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Influence of donor or acceptor presence on excitation states
in molecular chains: Nonadiabatic polaron approach
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In this paper, we considered a molecular structure that consists of a molecular chain and an additional molecule
(donor or acceptor) that can inject (or remove) single excitation (vibron, electron, etc.) onto the molecular chain.
We assumed that the excitation forms a self-trapped state due to the interaction with mechanical oscillations of
the chain structure elements. We analyzed the energy spectra of the excitation and showed that its state (when it
migrates to the molecular chain) has the properties of the nonadiabatic polaron state. The conditions under which
the excitation can migrate from one subsystem to another one were considered. It was shown that the presence of
a “donor” molecule cannot significantly change the properties of the excitation located on the molecular chain.
At the same time, the molecular chain can affect the position of the energy level of the excitation localized on
the donor subsystem. Indirectly, this can influence the process of excitation migration from one subsystem to
another one. The influence of the basic energy parameters of the system and the environment temperature on this
process are discussed. The entire system was assumed to be in thermal equilibrium with the environment.
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I. INTRODUCTION

Highly efficient, long-range transfer of charged parti-
cles (electron, hole, ...) and excitation energy (exciton)
between two largely separated subunits, “donor” and “accep-
tor” molecules, is at the core of numerous phenomena taking
place in complex molecular structures [1–23]. For example,
they are elementary processes through which the energy cap-
tured in photosynthesis [1,3,4] or released in the hydrolysis
of adenosine triphosphate (ATP) to ammonium dihydrogen
phosphate (ADP) [2,17,18] is made available for further ex-
ploitation in biochemical processes within living cells. Also,
donor-acceptor electron transfer in organic conductors and
semiconductors is the basis of recent microelectronic de-
vices such as light-emitting diodes or field-effect transistors
[9,12,13]. The elucidation of the mechanisms of the electronic
excitation energy transfer (EET) is crucial for the comprehen-
sive understanding of the more complex processes in realistic
conditions and future applications.

It is now widely accepted that the long-haul electron trans-
fer is mediated through a molecular bridge (MB) connecting
the donor with acceptor molecules. The structures composed
of a large number of periodically arranged dipole-dipole cou-
pled molecular groups (MGs) such as polypeptide chains
[1–7,21], conjugated polymers [12,13], or DNA molecules
[22,23] play the role of the MB. Accordingly, a particular
structure is modeled as a long quasi-one-dimensional (quasi-
1D) molecular chain (MC) in which excitation transfer takes
place via successive tunneling between adjacent molecular
units. The translational invariance of the system provides its
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theoretical consideration within electronic band theory. How-
ever, for the understanding of the EET in realistic conditions
simple band model had to be revisited accounting for cou-
pling with the environment (lattice vibrations phonons to be
more specific). Considerations based on perturbation calcu-
lations [1] imply that due to the interaction with phonons
a lifetime of the band states is far below that needed for
long-distance transfer, comparable to the size of the MB.
Nevertheless, lattice modes do not necessarily play a de-
structive role. In particular, in deformable quasi-1D materials,
such as soft biological macromolecules and conjugated poly-
mers [2,5,11,12,24–28], back-action of excitation on lattice
may provide conditions for stable EET via self-trapping (ST)
mechanism and formation of the complex quasiparticle po-
laron [29–31]. In this way, phonons, the main source of
dissipation, are incorporated into this complex structure and
no longer represent an obstacle to stable transfer. This is the
basic idea behind the theory of long-haul EET in biological
macromolecules proposed by Davydov, who, in the formation
of large radius solitonlike polaron (Davydov soliton), saw
the resolution of the crisis in bioenergetics [1,2,14,15,32,33].
Nevertheless, examinations [17,20] based on the general the-
ory of ST phenomena [29] have shown that this idea is not
generally acceptable. Namely, the excitations of soliton type
may appear in quasi-1D systems with short-ranged electron-
(exciton-) phonon interaction in the adiabatic strong-coupling
limit [24–31]. Unfortunately, as discussed in [17,20], system
parameters of most of the substances for which Davydov
solitons have been proposed as EET mechanism in biological
substances fall into a nonadiabatic regime where ST state, if
any arise, would be Holstein’s nonadiabatic (small) polaron,
rather than soliton. For example, according to [17,18,34]
such states would arise due to ST intramolecular vibration

2470-0045/2024/109(2)/024401(10) 024401-1 ©2024 American Physical Society

https://orcid.org/0000-0003-4745-9284
https://orcid.org/0000-0003-4031-6870
https://orcid.org/0000-0002-2440-6940
https://orcid.org/0000-0001-7688-3792
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.024401&domain=pdf&date_stamp=2024-02-02
https://doi.org/10.1103/PhysRevE.109.024401


MATIC, IVIC, PRZULJ, AND CHEVIZOVICH PHYSICAL REVIEW E 109, 024401 (2024)

FIG. 1. Upper panel: a schematic presentation of the D/A-MC
structure. Lower panel: simplified D/A-MC structure.

energy (amid-I quanta) in acetanilide (ACN) and α-helix.
Their transport features are determined by the interaction
strength and their transfer may occur coherently via band
mechanism (small-polaron band), or in an incoherent way
through random jumps between neighboring lattice sites [28].

On the other hand, the relevance of solitons as trans-
fer mechanisms can not be fully excluded. The best-known
examples are large polarons in conjugated polymers (poly-
acetylene, for example) studied extensively within the
Su-Schrieffer-Heeger (SSH) model [12,13].

In this paper, we reconsider polaron-mediated EET pro-
cesses accounting for the induced renormalization of energy
parameters of attached donor or acceptor (D/A) molecule(s)
and molecular chain. Particular attention is paid to examining
how this effect may impede or enhance transfer reactions. So
far, this problem has been considered within the framework of
soliton theory [1,7], while here we focus on the nonadiabatic
limit. The case of ST of a single excess excitation will be
considered.

The paper is organized as follows: In Sec. II, we introduce
the model and briefly discuss the character of ST states in
dependence on system parameters. In Sec. III we sketch a
mean-field model for nonadiabatic polaron and discuss its
validity. The energy spectrum of ST states modified to ac-
count for D/A influence, is presented in Sec. IV. Extended
discussion and comparison of present results with those where
this influence was not considered, is presented in Sec. V. In
the last section, we give a summary of the obtained results
emphasizing their possible relevance.

II. MODEL

The system under consideration is sketched in Fig. 1.
It consists of a long molecular chain to which a donor or
acceptor molecule is attached. The MC consists of N � 1
equally spaced structure elements at distance R0, while the
D/A molecule is attached an aside particular structure element
of the MC.

We recall that the transport reactions take place as suc-
cessive reactions D∗ + MC → D + MC∗ and MC∗ + A →
MC + A∗, where the superscript asterisks denote the excited
molecule. Our study is performed within a simplified scheme

in which we did not consider the initial stage of the reac-
tion, the excitation of the attached molecule. As a theoretical
framework, we applied the Holstein molecular crystal model
[21,28,35,36], modified to account for the presence of the
D/A molecule. The system Hamiltonian is

Ĥ = ĤMC + ĤC . (1)

Here, the first term on the right side is the Hamiltonian of
molecular bridge specified in a usual way [28]:

ĤMC = E0

∑
n

B̂†
nB̂n − J

∑
n

B̂†
n(B̂n+1 + B̂n−1)

+
∑

q

h̄ωqb̂†
qb̂q + 1√

N

∑
n,q

FqeiqnR0 B̂†
nB̂n(b̂q + b̂†

−q ),

(2)

where B̂†
n and B̂n are creation and annihilation operators of

the excitation on the nth structure element of the MC. The E0

is the energy required to excite the corresponding excitation
mode on the particular structure element of the MC. In the
case of an electron in a polypeptide MC, it is the excitation
energy of the weakest bound electron in the peptide group
(the extra electron injected on the nth peptide group is at the
state determined by the energy level E0). The J is the transfer
integral between neighboring structure elements of MC. In
the vibron case, it is the energy of the resonant dipole-dipole
interaction; in the case of the electron, it corresponds to the
overlap of electronic orbitals between neighboring molecules.
The last two terms in Eq. (2) correspond to lattice modes and
their interaction with molecular groups, where b̂†

q (b̂q) are the
creation (annihilation) operators of the phonon in qth phonon
mode (q is the phonon wave number).

Within Holstein’s molecular crystal model, where exci-
tation interacts with dispersionless optical phonons, system
parameters have simple forms: ωq ≡ ω0 = 2

√
κ/M and Fq ≡

F = χ
√

h̄/(2Mω0). Here, κ is the “coefficient of elasticity” of
the chain, M is the mass of the molecular group of the chain,
and χ is the excitation-phonon interaction constant.

The system parameter space of the model may be reduced
to just two parameters: adiabatic parameter B = 2J/h̄ω0, and

coupling constant S = Eb/h̄ω0. Here Eb = 1
N

∑
q

|Fq|2
h̄ω0

denotes
so-called small-polaron binding energy which measures the
depth of the (self-)trapping potential. The mutual ratio of S
and B determines the character of ST states. Two limiting
cases are well understood: adiabatic B � 1 and the nona-
diabatic B � 1. In the adiabatic limit, provided that B > S,
a large polaron (soliton) may arise. In the opposite case
(B � 1), fast phonons instantaneously follow polaron whose
size is of the order of lattice constant [28,29].

The last term in Eq. (1) corresponds to the excitation
Hamiltonian and its interaction with the molecular chain and
may be specified as follows:

ĤC = ECĈ†Ĉ + L(B̂†
mĈ + Ĉ†B̂m). (3)

The first term above describes the excitation of the attached
molecule, which can be either a donor or an acceptor. Oper-
ators Ĉ† and Ĉ are creation and annihilation operators of the
excitation on the attached molecule with energy EC . The sec-
ond one describes the excitation transfer between the attached
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TABLE I. Parameters

Parameter α-helix ACN

J 7.8 cm−1 (0.97 meV) 7.8 cm−1 (0.97 meV)
κ (13–20) N/m (39–58) N/m
χC=O (35–62) pN 56(62) pN
χNH – ≈330 pN
M ≈5.7 × 10−25 kg ≈2.25 × 10−25 kg

molecule and the MC, where L is the energy of resonant
dipole-dipole interaction between the attached molecule and
the nearest molecular group of MC. Usually, it can be assumed
that L � J .

III. MEAN-FIELD TREATMENT:
NONADIABATIC POLARON

Let us briefly recall the values of the physical parameters
of the system that are important for our model. Here, we
used values of system parameters for α-helix and ACN which
are among the most experimentally studied substances in the
context of polaron-mediated intramolecular energy transfer.
So far available data [17,18,37–41] are listed in Table I.

At this stage, we must recall that, despite intensive studies,
there still exists certain uncertainty in the values of system
parameters. It especially concerns the exciton-phonon inter-
action constant χ since there are no reliable experimental
data, but it is usually determined indirectly by employing a
preassumed model [17,42–44]. The coefficient of the elas-
ticity κ presented here is for the hydrogen-bonded structure
elements of the MC. With the label NH we denoted the value
of the χ in the case of the intramolecular excitation of the NH
group of the peptide bond, while the C = O label denoted the
intramolecular excitation of the amide-I (C = O) stretching
mode.

According to the values from Table I, the typical phonon
frequency is about ω0 ≈ 1013 s−1. This implies that the
coupling constant may vary from 0.01 to 5. At the same
time, the adiabatic parameter ranges from 0.01 to 1. Un-
der these conditions, nonadiabatic polaron may be accurately
described employing various methods based on Lang-Firsov
unitary transformation (LFUT) and its variational exten-
sion in combination with perturbation theory. The explicit
form of the LFUT operator is Û = e− ∑

n B̂†
nB̂nŜn where

Ŝn = 1√
N

∑
q

Fq

h̄ωq
eiqnR0 (b̂q − b̂†

−q ) [21,36,45–47].
The LFUT exactly diagonalizes HMC in the transportless

limit J = 0. The transformed Hamiltonian ˆ̄H = Û ĤÛ −1 at-
tains a simple form ˆ̄H = (E0 − Eb)

∑
n B̂†

nB̂n + ∑
q h̄ωqb̂†

qb̂q,
corresponding to two noninteracting Bose fields: phonon-
dressed excitations and new phonons in lattice with shifted
equilibrium position of the molecular group. As we have
a single excitation problem, here we have neglected the
effective excitation-excitation interaction. Here, the operators
B̂†

n (B̂n) and b̂†
q (b̂q) are the creation and annihilation operators

of these new quasiparticles. For nonvanishing J , “dressed” ex-
citation and new phonons remain coupled through −J

∑
n B̂†

n

(B̂n+1eŜn+1−Ŝn + H.c.) ≡ −Je−S
∑

n e− ∑
q βq b̂+

q e
∑

q β∗
q b̂q B̂†

n

B̂n+1 + H.c. Here S is coupling constant and βq = Fq

h̄ωq
eiqmR0 .

The interaction of dressed excitation with displaced
phonons is highly nonlinear in phonon operators and corre-
sponds to intersite tunneling of dressed excitation surrounded
by many phonons. From its explicit form, one may see that in
the case of high occupancy of phonon modes b̂†b̂q � 1 and
in the strong coupling limit S � 1, it rapidly tends to zero,
implying further treatment employing perturbation theory. For
that purpose, it is necessary to define the Hamiltonian of
interaction which may be treated as a small perturbation. In
practice, this involves a simple trick: the adding and subtract-
ing 〈 ˆ̄H〉ph to ˆ̄H , which, after the appropriate rearrangement
yields the model Hamiltonian consisting of the sum of po-
laron effective Hamiltonian and the residual interaction with
new phonons: ˆ̄H = 〈 ˆ̄H〉 + Hint [46]. The last term here Hint =
ˆ̄H − 〈 ˆ̄H〉 is usually treated as a perturbation. The validity of

perturbation treatment is determined by values of coupling
constant S and adiabatic parameter B. In particular, it holds in
a nonadiabatic (B � 1) and strong coupling (S � 1) regimes,
while it fails in the weak coupling case.

To overcome this difficulty, a variational extension of the
LFUT method, sometimes called the partial dressing ap-
proach, is suggested [20,35,36]. It further involves mean-field
approximation based on assumptions that the phonon ensem-
ble is in the thermodynamic equilibrium with the surrounding
thermal bath at the temperature T and that dressed quasi-
particle represents a “good” eigenstate of a system whose
features may be satisfactorily described within an effective
Hamiltonian with a renormalized tunneling parameter. Tech-
nically, the partial dressing approach involves modified LFUT
in which Fq/h̄ωq is replaced by a variational parameter ( fq)
whose optimized form follows employing the Bogoliyubov
theorem [20,47]. Such a treatment enables the extension of
LFUT approaches toward adiabatic and weak coupling limits.
It relies on the picture that dressed quasiparticle represents
a good eigenstate of the system, and analysis of ST states
has been usually performed within an effective Hamiltonian
〈 ˆ̄H〉 ≡ Ĥexc. In the present case, for the weak coupling and
nonadiabatic limits variational parameter is ∼Fq

h̄ωq
[21,35,36],

and effective Hamiltonian reads as

Ĥexc = ECĈ†Ĉ + (E0 − Eb)
∑

n

B̂†
nB̂n

− Je−WJ (T )
∑

n

B̂†
n(B̂n+1 + B̂n−1)

+ Le−WL (T )(B̂†
mĈ + Ĉ†B̂m), (4)

where WJ (T ) = 1
N

∑
q

|Fq|2
(h̄ωq )2 [1 − cos(qR0)]coth( h̄ωq

2kBT ) and

WL(T ) = 1
2N

∑
q

|Fq|2
(h̄ωq )2 coth( h̄ωq

2kBT ) are the renormalization fac-
tors of J and L, respectively. Model Hamiltonian (4) is the
basis for the examination of stationary properties of nonadia-
batic polarons, while its dynamics, particularly kinetics, may
be examined accounting for the residual interaction.

The analytic mean-field approaches based on LFUT
are still widely used and further developed [48,49] even
though there are several nonperturbative, numerically exact
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FIG. 2. The creation of a polaron energy band in 1D regular
structure (ST excitation process).

methods (such as multiple Davydov ansatz [50] or hierarchi-
cal equations of motion [51]) that may exactly evaluate the
exciton-phonon dynamics. Nevertheless, these methods are
often numerically demanding and nontrivial to implement.

IV. ENERGY SPECTRA OF EXCITATION
IN THE D/A-MC STRUCTURE

To examine the influence of the D/A molecule on the
energy spectra of dressed excitation located on the molecular
bridge, we pass to the k space using the transformation B̂n =

1√
N

∑
k e−iknR0 B̂k . Here, quasiparticle wave number k takes N

different values from the interval kR0 ∈ [−π, π ]. We have

Ĥexc = ECĈ†Ĉ +
∑

k

EkB̂†
k B̂k +

∑
k

(λ∗
k B̂†

kĈ + λkĈ
†B̂k ), (5)

where

Ek = E0 − Eb − 2Je−WJ (T ) cos(kR0),

λk = 1√
N

Le−WL (T )e−ikmR0 . (6)

Here, Ek is the nonadiabatic polaron band energy at the
MC. This expression is identical to the one obtained for the
nonadiabatic polaron formed at the MC in the absence of
the D/A molecule [21,35,36]. The energy diagram of the
excitation ST process is schematically presented in Fig. 2.

To find the energy spectrum of dressed excitation in
the D/A-MC system, it is necessary to diagonalize the
Hamiltonian (5). If we consider Eq. (5) as a quadratic form

Ĥexc = [Ĉ† B̂†
1 . . . B̂†

N ]

×

⎡
⎢⎢⎢⎢⎣

EC λ1 λ2 . . . λN

λ∗
1 E1 0 . . . 0

λ∗
2 0 E2 . . . 0

. . . . . . . . . . . . . . .

λ∗
N 0 0 . . . EN

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ê

⎡
⎢⎢⎣

Ĉ
B̂1

. . .

B̂N

⎤
⎥⎥⎦

its complete diagonalization can be achieved by applying
such unitary transformation that will diagonalize the matrix

Ê containing the coefficients from the Hamiltonian (5). Math-
ematically, this problem reduces to solving the eigenproblem
of the coefficient matrix Ê,

Ê · X = E · X
which has nontrivial solutions provided that det(E − E · I) =
0 is satisfied. Here, symbol E represents the set of eigenval-
ues of the matrix Ê, and X̂ are corresponding eigenvectors.
At the same time, the set of values of the parameter E de-
termines the energy spectrum of the quasiparticle belonging
to the entire D/A-MC structure. By solving the above de-
terminant, we obtain the secular equation that determines the
quasiparticle energy spectrum:

EC − E −
∑

k

|λk|2
Ek − E = 0, (7)

where |λk|2 = |λ|2 = 1
N L2e−2WL (T ) (it does not depend on k!).

Because we are interested in stable states of the excitation in
the D/A-MC structure, we will limit ourselves to the analysis
of the lowest energy states obtained by solving Eq. (7). In
addition, we will look for those solutions of Eq. (7) that
satisfy the condition E0 − E > 2J . This condition is satis-
fied for quasiparticles that form the narrow energy band, and
biomolecules, as a rule, belong to such a class of systems [1].
The sum over the k can be easily calculated if we replace it
with the integral

1

N

π/R0∑
k=−π/R0

Ak → R0

2π

∫ π/R0

−π/R0

A(k)dk

︸ ︷︷ ︸
x=R0k

= 1

2π

∫ π

−π

A(x)dx.

Besides, it is useful to present the obtained expressions us-
ing the set of dimensionless system parameters: the coupling
constant S, adiabatic parameter B, normalized energy of the
excitation in the D/A-MC structure Ē = E/h̄ω0, normalized
energy level of the excitation on the D/A molecule ĒC =
EC/h̄ω0, and transfer parameter γ = L/J . The parameter L
provides information about the probability of excitation de-
localization from the D/A molecule to the nearest structure
element of the MC, while the parameter J provides infor-
mation about excitation delocalization from one structure
element to the neighboring one along the MC. Thus, the
relative ratio of these two parameters tells us how much easier
(or harder) the excitation can migrate along the MC, compared
to its delocalization from one molecule to another one. After
introducing the set of dimensionless parameters and perform-
ing the above-mentioned integration, we obtain

ĒC − Ē − γ 2B2e−S coth(1/2τ )

4
√

(Ē0 − S − Ē )2 − B2e−2S coth(1/2τ )
= 0, (8)

where τ = kBT/h̄ω0 is the normalized temperature. The ob-
tained equation determines the lowest energy of dressed
excitation belonging to the D/A-MC structure. This equa-
tion is the main result of our analysis. It allows us to analyze
how the properties of injected excitation depend on basic
energy parameters of the structure and the environment tem-
perature. Let us notice here that the solutions of Eq. (8) must
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FIG. 3. Typical dependence Ē (S) for the fixed values of Ē0, τ , B,
γ , and for two values of ĒC . Short dashed line is the bare excitation
energy E0 of the molecules in MC. The long dashed line is the exci-
tation energy of the D/A molecule. In consistency with the second
condition in Eq. (9), S0 is the intersection point of the branches 1 and
3. The shaded area on the graph represents those values of the energy
Ē that do not satisfy the second condition in Eq. (9).

satisfy the conditions

(Ē0 − S − Ē )2 − B2e−2S coth(1/2τ ) > 0, ĒC > Ē . (9)

The conditions (9) exclude all values of the Ē belong-
ing to the interval EUP < Ē < ELO. Here, ELO = Ē0 − S −
Be−S coth(1/2τ ) and EUP = Ē0 − S + Be−S coth(1/2τ ) correspond
to the edges of the nonadiabatic polaron energy band, formed
due to the excitation self-trapping at the MC, but in the ab-
sence of the D/A molecule. Let us note that the ambient
temperature affects the excitation energy Ē only through the
exponential factor e−S coth(1/2τ ), which reduces the adiabatic
parameter B: B(τ ) = Be−S coth(1/2τ ). In principle, the increas-
ing of the ambient temperature τ leads to a rapid reduction of
the value of the parameter B.

To compare the obtained results with the nonadiabatic po-
laron picture, it is most convenient to base further analysis on
the study of the functional dependence Ē (S), treating B, γ , and
τ as parameters [20,35,36,45]. For that purpose, we solved
Eq. (8) numerically: we transformed it into a polynomial of
the fourth degree in the variable Ē and obtained

(ĒC − Ē ){(Ē0 − S − Ē )2e2S coth(1/2τ ) − B2} −
(

γ B

2

)4

= 0.

Its typical solutions in the nonadiabatic regime and values
of coupling constant varying from a weak to strong coupling
limit are presented in Fig. 3. The function Ē (S) for each set of
parameters B, γ , τ , ĒC , and Ē0 consists of three branches (full
curves in Fig. 3), depicted as 1, 2, and 3. This means that, for
a given set of parameters, Eq. (8) has three solutions for each
value of S. The solutions that satisfy the second condition of
in Eq. (9) lie in the area of the (S, Ē) plane, which is below
the dashed line (Ē = ĒC). For S < S0, physically meaningful
solutions (these solutions correspond to the minimal value of
the system energy) correspond to the points at the branch 3.
At higher values of S, all three solutions exist. Nevertheless,
the points from the branch 1 correspond to the minimal value

of the excitation energy. As one can remark, in this region of
S the branches 1 and 2 are practically inseparable.

To obtain a deeper insight into the nature of these branches,
let us consider the energy spectrum of Ĥexc when γ � 1. In
that case, the last term of the Hamiltonian (5) can be treated
as a perturbation

Ĥpert =
∑

k

(λ∗
k B̂†

kĈ + λkB̂kĈ
†).

The energy spectrum of the unperturbed part of the
Hamiltonian (5) is determined by the energy level ĒC (cor-
responding to the quantum state of the single excitation
localized on the D/A molecule |1C〉 = Ĉ†|0〉) and the energy
spectra Ēk (corresponding to the states |1k〉 = B̂†

k |0〉 of self-
trapped excitation localized on MC, in the absence of the
attached molecule), which forms an energy band due to the
assumed translation invariance of the molecule. Due to the
presence of the perturbation, the energies of these states in the
second order of the perturbation theory become

Ē (pert)
C = ĒC − γ 2B2

4

e−Scoth(1/2τ )√
(Ē0 − ĒC − S)2 − B2e−2Scoth(1/2τ )

,

Ē (pert)
k = Ēk = Ē0 − S − Be−Scoth(1/2τ ) cos(kR0). (10)

At the same time, the vectors corresponding to these (per-
turbed) energies differ slightly from the initial (unperturbed)
ones. This means that the perturbed state originating from the
state |1C〉 (for example) is still very close to the initial one. The
quasiparticle whose distribution of the probability of finding
has a dominant value in the vicinity of the D/A molecule
remains centered on the D/A molecule even after the appear-
ance of the perturbation (that is, after the appearance of the
interaction with MC). Therefore, we can consider that the
excitation that was initially located on the D/A molecule,
after the D/A molecule comes into contact with the MC,
slightly changes excitation energy, but it remains centered on
the D/A molecule. The same conclusion is valid in the case
of states corresponding to excitation initially localized on the
MC. Of course, when the interaction of the D/A subsystem
with the MC becomes large enough, this picture ceases to
be applicable. Then the entire structure represents a unique
quantum system, and the excitation belongs to the structure
as a whole. But, even in this case, we will call the states of
the quasiparticle whose energy is close to ĒC as states of a
particle “centered” on D/A molecule, and those states close
to energies Ēk as states of dressed excitation “localized” on
MC.

As it can be noticed from Eq. (10), for γ � 1 the en-
ergy level of the excitation centered on the D/A molecule
is slightly reduced. The magnitude of this reduction depends
on system parameters and ambient temperature. To see the
impact of this correction, let us plot the Ē (pert)

C (S) and compare
it with branch 3, predicted by Eq. (8). From Fig. 4 we can see
that Ē (S) obtained by perturbation calculation (dashed line)
approximates the branch 3 (full line) well, for large values of
the parameter S. The difference becomes larger when S attains
small values. With increasing γ , the difference between the
curve obtained by perturbation theory and our model becomes
larger (right panel). As we can remark, the energies presented
by the branch 3 are close to the energy of the excitation,
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FIG. 4. The dependence Ē (S) obtained by solving Eq. (8) and
that predicted by the perturbation theory.

localized on the D/A molecule in the absence of the MC
(free D/A). Therefore, in the case when γ ∼ 1 the states
corresponding to the points from the branch 3 can be identified
as states originating from an excitation state, centered on the
D/A molecule.

On the other hand, the band states Ē (pert)
k of the self–trapped

excitation on the MC are practically unaffected by the pres-
ence of the attached molecule. Here, Ē (pert)

k=−π
coincides with

EUP and Ē (pert)
k=0 coincides with ELO. Even for significant values

of the parameter γ , the difference between the solutions from
branches 1 and 2 [obtained by solving Eq. (8)] differ slightly
from those predicted by ELO and EUP. This especially concerns
to the region where S > S0 (from the graph in Fig. 3).

As we can see from Fig. 3, both branches 1 and 2 show
typical dependence E (S) like nonadiabatic polaron quasipar-
ticle, including for large values of S, where the function
E (S) has the form ESP ∼ −S [17,19,21,29]. Like “standard”
nonadiabatic polaron, the dressed excitation centered on the
MC has the properties of the fully dressed, hardly mobile
quasiparticle. That is the reason why the branches 1 and 2 can
be identified as the upper and lower edges of the nonadiabatic
polaron energy band for polaron self-trapped on MC, even in
the case when γ ∼ 1. Since they represent the lowest values
of the dressed excitation energy, the branches 1 and 3 play the
most important role in the analysis of the polaron stability.

The result obtained here is consistent with our expectations
since the MC is usually a significantly larger system than the
D/A molecule and the interaction between these two sub-
systems is much weaker than that between the neighboring
structural elements of the MC itself. In the case when the
attached molecule is larger, it could interact with the MC not
only locally. Such interaction can influence on the mechanical
oscillations of the MC, which could significantly change the
properties of the nonadiabatic polaron formed on the MC.

Now we can make the basic interpretation of the graphics
in Fig. 3. According to the obtained results presented in the
left panel on Fig. 3, there are two basic regimes. The first one,
where the excitation is centered on the D/A molecule, and
the second one, where it migrates to the MC and forms the
dressed quasiparticle. These two regimes are separated by the
intersection point S0. In the parameter space, for all S < S0

energy values represented by the curve 3 are the most ener-
getically stable solutions, i.e., the excitation remains located
in the vicinity of the attached molecule. For the values S > S0,
we find that the energetically most favorable state corresponds
to the branch 1. Therefore, we expect that for these values of
the system parameters, the excitation initially located on the
D/A molecule will pass to the MC and (due to the interaction
with the phonons of the MC) forms a hardly mobile but quite
stable nonadiabatic polaron state. In the case when the system
parameters take such values that all obtained solutions satisfy
conditions (9), the polaron states corresponding to the points
from the branch 1 represent the most favorable energetic exci-
tation states, for each value of the parameter S. In this case, the
intersection point S0 does not exist, and such D/A molecule
represents typical donor structure, even without lowering the
excitation energy on the MC due to the polaron effect. This
situation is presented in the right panel of Fig. 3.

V. THE IMPACT OF THE D/A PRESENCE
ON THE NONADIABATIC POLARON STATE

Let us now examine the impact of D/A presence on the ex-
citation state in the D/A-MC structure. Here, we are primarily
interested in what conditions must be satisfied, so that the at-
tached molecule behaves as a donor or as an acceptor system.
In general, for the D/A molecule to be a donor, the condition
EC > E0 must be fulfilled. Due to the polaronic effect on the
MC, this condition takes the form EC > E0 − Eb, or in terms of
the normalized parameters, we need ĒC > Ē0 − S. However,
due to the interaction between the D/A molecule and the MC,
the condition becomes much more complex and comes down
to examining the mutual position of the bottom of the polaron
energy band and the energy level of the excitation centered on
the D/A molecule. In other words, it comes down to exam-
ining the relative position of branches 1 and 3, obtained by
solving Eq. 8. This can be done by checking the influence of
the parameters that appear within the framework of our model
as a direct consequence of the existence of the D/A molecule,
such as γ and EC . Indirectly, the presence of the D/A molecule
can affect the properties of the dressed excitation by changing
the properties of the MC, that is, by changing the values of
those system parameters that are the primary characteristic of
the MC. Such parameters are S and B.

A. The influence of γ

Here, we assumed that the transfer parameter γ can take
the values from γ � 1 to γ ∼ 1, that is, we supposed that L
and J can be of the same order of magnitude. Numerical anal-
ysis of Eq. (8) shows that the increasing of γ slightly increases
the distance between the branches 1 and 2 (spreads the polaron
energy band). With the increase of γ , numerical values of the
Ē corresponding to the bottom of the polaron energy band (the
branch 1) attain smaller values. At the same time, numerical
values that correspond to the top of the polaron energy band
(the branch 2) attain slightly larger values. As a consequence,
the width of the polaron energy band increases slightly with
increasing γ . Despite that, for S > 1 the width of the polaron
energy band remains quite narrow, and the influence of the
presence of the D/A molecule here is practically negligible.
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FIG. 5. The dependence Ē (γ ), obtained by solving Eq. (8), in
strong coupling limit (S > 1). Left panel: the relative positions of the
bottom of the polaron energy band (branch 1) and excitation energy
level on the D/A molecule (branch 3) on γ . Their dependence on the
γ can not be seen at the chosen scale. To show this, it is necessary to
choose the suitable scale for each branch separately (the middle and
the right panels). Middle panel: the dependence of the branch 3 on
γ . Right panel: the dependence of the branch 1 on γ . The values of
the fixed parameters were chosen so that the graphs show the area to
the right of the point S0.

The spreading of the branches 1 and 2 is very small, and at the
scale like that in Fig. 3 is not visible, even for S � 1. A better
insight into this can be gained from the right panel of Fig. 5,
where the dependence of the branch 1 on γ is presented on a
more convenient scale.

At the same time, the values of Ē from the branch 3
decrease with increasing γ . For the large values of S, the
displacement of the energies from the branch 3 is small, but
it is more significant than the displacements of the branches 1
and 2, especially for the large values of γ (the middle and the
right panels on Fig. 5).

As we can see, the change of γ practically does not affect
polaron states on the MC, but it influences the excitation
energy level on the D/A molecule. This influence is more
significant in the weak coupling limit (S � 1), where all
branches of the excitation energy spectrum are distorted. In
the strong coupling limit, the change of γ practically does not
affect either the excitation energy level on the D/A molecule
or the energy of the polaron state on MC. As a consequence,
the position of S0 practically is not affected by γ .

B. The influence of EC

Here, we examine the influence of the difference EC − E0

on the properties of the single excitation in the D/A-MC
structure (Fig. 6).

The first we notice is that the position of the polaron energy
band (the branches 1 and 2) practically does not depend on the
difference ĒC − Ē0. As can be seen, in the case ĒC − Ē0 > 0,
the polaron state is energetically more favorable than the state
of the excitation localized on the D/A molecule for all values

FIG. 6. The dependence Ē (S), for Ē0 = 0, γ = 1, B = 0.5,
τ = 2, for the three values of EC .

of the parameter S (left panel on Fig. 6). Physically, this
means that the excitation can perform the transition from the
attached molecule to MC, regardless of the coupling strength
of the excitation with the phonon subsystem of the MC. The
only condition that should be satisfied is that the excitation
can form the nonadiabatic polaron state at MC (i.e., that S is
large enough to form a quantum well where excitation can be
“captured”) [17,35,36]. The transfer parameter γ has no sig-
nificant influence here, except for the extremely large values
of γ and small values of S. In that case, the branch 3 can be so
distorted that the exciton states localized on the D/A molecule
become energetically more favorable than the polaron state on
the MC. A similar situation is observed for the case ĒC = Ē0.
Let us note that in this case the energy level of the excitation
localized on the D/A molecule can be “nested” in the polaron
energy band (rectangle area on the middle panel of Fig. 6). For
these values of the system parameters, the excitation is in such
a quantum state that it is delocalized to the entire D/A-MC
structure, and it easily migrates from one subsystem to another
one and vice versa [52].

The situation is quite different when ĒC − Ē0 < 0. In that
case, there is a threshold value S0 for the parameter S, below
which the excitation remains on the D/A molecule, although
the condition for the formation of the nonadiabatic polaron
state on the MC is satisfied. But, for S > S0 the D/A molecule
can inject the excitation on the molecular chain. The effect is
more pronounced for the strong coupling limit. At the same
time, the larger difference ĒC − Ē0 implies the larger critical
value S0 (that is, the intersection point of the branches 1 and
3, moves toward larger values).

C. The influence of B and τ

Finally, we analyzed the influence of the system tempera-
ture τ and the adiabatic parameter B on the excitation energy
in the D/A-MC structure.

The dependence E (S) for different values of the normalized
temperature τ is presented in Fig. 7. Similarly to previous
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FIG. 7. The dependence Ē (S) for different values of τ . The value
τ = 4 corresponds to the room temperature.

cases, the most remarkable changes in the excitation energy
spectra occur in the area S � 1. According to the obtained
results, the increasing of the system temperature τ brings
curves 1 and 2 closer, that is, narrows the energy band of
dressed excitation.

Let us now examine the influence of the adiabatic pa-
rameter B on the energy spectrum of the ST exciton state
in the D/A-MC system. From Fig. 8 one can notice that
the changing of B affects all branches of excitation spectra,
especially for S < 1 and for large γ . Here, the increase of B
leads to the spreading of the polaron band on the one hand,
and the lowering of the excitation energy level on the D/A
molecule on the other hand. But in the strong coupling limit,
the energy spectrum of the excitation shows “strict” properties
of the nonadiabatic polaron or the properties of the excitation
localized on the D/A molecule (depending on whether the
values of the system parameters correspond to the area below
or above S0).

In any case, the changing of B and τ does not affect the
position of S0, that is, the condition required for excitation
transfer from the attached molecule on MC (and vice versa). It
determines the width of the nonadiabatic polaron energy band
and, consequently, its effective mass when excitation migrates
on MC and forms the nonadiabatic polaron state.

VI. CONCLUSION

Let us now briefly summarize the main results of the pre-
sented paper. We have shown that excitation injected into the
molecular chain by the “donor” molecule can form (due to the
interaction with the phonons of the MC) a “dressed” quasipar-
ticle, the properties of which correspond to the nonadiabatic
polaron. At the same time, the presence of the attached
molecule does not significantly change the conditions for
the polaron formation on the molecular chain. On the other
hand, the “acceptor” molecule can capture the excitation from
the MC and destroy the polaron state. Whether the attached
molecule behaves as a donor or an acceptor depends on the
values of the basic energy parameters of the structure. First of
all, on the values of EC , E0, and E . Structures whose system
parameters correspond to the area from the left of S0 are

FIG. 8. The dependence Ē (S), for τ = 2, Ē0 = 0, ĒD = −2, for
various values of B.

typical acceptor systems, and those whose parameters are to
the right of S0 represent typical donor structures (of course,
the condition S � 1 and B � 1 must be satisfied).

According to the proposed model, the presence of the
D/A molecule does not affect the state of the nonadiabatic
polaron localized on the MC. On the other hand, the MC can
significantly change the excitation state of the D/A molecule.
Its influence is most pronounced for large values of γ and
in the weak interaction limit. The influence of the ambient
temperature is reflected primarily in the reduction of the adi-
abatic parameter B. As the temperature increases, the system
becomes more nonadiabatic, and the polaron energy band nar-
rows. As a consequence, the inertness of the polaron increases.

Our conclusions are expected because the attached
molecule is significantly smaller compared to the MC and
interacts with it only locally. In the proposed model, this fact
reflects in neglecting the influence of the attached molecule
on the mechanical oscillations of the MC. When the attached
molecule is large, its presence could change the exciton-
phonon interaction constant Fq on the MC and indirectly
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affects the polaron properties. There is another interesting
mechanism that can potentially change the phonon spectra
of the MC and thus influence the properties of the energy
spectra of the D/A-MC system, namely, the formed polaron
can reversibly change the phonon spectrum of the medium
in which the polaron forms. Such “feedback” effect of po-
laron has been studied in both adiabatic [53] and nonadiabatic
limits [54]. According to the results of these studies, the
feedback effect leads to the hardening of the phonon modes
in the nonadiabatic limit. As a consequence, all the branches
of the energy spectrum of the D/A-MC system can be
changed.

In addition, we mentioned that the values of the ba-
sic parameters of biomolecules are not known exactly. The
discussion about whether they belong to the adiabatic or
nonadiabatic limit, as well as whether the interaction of the ex-
citation with the mechanical oscillation of the MC belongs to
the limits of the strong, medium, or even weak exciton-phonon
interaction continues until now. To explain some effects that
did not fit into the “standard” nonadiabatic polaron model, it
is useful to apply the models based on the partial dressing ap-
proach. According to such models, two types of polarons can
occur in MCs. The first one corresponds to a weakly dressed

(almost free) excitation, while the second one corresponds to
a heavily dressed (standard) nonadiabatic polaron. The tran-
sition between these two states in the parameter space occurs
abruptly [35,36,55,56]. At the same time, the boundary in the
parameter space that separates these two solutions depends
on the environment temperature [35]. In that sense, it would
be interesting to consider how the presence of the attached
molecule affects these two solutions, especially the values of
the system parameters that are characteristic of the boundary
region separating the mentioned solutions. However, this goes
beyond the scope of this paper and will be the subject of our
further research.
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