curvatures, respectively [see Fig. 3(b) and the dashed lines
in Fig. 4(c)]. This peak split occurs since the membrane
curvature becomes higher than the preferred curvature for
the protein at high curvatures. Each protein segment has the
lowest bending energy when it is along the azimuthal direction
for 1/RcyCpm � 1, whereas it deviates from the azimuthal
direction as θpc ± ω/2 = ± arccos(

√
RcyCpm ) for 1/RcyCpm >

1. For ω = π/6, the split point is shifted to a slightly higher
membrane curvature [see Fig. 3(b)], since two segments are
tilted with ±ω/2, when the protein is oriented in the azimuthal
direction (θpc = 0). When the orthogonal protein model given
in Eq. (3) is used, i.e., the last term in Eq. (8) is not
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FIG. 3. Binding of symmetric proteins (κpd = Cpd = 0) at the
low-density limit. (a) Binding density φcy on a cylindrical membrane
with respect to the density φflat on a flat membrane. The solid lines
represent the data for ω/π = 1/12, 1/6, and 1/3 (from top to bottom
in the left region, respectively). (b) Peak position of the angle θpc at
ω/π = 1/6. The dashed lines in both (a) and (b) represent the data
obtained using the orthogonal approximation at ω/π = 1/6.

accounted for, the protein behavior can be reproduced well
at low membrane curvatures but not at high curvatures (see
the dashed lines in Fig. 3). Therefore, the last term in Eq. (8)
significantly modifies protein behavior at high membrane
curvatures.

Next we consider the asymmetric proteins with ω = π/6
(see Figs. 4 and 5). Figure 4 shows the case in which the
spontaneous curvatures of two segments are different while
keeping κpd = 0. Since segment a has a large spontaneous
curvature, it is oriented more in the azimuthal direction than
segment b. Hence, the peak angle of θpc becomes negative and
decreases continuously with increasing 1/Rcy [see Fig. 4(b)].
The upper peak becomes the second maximum for a finite
range of 1/Rcy [see the solid lines in Fig. 4(c)]. The width
of this range decreases with increasing Cpd [see dashed lines
in Fig. 4(b)]. However, the binding protein ratio φcy/φflat is
only slightly modified [see Fig. 4(a)].

When the bending rigidities of the two segments are dif-
ferent, the proteins exhibit more complicated behavior. For
a small curvature of 1/Rcy, the angle distribution is slightly
asymmetric and has a peak at θpc < 0, as in the previ-
ous case [compare Figs. 4(c) and 5(c)]. However, the peak
position shifts to θpc > 0 with increasing 1/Rcy and a sec-
ond peak appears at θpc < 0. At 1/RcyCpm > 2, the peak at
θpc < 0 becomes larger than the other one [see Figs. 5(b)
and 5(c)]. These peak behaviors are caused by the last two
terms in Eq. (7). The sign of the penultimate term changes
at 1/RcyCpm = 2, and the increase in θpeak at 1/RcyCpm � 1 is
mainly due to the last term.
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FIG. 4. Binding of asymmetric proteins with κpd = 0 and ω/π =
1/6 at the low-density limit. (a) Binding density φcy on a cylindrical
membrane with respect to the density φflat on a flat membrane. The
solid lines represent the data at Cpd/Cpm = 0.2, 0.1, and 0.05 from
top to bottom. The dashed line represents the data at Cpd = 0 (the
symmetric condition). (b) Peak position of the angle θpc. The solid
and dashed lines represent the first and second peaks, respectively.
(c) Distribution of the angle θpc at 1/RcyCpm = 0.8 and 1.6. The
solid and dashed lines represent the data for Cpd/Cpm = 0.1 and 0,
respectively.

When both the bending rigidities and spontaneous curva-
tures of the two segments are different, the ratio φcy/φflat

can vary considerably from that of symmetric protein and
the angle distribution can be more asymmetrical [see the
uppermost line in Fig. 5(a) and the dashed line in Fig. 5(c)].
This increase in φcy/φflat is due to the enhancement of protein
curvature induction by the effectively large protein curvature
[κpaapaCpa + κpbapbCpb = (κpmapCpm + κpdapCpd )/2].

Further, we consider the conformational fluctuations in
the protein. To allow an angle fluctuation of ω, a harmonic
potential Uω = (kωkBT/2)(ω − ω0)2 is added, where ω0 =
π/6. At kω = 0, the two segments act as two separate rods,
and the binding ratio φcy/φflat exhibits a smaller peak and
broader tail, since the effective bending rigidity is smaller but
the orientation is less constrained, respectively (see Fig. 6).
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FIG. 5. Binding of asymmetric proteins with κpd > 0 and ω/π =
1/6 at the low-density limit. (a) Binding density φcy on a cylindrical
membrane with respect to the density φflat on a flat membrane. The
uppermost line represents the data at κpd/κpm = 0.5 and Cpd/Cpm =
0.1. The lower two solid lines represent the data for κpd/κpm = 0.5
and 0.25 at Cpd = 0. The dashed line represents the data at κpd =
0 and Cpd = 0 (the symmetric condition). (b) Peak position of the
angle θpc at κpd/κpm = 0.5 and Cpd = 0. The solid and dashed lines
represent the first and second peaks, respectively. (c) Distribution of
the angle θpc at κpd/κpm = 0.5. The solid lines represent the data for
1/RcyCpm = 0.8, 1.6, and 2.4 at Cpd = 0. The dashed line represents
the data at 1/RcyCpm = 2.4 and Cpd/Cpm = 0.1.

As kω increases, the ratio continuously changes into that at
the fixed angle.

C. Density dependence

As the binding density increases, interprotein interactions
have more significant effects on protein binding. Here we
use the mean-field theory [35–37], including orientation-
dependent excluded-volume interactions based on the theory
of Nascimento et al. for three-dimensional liquid crystals [69].
Although two-rod proteins likely form a smectic liquid crystal
at high densities, we consider only the isotropic and nematic
phases in this study.
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FIG. 6. Binding density of asymmetric proteins with the har-
monic angle potential at the low-density limit and (a) κpd = 0
and Cpd/Cpm = 0.2 and (b) κpd/κpm = 0.5 and Cpd/Cpm = 0.1. The
potential strength is varied as kω = 0, 1, and 10 at ω0/π = 1/6. The
lowest lines in the right region (1/RcyCpm > 2) represent the data
when the angle is fixed at ω/π = 1/6.

The free energy Fp of the bound proteins is expressed as

Fp =
∫

fpdA, (10)

fp = φkBT

ap

[
ln(φ) + S


2
− ln

( ∫ π

−π

w(θps)dθps

)]
, (11)

w(θps) = gexp

(

sp(θps) + 
̄ sin(θps) cos(θps)

− U2rod

kBT

)
�(g), (12)

g = 1 − φ[b0 − b2Ssp(θps)], (13)

where sp(θps) = cos2(θps) − 1/2 and �(x) denotes the unit
step function. The order of proteins is obtained by an ensem-
ble average (denoted by angular brackets) of 2sp:

S = 2〈sp(θps)〉 (14)

= 2

∫ π

−π
sp(θps)w(θps)dθps∫ π

−π
w(θps)dθps

, (15)

where θps denotes the angle between the major protein axis
and ordered direction S (see Fig. 2). The factor g expresses the
effect of the orientation-dependent excluded volume, where
b0 = (4 + bexc/2)λ and b2 = bexcλ. Here we use λ = 1/3 and
bexc = 1.98 for an elliptic protein with an aspect ratio of
�1/�2 = 3, where �1 and �2 are the lengths in the major and
minor axes, respectively [36]. Proteins can have nonoverlap-
ping conformations at g > 0 and hence the maximum density
is given by a function of S as φlim(S) = 1/(b0 − b2S/2)
[see the rightmost line in Fig. 7(b)]. The quantities 
 and

024403-5



HIROSHI NOGUCHI PHYSICAL REVIEW E 109, 024403 (2024)

0

0.005

-0.5 0 0.5

P
ro

ba
bi

lit
y

θpc/π

(c)

φcy =

0.2

0.57

0.58

0

0.5

1

0 0.25 0.5 0.75

S

φcy

(b)

1/RcyCpm =

1.8

1.6

φlim

-0.2

0

0.2

θ s
c/

π

(a) 1/RcyCpm = 1.8

1.6

FIG. 7. Binding of symmetric proteins (κpd = Cpd = 0) for finite
densities φcy at ω/π = 1/6. The second- and first-order transitions
occur at 1/RcyCpm = 1.6 and 1.8, respectively. (a) Angle θsc between
the orientational order and azimuthal direction. (b) Orientational
degree S of the proteins. The slanted gray line on the right repre-
sents the maximum density φlim(S). (c) Distribution of the angle θpc.
The solid lines represent the data for φcy = 0.2, 0.57, and 0.58 at
1/RcyCpm = 1.6. The dashed lines represent the data for φcy = 0.5
and 0.6 at 1/RcyCpm = 1.8.


̄ are the symmetric and asymmetric components of the ne-
matic tensor, respectively, and are determined using Eq. (15)
and 〈sin(θps) cos(θps)〉 = 0. Further details of this theory are
described in Refs. [35,36].

For the symmetric proteins (κpd = Cpd = 0), the density
dependence is qualitatively the same as that for the one-
rod proteins (ω = 0) reported in Ref. [36]. On a cylindrical
membrane with a small curvature of 1/RcyCpm � 0.2, the
two-rod proteins with ω = π/6 exhibit an isotropic-nematic
transition at φcy � 0.11 (data not shown). At a middle cur-
vature 0.2 � 1/RcyCpm � 1, the proteins exhibit no phase
transition and the orientational order S increases continuously
with increasing φcy (data not shown). At 1/RcyCpm < 1, the
preferred direction of the proteins is the azimuthal direction
of the membrane tube, i.e., θsc = 0. At 1/RcyCpm � 1.3, the
preferred direction is tilted symmetrically to the positive and
negative angles, as previously explained (see Fig. 3). At low
densities, proteins with positive and negative preferred an-
gles can coexist at the same amount with keeping θsc = 0.
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FIG. 8. Phase diagram for (a) symmetric proteins and (b) asym-
metric proteins. (a) The dashed line represents the phase boundary
of the second-order transition. The proteins exhibit symmetric and
asymmetric distributions with respect to θsc = 0 below and above
the lines, respectively. Two states coexist between the two solid
lines. (b) Boundaries of the metastable states. The upper three lines
represent the data for Cpd/Cpm = 0.2, 0.1, and 0.05 at κpd = 0, from
top to bottom. The lowest line represents the data for κpd/κpm = 0.5
and Cpd = 0.

In contrast, at high densities, this coexistence is prevented
by the larger excluded-volume interactions between proteins
of the different angles. Second- and first-order phase transi-
tions occur between these two states for middle membrane
curvatures (1/RcyCpm < 1.6) and high membrane curvatures
(1/RcyCpm > 1.6), respectively [see Figs. 7 and 8(a)]. At the
first-order transition, the distribution of θpc changes from two
symmetrical peaks to either peak [see the dashed lines in
Fig. 7(c)] and θsc and S exhibit discrete changes [see Figs. 7(a)
and 7(b)]. Conversely, for the second-order transition, the two
peaks are pushed to θpc = 0 and unified to reduce the excluded
volume before the transition, following which the single peak
continuously moves into either the positive or the negative
direction above the transition point [see the solid lines in
Fig. 7(c)]. In the phase diagram, the curves of the second-
and first-order transitions meet at a single point as shown in
Fig. 8(a). A similar phase diagram is obtained for the one-rod
proteins (ω = 0).

For the asymmetric proteins (κpd �= 0 or Cpd �= 0), the tran-
sition becomes a continuous change; however, a metastable
state appears at a high density (see Figs. 9 and 10). At κpd = 0
and Cpd > 0, the negative angles of θpc have lower bend-
ing energies [see Fig. 4(c)] such that the branch of θsc < 0
becomes the equilibrium state (see Fig. 9). The other branch
becomes the metastable state that appears at higher membrane
curvatures and the lower-bound curvature increases with in-
creasing Cpd [see Fig. 8(b)]. Interestingly, at κpd/κpm = 0.5
and Cpd = 0, the equilibrium value of θsc changes the sign
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FIG. 9. Binding of asymmetric proteins with Cpd/Cpm = 0.1,
κpd = 0, and ω/π = 1/6 at finite densities φcy. (a) Angle θsc between
the orientational order and azimuthal direction at 1/RcyCpm = 1.6
and 1.8. (b) Orientational degree S of the proteins at 1/RcyCpm = 1.6
and 1.8. (c) Distribution of the angle θpc for φcy = 0.4 and 0.6 at
1/RcyCpm = 1.8. The solid and dashed lines represent the equilibrium
and metastable states, respectively.

with increasing φcy [see Fig. 10(a)]. This is due to high and
low peaks at θpc = θ1 and −θ2 with 0 < θ1 < θ2 [see the mid-
dle solid line in Fig. 5(c)]. With increasing φcy, the lower peak
is reduced and subsequently disappears in the equilibrium
state [see the solid lines in Fig. 10(c)]. Thus, the asymmetry of
proteins causes the transition to become a continuous change.
It resembles the aforementioned change from the first order
to continuous change at 1/RcyCpm � 0.2 in the symmetric
proteins. Note that taking a different protein axis for the el-
liptical approximation does not change this binding behavior
except for the protein angles. When the axis of segment a is
taken, the values of θsc and θpc are shifted by ω/2, while S is
unchanged.

IV. PROTEINS OF THREEFOLD OR HIGHER
ROTATIONAL SYMMETRY

Single proteins or protein assemblies often exhibit N-fold
rotational symmetry with N � 3. First, we consider cases
with perfect rotational symmetry. The bending energy of an
N-fold rotationally symmetric protein is generically expressed
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FIG. 10. Binding of asymmetric proteins with κpd/κpm = 0.5,
Cpd = 0, and ω/π = 1/6 at finite densities φcy. (a) Angle θsc between
the orientational order and azimuthal direction at 1/RcyCpm = 1.6
and 1.8. (b) Orientational degree S of the proteins at 1/RcyCpm = 1.6
and 1.8. (c) Distribution of the angle θpc for φcy = 0.5 and 0.6 at
1/RcyCpm = 1.8. The solid and dashed lines represent the equilibrium
and metastable states, respectively.

as

Ur,N (H, K, D, θp1)

=
N∑

j=1

u0

(
H, K, D cos

[
2

(
θp1 + 2π j

N

)]
, D

× sin

[
2

(
θp1 + 2π j

N

)])
, (16)

where K = C1C2 is the Gaussian curvature, u0(H, K, D
cos[2(θp1 + 2π j/N )], D sin[2(θp1 + 2π j/N )]) is the bending
energy of the jth segment (or protein), and θp1 is the an-
gle between the axis of the first segment and the direction
of either principal membrane curvature. Here we consider
only the linear and squared terms, as is usual for bend-
ing energies. For the symmetry, Ur,N (H, K, D, θ + 2π/N ) =
Ur,N (H, K, D, θ ). To satisfy this relation, the linear terms (pro-
portional to cos[2(θp1 + 2π j

N )] and sin[2(θp1 + 2π j
N )]) vanish

for N � 3. The squared terms (proportional to cos[4(θp1 +
2π j
N )] and sin[4(θp1 + 2π j

N )]) vanish for N = 3 and N � 5,
because e8π i/N = 1 is satisfied at N = 1, 2, and 4 but other-
wise not. Therefore, for the rotational symmetry of N = 3 and
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FIG. 11. Binding of threefold rotationally symmetric proteins
at the low-density limit. (a) Binding density φcy on a cylindrical
membrane with respect to the density φflat on a flat membrane. The
upper four lines represent kω = 0.2, 1, 5, and 25, from top to bottom.
For the lowest line the angles are fixed as ω1 = ω2 = ω3 = 2π/3.
The schematic of the protein is shown in the inset. (b) Deformation
degree α3 for kω = 0.2, 1, 5, and 25. (c) Orientational degree Sz along
the (z) axis of membrane tube for kω = 0.2, 1, 5, and 25.

N � 5, the bending energy is independent of θp1 but is a func-
tion of H and K , since D2 = H2 − K . Hence, it is laterally
isotropic and the Canham-Helfrich energy [26,27] is applica-
ble. For N = 4, the θp1-dependent term remains. When u0 =
(κpap/2){H + D cos[2(θp1 + 2π j

N )] − Cp}2 is used, the protein
bending energy is given by Ur,4(H, K, D, θp1) = κpap{2H2 +
D2[cos(4θp1) + 1] + 2C2

p }.
Even when a protein has rotational symmetry in its na-

tive structure, the proteins can take asymmetric shapes under
protein deformation. We consider a protein with threefold
rotational symmetry, as shown in the inset of Fig. 11(a).
Three crescent-rodlike segments are connected at the branch-
ing point with harmonic angle potentials

U3rod =
3∑

j=1

κpap

2

{
H + D cos

[
2

(
θp1 + 2π j

N

)]
− Cp

}2

+ kωkBT

2

(
ω j − 2π

3

)2

, (17)

where ω j is the angle between neighboring segments. We
use κp = 50kBT and apC2

p = 0.1. The protein deformation is

quantified by a shape parameter α3 = √〈(rG/�p)2〉, where rG

is the distance between the center of mass and branching point
of the protein and �p is the length of each protein segment. The
orientational order Sz along the (z) axis of the membrane tube
is given by Sz = 2(zG/rG)2 − 1, where zG is the z component
of the center of mass of the protein (the branching point is the
origin of the coordinate).

As the coefficient kω of the angle potentials decreases,
the protein exhibits a larger deformation [see Fig. 11(b)] so
that each segment can take its preferred orientation more
frequently. Thus, the binding ratio φcy/φflat increases with
decreasing kω [see Fig. 11(a)]. The deformed protein is ori-
ented along the azimuthal and tube axes at low and high
membrane curvatures, respectively [see Fig. 11(c)]. There-
fore, protein deformation can induce anisotropic bending
energy in rotationally symmetric proteins and enhance cur-
vature sensing.

V. SUMMARY

We have studied curvature sensing of proteins with
asymmetric shapes and/or protein deformation. Protein asym-
metry breaks the symmetry of sensing with respect to the
azimuthal direction on cylindrical membranes such that
the transition between the symmetrical and asymmetrical
angle distributions disappears and the other branch becomes
a metastable state. The N-fold rotationally symmetric pro-
teins with N = 3 or N � 5 exhibit laterally isotropic bending
energies when the protein deformation is negligible. However,
their deformation can generate asymmetry in the protein shape
and enhance protein binding to membranes with preferred
curvatures.

In this study we considered the proteins consisting of two
rods as asymmetric proteins. The internal structures affect
the curvature sensing at membrane curvatures higher than
their preferred curvatures, whereas only small modifications
occur at lower curvatures. In general, proteins can have more
complicated internal structures. Hence, the protein bending
energy can have nine independent coefficients in Eq. (7) as

Ucv = k1H2 + k2H + k3K + k4D cos(2θpc)

+ k5HD cos(2θpc) + k6D2 cos(4θpc)

+ k7D sin(2θpc) + k8HD sin(2θpc) + k9D2 sin(4θpc).

(18)

Note that the constant term is neglected, since it can be
included in the binding chemical potential as μ′ = μ + μcv.
Isotropic proteins can have the first three terms (k1 = 2κ ,
k2 = −2κC0, and k3 = κ̄ in the Helfrich model [27]). Twofold
rotationally or mirror symmetric proteins can have the first
six terms (k1–k6) and asymmetric proteins can have all terms.
However, it is difficult to determine so many parameters. The
number of parameters should practically be reduced based on
each protein structure and experimental or simulation data.

The asymmetry of the protein bending energy can be de-
termined from the asymmetric angle distribution of bound
proteins on symmetrically curved membranes, such as a
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cylindrical tube. Currently, it is difficult to measure ex-
perimentally. However, for atomistic and coarse-grained
molecular simulations, binding of a single protein is relatively
easy to investigate. The angle distribution of the protein axis
on cylindrical or buckled membranes [70,71] and the cur-
vature sensing of proteins can be evaluated. A few types of
proteins and peptides (amphipathic peptides [58] and F-BAR
protein Pacsin1 [72]) have been investigated only on buckled
membranes of a single membrane shape. Protein bending
properties can be more quantitatively evaluated using mem-
branes with various curvatures. In highly buckled membranes,
the membrane curvature under the proteins can vary along the

protein axis. This local curvature difference can also modify
curvature sensing. These protein properties are important for
a quantitative understanding of curvature sensing and gener-
ation. Although we focused on the curvature sensing in this
study, the curvature generation should also be modified by the
protein asymmetry.
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875 (2010).
[9] H. T. McMahon and E. Boucrot, Nat. Rev. Mol. Cell Biol. 12,

517 (2011).
[10] F. Brandizzi and C. Barlowe, Nat. Rev. Mol. Cell Biol. 14, 382

(2013).
[11] M. Mettlen, P.-H. Chen, S. Srinivasan, G. Danuser, and S. L.

Schmid, Annu. Rev. Biochem. 87, 871 (2018).
[12] R. J. Taylor, G. Tagiltsev, and J. A. G. Briggs, FEBS Lett. 597,

819 (2023).
[13] T. Baumgart, B. R. Capraro, C. Zhu, and S. L. Das, Annu. Rev.

Phys. Chem. 62, 483 (2011).
[14] C. Has and S. L. Das, Biochim. Biophys. Acta 1865, 129971

(2021).
[15] B. Sorre, A. Callan-Jones, J. Manzi, B. Goud, J. Prost, P.

Bassereau, and A. Roux, Proc. Natl. Acad. Sci. USA 109, 173
(2012).

[16] C. Prévost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A.
Callan-Jones, and P. Bassereau, Nat. Commun. 6, 8529 (2015).

[17] F.-C. Tsai, M. Simunovic, B. Sorre, A. Bertin, J. Manzi, A.
Callan-Jones, and P. Bassereau, Soft Matter 17, 4254 (2021).

[18] A. Roux, G. Koster, M. Lenz, B. Sorre, J.-B. Manneville, P.
Nassoy, and P. Bassereau, Proc. Natl. Acad. Sci. USA 107, 4141
(2010).

[19] G. Moreno-Pescador, C. D. Florentsen, H. Østbye, S. L. Sønder,
T. L. Boye, E. L. Veje, A. K. Sonne, S. Semsey, J. Nylandsted,
R. Daniels, and P. M. Bendix, ACS Nano 13, 6689 (2019).

[20] K. R. Rosholm, N. Leijnse, A. Mantsiou, V. Tkach, S. L.
Pedersen, V. F. Wirth, L. B. Oddershede, K. J. Jensen, K. L.
Martinez, N. S. Hatzakis, P. M. Bendix, A. Callan-Jones, and
D. Stamou, Nat. Chem. Biol. 13, 724 (2017).

[21] S. Aimon, A. Callan-Jones, A. Berthaud, M. Pinot, G. E. S.
Toombes, and P. Bassereau, Dev. Cell 28, 212 (2014).

[22] S. Yang, X. Miao, S. Arnold, B. Li, A. T. Ly, H. Wang, M.
Wang, X. Guo, M. Pathak, W. Zhao, C. D. Cox, and Z. Shi,
Nat. Commun. 13, 7467 (2022).

[23] J. B. Larsen, K. R. Rosholm, C. Kennard, S. L. Pedersen, H. K.
Munch, V. Tkach, J. J. Sakon, T. Bjørnholm, K. R. Weninger,
P. M. Bendix, K. J. Jensen, N. S. Hatzakis, M. J. Uline, and D.
Stamou, ACS Cent. Sci. 6, 1159 (2020).

[24] N. S. Hatzakis, V. K. Bhatia, J. Larsen, K. L. Madsen, P.-Y.
Bolinger, A. H. Kunding, J. Castillo, U. Gether, P. Hedegård,
and D. Stamou, Nat. Chem. Biol. 5, 835 (2009).

[25] W. F. Zeno, W. T. Snead, A. S. Thatte, and J. C. Stachowiak,
Soft Matter 15, 8706 (2019).

[26] P. B. Canham, J. Theor. Biol. 26, 61 (1970).
[27] W. Helfrich, Z. Naturforsch. 28, 693 (1973).
[28] H. Noguchi, Int. J. Mod. Phys. B 36, 2230002 (2022).
[29] Q. Goutaland, F. van Wijland, J.-B. Fournier, and H. Noguchi,

Soft Matter 17, 5560 (2021).
[30] H. Noguchi, Phys. Rev. E 104, 014410 (2021).
[31] H. Noguchi, Soft Matter 17, 10469 (2021).
[32] J.-B. Fournier, Phys. Rev. Lett. 76, 4436 (1996).
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