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Physical effects of learning
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Interacting many-body physical systems ranging from neural networks in the brain to folding proteins to self-
modifying electrical circuits can learn to perform diverse tasks. This learning, both in nature and in engineered
systems, can occur through evolutionary selection or through dynamical rules that drive active learning from
experience. Here, we show that learning in linear physical networks with weak input signals leaves architectural
imprints on the Hessian of a physical system. Compared to a generic organization of the system components,
(a) the effective physical dimension of the response to inputs decreases, (b) the response of physical degrees of
freedom to random perturbations (or system “susceptibility”) increases, and (c) the low-eigenvalue eigenvectors
of the Hessian align with the task. Overall, these effects embody the typical scenario for learning processes in
physical systems in the weak input regime, suggesting ways of discovering whether a physical network may
have been trained.
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I. INTRODUCTION

Nature is replete with systems that learn. For example,
animals learn new behaviors, the immune systems of verte-
brates and bacteria learn pathogenic environments, and, over
evolutionary time, proteins learn structures that fold just right
to achieve precise and specific molecular functions. In su-
pervised computational machine learning [1,2], the learning
process is formulated as minimization of a cost function on a
system’s input-output behavior. More generally, this formula-
tion provides a powerful paradigm for solving difficult inverse
problems [3,4]. The same paradigm has also been exploited to
describe biological learning in various forms, e.g., in neural
[5] and immune systems [6].

Biological systems are necessarily physical in nature and
therefore, like any physical system, must obey certain con-
straints that cause their learning processes to differ from those
of computers. In particular, while computer algorithms often
seek to globally descend cost function gradients with respect
to learning degrees of freedom (e.g., neural network weights),
physical systems without external processors cannot generally
implement such optimization processes, even though learn-
ing by natural selection can sometimes be cast in this way.
Typical biological learning, e.g., by an animal learning a new
behavior, operates on timescales far shorter than evolutionary
ones, and must proceed by dynamical processes (learning
rules) that modify internal (learning) degrees of freedom in
response to examples [7]. Such learning rules are generally
local in space and time and cannot be informed about the
functionality of the whole system. In other words, learning in
physical systems on shorter-than-evolutionary timescales dif-
fers from computational machine learning in that the learning
is emergent. It is a collective behavior of many elementary
units, each implementing simple rules based on its own local
environment.

The Hebb rule in neuroscience (“neurons that fire together,
wire together”) is an example of a local rule—synaptic plas-
ticity is based on local information, leading to debates about
whether and how such dynamics propagate information about
the training task to individual neurons and synapses. Local
rules have also been exploited to train laboratory nonbiolog-
ical mechanical networks to exhibit auxetic behavior [8,9]
or protein-inspired functions [10–12]. Other local rules have
been proposed for associative memory [13–17]; one of them
has even been demonstrated in the laboratory [18]. Here
we will focus on a powerful set of local rules based on
the framework of Contrastive Hebbian Learning, which per-
form approximate gradient descent of a cost function [12,19–
27]. Such contrastive learning was recently realized experi-
mentally for tasks including regression and classification in
electronic resistor networks [28–30] and motion tasks in elas-
tic spring networks [31].

Here, we focus on physical systems such as athermal me-
chanical, flow or electrical networks, in which the learning
rate is slow compared to the rate of physical relaxation. In this
limit, mechanical networks remain in equilibrium during the
learning process, while flow and electrical networks remain
in steady state. As a result, forces on nodes of a mechanical
network must add to zero, while all the currents through nodes
of a flow or electrical network must add to zero. These con-
straints arise because the system must typically be at a mini-
mum of a physical cost function (e.g., the energy in a mechan-
ical network or the dissipated power in a flow and electrical
network) with respect to the physical degrees of freedom (e.g.,
node positions in mechanical networks, or node pressures
and voltages in flow and electrical networks). These physical
degrees of freedom couple to the learning degrees of freedom
(e.g., spring constants in mechanical networks or conduc-
tances for each edge in flow and electrical networks). Note
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that systems that operate at a minimum of a physical cost func-
tion are naturally recurrent in the sense that information flows
in all directions, not only from “inputs” to “outputs.” Thus,
they differ fundamentally from computational learning algo-
rithms based on optimizing a feed-forward functional map.

In such equilibrium or steady-state systems, learning in-
volves a double minimization—the learning cost function
is minimized, and the physical cost function must also be
minimized with respect to the physical degrees of freedom.
Therefore, there are two landscapes of interest: the learning
cost function in the high-dimensional space spanned by the
learning degrees of freedom, and the physical cost function in
the high-dimensional space spanned by the physical degrees
of freedom. These two landscapes are coupled together. As
a system learns, either directly by double gradient descent
or by using local rules that approximate gradient descent in
the learning landscape, changes in the learning degrees of
freedom sculpt the physical landscape. We examine the effects
of learning on this physical landscape and the properties of the
physical system.

We are inspired by recent efforts in the fields of protein
allostery and computational neuroscience that suggest learn-
ing has a set of typical effects on the physical structure of
a network and its response to external signals. Many folded
proteins, often modeled as mechanical networks [32,33], have
evolved allosteric function, where binding of a regulatory
molecule at a “source” site triggers a conformational change
in the protein that either enables or inhibits binding of another
molecule at a distant “target” site. Model networks, as well
as networks derived from folded proteins, that display al-
losteric behavior have been shown to exhibit low-dimensional
responses to strains applied at the source [34–43]. In partic-
ular, the allosteric response is well-captured by low-energy
(soft) normal modes of vibration [39,40,44–47]. It has been
suggested that these soft modes are related to global epistasis
[48], the notion the function of proteins is encoded in low-
dimensional manifolds in the space of genotypes [49]. Similar
observations have been made in neural circuits and model
systems [50–54], in particular for unsupervised learning tasks
such as predictive coding [55], a phenomenon sometimes
summarized as the “neural manifold hypothesis.” Our goal
is to understand how such effects arise in physical networks
trained to perform functions.

In this paper, we study the effects of learning on the phys-
ical landscapes of mechanical and flow networks, as they
use local rules to learn tasks by effectively performing dou-
ble gradient descent in the physical and learning landscapes.
We show in detail how the structure of the physical landscape
changes to accommodate the learned tasks, how it develops
features observed in protein allostery studies [39,40,44,49],
and how it is affected by loading multiple concurrent tasks on
the network, up to and beyond its capacity [56]. We find that,
generically, when physical networks learn tasks in the linear
response regime, they become soft as learning proceeds, and
the responses become low-dimensional, aligning with direc-
tions of low curvature in the physical landscape. The tasks
that can be learned in this way include not only allostery, as in
proteins, but typical computer science tasks such as regression
and classification. In a sense, we are showing that things be-
come what they learn. The implication is that learning imprints

FIG. 1. Learning modifies the physical network. (a) Input forces
(black) are applied to the physical degrees of freedom (green, e.g.,
node positions) of a physical network (e.g., mechanical spring net-
work), whose interactions correspond to learning degrees of freedom
(blue, e.g., spring constants). (b) In the physical configuration space,
this input force causes the system to respond, equilibrating in a
free state (red dot). To train the system, a further “output force” is
applied, nudging the system to a clamped state (green dot). The blue
arrows describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian Hab,
and lengths correspond to the associated inverse eigenvalues λ−1

a .
(c) A local learning rule is applied, modifying the learning degrees
of freedom. On top of improving the system free-state response,
learning tends to rotate the Hessian coordinate system such that the
eigenmode corresponding to the lower eigenvalues align with the
free-state response, and decrease these eigenvalues. (d) Training re-
sults in a physical system whose lower eigenvalues are reduced, and
eigenmodes aligned with the trained task(s). The system responds
considerably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) compared to
the untrained ones (red ellipse). Training makes the physical system
more conductive and lower dimensional.

signatures on a physical system, allowing an external observer
to gain insight into whether a network has been trained, and
for what tasks.

The structure of the paper is as follows: In Sec. II, we detail
the physical learning process, showing how physical networks
can learn to implement desired tasks. In Sec. III, we discuss
how such learning affects the physical Hessian of the learning
system and its eigenspace, leading to eigenmode alignment,
increased effective conductance, and lower effective dimen-
sion. In Sec. IV, we look at the effects of learning multiple
tasks at the same time, below and above the system capacity.

II. LEARNING IN A PHYSICAL NETWORK

Consider a network [Fig. 1(a)] with physical degrees of
freedom xa, a = 1 · · · N collected into a vector �x, and learning
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degrees of freedom wi, i = 1 · · · Nw collected into a vector
�w. We apply inputs to one subset of the physical degrees
of freedom, and designate another subset as outputs. Learn-
ing modifies the learning degrees of freedom to improve the
physical responses of the outputs, driving them closer to the
desired responses. For an athermal mechanical spring net-
work, we will designate the positions of the nodes as physical
degrees of freedom {xa} that adjust to minimize the elastic
energy, which is the physical cost function E . The learning
degrees of freedom wi are spring stiffnesses [10,56]. The in-
puts are forces on nodes and outputs are node displacements.
For a flow network, {xa} represent the node pressures, which
adjust to minimize the power dissipated, which is the physical
cost function E . The learning degrees of freedom {wi} are the
conductances of the edges of the network while the inputs
are externally applied currents at the nodes [56] and outputs
are node pressures. In an electric resistor network, {xa} may
correspond to the node voltage values while {wi} correspond
to the edge resistances [23,28].

Protocols for deriving physically realizable learning rules
for such systems can be constructed based on the ideas
of contrastive Hebbian learning [19]. These approaches in-
clude equilibrium propagation [20], coupled learning [21],
and Hamiltonian echo backpropagation [22]. All of these local
learning rules are based on the comparison of two states of the
system: (a) a free state where only inputs are applied and (b) a
clamped state where the outputs are nudged toward the desired
values [Fig. 1(b)]. Below, we show how such learning rules
change the physical system [Fig. 1(c)], aligning its response
eigenspace with the learned task, and increasing its responses
to random forces [Fig. 1(d)].

More precisely, consider a noiseless physical
Hamiltonian network with fixed learning degrees of freedom
�w. The network dynamics and responses to external inputs are
fully determined by the physical cost function E (�x; �w) which
controls how the physical degrees of freedom �x respond to
external inputs. In the absence of such inputs the system
equilibrates, locally minimizing the physical cost function to
settle into a native state �x0( �w) in which forces (for mechanical
networks) or currents (for flow or electrical networks) are
balanced �∇�xE (�x, �w)| �w = 0, or, in components, ∂E/∂xa| �w = 0
for all a. Below we will consider small perturbations around
such native states; that is, we discuss learning in the limit
of linear response, by assuming that the forces applied to
the system as inputs are weak in the sense that they cause
small physical deformations. The learning approaches we
discuss are practical and effective well beyond linearity [21].
However, in the linear regime we will show that learning
is dominated by characteristic network phenomenology
including reduction of the effective dimension of responses,
softening of the system, and alignment of dynamics with the
learned task. Beyond linear response, other mechanisms, such
as multi-state learning [16,44,57], also become relevant.

In linear response it suffices to consider an expansion of
the physical cost function around the native state up to the
first nonvanishing, i.e., second, order:

E (�x, �w) ≈ E (�x0, �w) + 1
2 (�x − �x0)T H ( �w)(�x − �x0), (1)

where the superscript T denotes the transpose, and H is
a (symmetric) physical Hessian matrix, the components of

which are Hab( �w) = ∂2E (�x, �w)/∂xa∂xb|�x=�x0 . In the follow-
ing we name this matrix the Hessian as a shorthand. The
first-order term in the Taylor expansion vanishes, since the
native state �x0( �w) is a minimum of the physical cost function.
The Hessian is a function of �w both explicitly, and implic-
itly through the dependence of �x0 on the learning degrees of
freedom �w.

To simplify the language in the remainder of this paper, we
will use “force” to denote forces in the case of a mechanical
network or currents in the case of a flow network.

Training physical responses at network nodes

Consider a generalized external input force �F applied to
the physical degrees of freedom, namely tensile forces in a
mechanical network, or a set of currents in a flow network,
applied to specific nodes. This force could be applied locally
(at a subset of nodes) or globally, e.g., a “compression” ap-
plying forces to all the �x toward a certain point. These input
forces will affect the physical cost function, prompting the
system to equilibrate in a new free state �xF which minimizes
the free-state physical cost function:

EF (�x, �w) = E (�x, �w) − �F · �x,
∂

∂x
EF (�x, �w) = 0 �⇒ ∂

∂x
E (�x, �w) = �F . (2)

In the linearized approximation (1), this gives

�xF − �x0 = H−1 �F , (3)

where we used the fact that the Hessian matrix is symmetric.
In other words, the system responds by shifting the native state
by the inverse Hessian applied to the input force.

Thus, deformations around the native state with small
Hessian eigenvalues are “soft”—they exhibit a larger response
to applied forces. Note also that the entries of the inverse
Hessian depend globally on all the learning parameters. So
the change produced by an external force on a given physical
degree of freedom can depend nonlocally on the values of
all the learning degrees of freedom, and not just on, say, the
weights of edges connected to the network node in question.

To proceed, we must define a task in terms of desired out-
puts in response to the inputs, which we can express in terms
of physical constraints that must be satisfied. The constraints
can be local, applying to a subset of nodes designated as
output nodes, or global, applying to all of the nodes. Because
the response is expressed in terms of the physical degrees of
freedom, the constraints can be defined by demanding that
the free-state response �xF − �x0 satisfies a desired relationship
encoded in a functional c(�xF − �x0) = 0. For example, if one
desires �xF − �x0 to equal B at a given output node o, then the
functional is simply xF

o − x0
o − B. This can be thought of as

a single basic task. More complicated tasks can be defined
by adding functionals for many such tasks. For example, a
classification task may be posed such that all members of each
class (each set of inputs in the class) prompt a response that
satisfies a particular constraint for that class.

Suppose we have multiple tasks, i.e., pairs of input forces
and output constraints: ( �Fr, c(r)(�xF

r − �x0)) indexed by r =
1 · · · nT . Since we are studying the linear response regime,
we can linearize any constraint in terms of the free-state
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response as c(r) ≈ �AT
r (�xF

r − �x0) − Br , with a vector �Ar and
a scalar Br � 0 determining the desired response. The weak
input force regime dictates that, at least prior to training,
the system responds much more weakly than desired, i.e.,
|| �AT

r (�xF
r − �x0)|| � Br . This is a sensible regime for untrained

random systems, specifically over-constrained flow and elastic
networks, which typically have a very weak coupling between
putative input and output sectors, specifically if they are phys-
ically distant from each other.

We can quantify how well the system performs the tasks,
i.e., implements these response constraints, in terms of a
learning cost function C. For example, we can use a mean-
squared error (MSE) cost:

C({�xr}, �x0( �w)) ≡ 1

2
n−1

T

∑
r

[c(r)(�xr − �x0)]2, (4)

evaluated at the free-state responses �xr = �xF
r . For a random,

untrained physical system, the task has nothing to do with
the structure of the network, and so the free-state responses
will be diffusely and weakly spread over the network. As a
result free state does not move much from the native state,
and the cost function will be dominated by Br . This gives
C ≈ 0.5n−1

T

∑
r B2

r which will tend to be high. Learning is
the process of modifying the system, changing its learning
degrees of freedom such that the cost function is reduced.
How can this be done?

Computational machine learning algorithms generally
minimize the learning cost function by performing gradient
descent on C. Typically, this means that global information is
required to determine local changes in the network. By con-
trast, a physical learning system must use local learning rules
to achieve the same goal. We take the approach of contrastive
learning in its incarnation as equilibrium propagation [20]. In
this approach, the local learning rule effectively approximates
gradient descent on the learning cost function.

First consider training a system for a single task defined
by the target constraint c(�x − �x0) = 0. Suppose we apply the
input force �F and the system equilibrates at some free state
�xF . To train the system we could nudge it towards the desired
output by applying an additional weak output force

η �F O = −η
∂

∂x
C|�x=�xF = η [ �AT (�xF − �x0) − B] �A, (5)

where η is a small parameter that we have explicitly separated
out, and the last equation applies to a quadratic cost func-
tion [Eq. (4)] and linearized constraint. The physical system
responds to the nudge by settling into a clamped state �xC

satisfying

�xC − �xF = η H−1 �F O. (6)

The clamped state depends on the learning degrees of free-
dom �w explicitly through the Hessian and implicitly through
the additional dependencies in the free state �xF . We can de-
scribe this equivalently by saying that the system minimizes a
clamped physical cost function

EC (�x, �w) = EF (�x, �w) + ηC(�x, �x0( �w)). (7)

Thus, the clamped state is the free state, nudged slightly by
an extra output force related to a learning cost function that
arises if the system does not satisfy the desired constraints.

The contrastive learning approach compares the free and
clamped states to derive an approximation to the gradient of
the learning cost function that can be minimized more readily
via local learning rules. Define the contrastive function:

F ≡ η−1[EC (�xC, �w) − EF (�xF , �w)]. (8)

Previous work has showed that the partial derivative of the
contrastive function with respect to the learning degrees of
freedom �w approximates the gradient of the learning cost
function C in the limit η → 0 [20]:

dC

d �w = lim
η→0

∂

∂w
F . (9)

On the right-hand side we differentiate only the explicit �w
dependencies in the contrastive function, and not the implicit
dependencies via the solutions for the free and clamped states.
We will also assume that the MSE cost function C does
not depend directly on �w, as it is a combination of physical
constraints. The only explicit dependence of the physical cost
function on the learning degrees of freedom then appears in
the physical Hessian H = H ( �w).

Using Eqs. (2) and (7) for EF and EC in F , the Taylor
expansion of the physical cost function in Eq. (1), and the
linearized approximations for xF and xC in Eqs. (3) and (6)
gives

∂

∂w
F = η−1 ∂

∂w
[EC (�xC ; �w) − EF (�xF ; �w)]

≈ �F T H−1

(
∂

∂w
H

)
H−1 �F O ≈

≈ B �F T H−1

(
∂

∂w
H

)
H−1 �A, (10)

where we kept only the term that survives the η → 0 limit
in the second line, and used the fact that H and H−1 are
symmetric matrices. Note that the approximation in the sec-
ond line, that the output force is approximately constant in
each learning step, is valid as long as the free-state response
remains weak (and C is relatively high). This will be true
in the early stages of training because the network structure
is not adapted to the task, but at the end of training this
approximation fails because the network will respond strongly
in the desired manner. But the output force also approaches
zero in this limit, and so learning concludes successfully. In
other words, the approximation above describes the critical
stages of learning, and when it fails the network has already
learned the task.

Learning now proceeds by following this derivative of the
contrastive function with a learning rate α,

δ �w = −α
∂

∂w
F . (11)

This learning rule has two key properties. First, learning is
local. Every learning degree of freedom is modified according
to the local difference between the free and clamped values
of the physical cost, spatially localized at that edge of the
network [20,21]. Second, the rule for modifying �w is propor-
tional to the alignment of the input force �F and the desired
response �A in an inner product determined by the symmetric
matrix H−1∇ �wHH−1. We will see later how this property
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causes a realignment of the inherent physical coordinate
system.

Next, we must choose a model for the physical Hessian
and its dependence on the learning degrees of freedom. The
general form of the Hessian we consider is

Hab( �w) = 1

2

∑
i

[
Laiφi(wi)Rib + RT

aiφi(wi )L
T
ib

] ≡
∑

i

hi
ab,

δwi ≈ −αBφ′
i

2

∑
ab

(H−1 �F )T
a

[
LaiRib + RT

aiL
T
ib

]
(H−1 �A)b,

(12)

where Lai, Ria are left and right matrices selecting the physical
degrees of freedom that participate in interaction i, and φi(wi)
a (possibly nonlinear) edgewise function relating a “bare”
learning degree of freedom wi with the physical Hessian. φ′

i is
the partial derivative of the transformation ∂wφi|wi , particular
to that interaction i. This form of the Hessian is inspired by
linear physical system of interest like Ising models, as well
as flow and mechanical networks, where it is possible for
distinct linear combinations of physical degrees of freedom
to generate interactions. The nonlinearity can, for example,
represent a reparameterization of the conductance in a flow
network in terms of resistance. The second line in Eq. (12) is
derived in detail in Appendix B.

Note that the physical Hessian must be real-valued, sym-
metric and positive definite. The symmetry is guaranteed by
definition and real values are also easily guaranteed, but one
should be careful that the choices of matrices L, R and the
functions φi(wi ) result in positive definiteness. This form of
the Hessian supports a general construction of linear physical
models, with possible nonlinear transformation of the learning
degrees of freedom. In particular, Eq. (12) supports physical
networks of interest, as we discuss next.

To illustrate, consider a model where �x are physical
variables at N nodes, while the Nw = 1

2 N (N − 1) learning
parameters are at edges linking each pair of nodes. In this fully
connected case, the learning parameters are naturally repre-
sented as a matrix W with entries Wab, where a, b = 1 · · · N
[Fig. 2(a)]. The energy (physical cost) function for such a node
network is a function of the node variables:

E (�x;W ) = 1
2 �xH (W )�x. (13)

The Hessian of this energy is Hab(Wab) = 1
2

∑
i j[δaiwi jδ jb +

δbiwi jδ ja] = 1
2 [Wab + W T

ab], and is thus linear in the learning
degrees of freedom. Learning is the process of modifying the
edge weights to amplify desired responses around rest, while
suppressing unwanted responses to inputs. For this model the
learning rule for a given edge weight Wab is

δWab ≈ −αB

2
(W −1 �F )a(W −1 �A)b + transpose. (14)

Here, we used the fact that the a, b and b, a entries of the
matrix ∂WabW equal 1, while all the other entries are 0. So in
the second line we are multiplying the ath component of the
vector W −1 �F by the bth component of W −1 �A and adding the
transpose.

To show that the physically realizable learning rule
Eq. (14) converges, we first tested it on a relatively easy task.

FIG. 2. Training physical networks. (a) We train several types
of physical networks in the linear response regime, in particular
fully connected linear networks (where physical degrees of freedom
are node values), flow networks, and mechanical spring networks
(where physical responses are naturally represented as difference
over edges). (b) Training these systems on single tasks, we generally
find that local learning rules succeed, reducing the mean squared
error by many orders of magnitude (geometric mean over 50 real-
izations of networks trained with single tasks).

We initialized networks with N = 20 nodes with energy func-
tions of the form (13) and weights Wi j drawn randomly from
a standard Gaussian N (0, 1). To ensure a positive definite
Hessian, we explicitly symmetrized the weights and added a
term proportional to the identity δab, Hab = 1

2 (Wab + W T
ab) +

3
√

2Nδab. The resulting random Hessians initially have eigen-
values in the range ∼(10, 27). We then defined a random
learning task by picking an input force with each component
drawn from a standard Gaussian, and a linear output constraint
c(�x − �x0) = �AT (�x − �x0) − B with the entries of �A and B also
drawn from standard Gaussians (see Appendix A). The local
learning rule was effective in training such networks, reducing
the error in Eq. (4) by many orders of magnitude [Fig. 2(b)].
Appendix A gives examples of other tasks such as allostery,
regression, and classification that can be trained in this way.

In the mechanical, flow, and electrical-resistor networks of
interest to us, the physical cost function minimized by the
network is defined via differences in the physical degrees of
freedom �x between nodes connected by edges whose non-
negative learning degrees of freedom are �w. Each element
xa of �x can itself be an element of some d-dimensional
vector space describing the physical attributes of nodes. For
example, we will consider mechanical networks where the
node variables xa correspond to positions (y1

a, y2
a, · · · yd

a ) in
a d-dimensional physical space, while the weights wi are
spring constants (stiffnesses). We use the notation that the
product of two node variables xaxb should be understood as
an inner product in the physical space. For example, if the
physical space is d-dimensional Euclidean space, then xaxb =∑d

k=1 yk
ayk

b. Likewise, in resistor and flow networks, the xa

describe node voltages and pressures (Va), which we will
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regard as one-dimensional vectors, and the wi describe con-
ductances on edges. The energy (power) in these networks is a
weighted sum over edges of the squared strains for springs, or
squared voltage drops for resistors. In view of this, it is more
convenient to work with the differences between physical
node variables connected by edges [Fig. 2(a)] rather than the
node values themselves.

To this end, we arbitrarily assign an orientation to every
edge and define �ia to take the values ±1 depending on
whether the node a is at the incoming or outgoing end of
edge i, and 0 otherwise. The Nw × N quantities �ia form the
incidence matrix �, such that ��x is an Nw-dimensional vector,
with entries that are the differences between the node variables
on either side of each edge. In terms of this incidence matrix,
we can write the physical cost function minimized by such
difference networks as

E (�x, �w) ≈ 1
2 (�x − �x0)T �T diag( �w)�(�x − �x0), (15)

where diag( �w) is a diagonal matrix with entries wi which
measure the conductances (for resistance and flow networks)
or stiffness (for central-force spring networks) of the Nw

edges. Here, if the edge i is incident on nodes a and b, then
the ith component of �δ ≡ �(�x − �x0) is (xa − x0

a ) − (xb − x0
b ).

In terms of these differences the second term in the physical
cost function (15) is

∑
i wiδi · δi. Since the δi are differences

of d-dimensional physical node variables, as described above,
their product is defined by an inner product in the physical
space. We can map the difference network (15) to the general
Hessian model (12) by the identification

H = �T diag( �w)�. (16)

In this case, R = LT = �,φ(w) = w. ∂Hab/∂wi =
�T

a j (δ
ii ) jk�kb, where δii is a Nw × Nw matrix with a 1 in

the ith diagonal entry and zeros elsewhere. We similarly
define the learning task as the satisfaction of a linear
constraint, c(�xF − �x0) = 0. In terms of these constraints
we define a learning cost function C = 0.5c2. Similarly
to Eq. (3), given an input �F , the free-state response is
�xF − �x0 = H−1 �F . The clamped state response is also the
same as before, �xC − �xF = ηH−1 �F O, with an output effective
force �F O ≡ − ∂

∂xC. In mechanical spring networks, such
forces cause the displacement of network nodes, while in flow
or resistor nets, these forces may be understood as injecting
currents to nodes. Using these definitions and Eq. (11), we
find that the learning degrees of freedom �w change in a
training step by

δwi ≈ −αB(�H−1 �F )i(�H−1 �A)i, (17)

where on the right-hand side we are simply multiplying the
ith component of the vectors �H−1 �F and �H−1 �A. Similar
explicit learning rules where derived recently by Anisetti et al.
[26]. We also see that δwi in Eq. (17) can be written as minus
the product of the ith components of the free and clamped
state displacement difference at the ith edge. This means that
the conductance and stiffness elements �w tend to decrease if
the response to the input and output forces at an edge align
and increase otherwise.

In Fig. 2(b), we show that Eq. (17) successfully trains N =
40 flow networks and elastic spring networks for allosteric

tasks (see Appendix A), reducing their error by multiple
orders of magnitude. These networks were derived from
Erd-Rényi graphs with mean coordination number Z = 3 for
flow networks and Z = 4 for two-dimensional mechanical
networks.

III. TRAINED NETWORKS ARE PHYSICALLY
MODIFIED BY LEARNING

Above, we demonstrated a method for training physical
networks to produce arbitrary linear responses to small inputs.
We will show next that training modifies the physical proper-
ties of the network, changing the effective conductances, the
dimension of the physical responses, and the alignment of the
inherent coordinates of the physical response and the learned
behaviors.

A. Changes to the Hessian and its eigenspace

Suppose a physical network implements the contrastive
learning dynamics discussed above. Then, its changing re-
sponses to external forces are all manifested in modifications
to the Hessian at the native state and its eigenspace. The
Hessian changes for two reasons: (a) it is a function of the
network weights �w which are changing, and (b) it is evalu-
ated at the native state �x0 which minimizes the physical cost
function of the network, and hence is implicitly a function of
the changing weights �w. To evaluate these changes we first
define the physical Hessian at a general network state �x as
H̃ ( �w, �x) = ∂2E (�x, �w)/∂xa∂xb| �w. Evaluating H̃ at the native
state �x = �x0( �w), which minimizes the physical cost function,
gives the Hessian H ( �w) in Eq. (1).

In terms of H̃ the change in the Hessian can now be
written as

δH = δ �w · dH̃

d �w
∣∣∣∣
�x=�x0

=
∑

i

δwi

[
∂H̃

∂wi
+

∑
a

∂H̃

∂xa

∂x0
a

∂wi

]
�x=�x0

(18)

In the right hand expression the sum on i in the second term
gives ∇wx0

a · δ �w, which is the change in the native state vari-
able x0

a driven by learning.
For the linear systems of interest, with Hessians given by

Eq. (12), H̃ is by construction independent of �x, and �x0 is
independent of �w. In these cases the second term in Eq. (19)
vanishes and can be dropped. Such physical systems are in
fact common: electrical resistor networks, as in Ref. [28]
always remain in the linear regime. Flow networks remain
linear in the low Reynolds number regime, while initially
unstrained spring networks are also linear over a reasonable
range of strain when learning is performed on spring stiff-
nesses. In such systems the native state �x0 does not depend
on the learning degrees of freedom and stays fixed throughout
the learning process. With this approximation we can compute
the change in each component of the physical Hessian (see
Appendix B for details),

δHab ≈ −αB
∑
i,cd

[
∂hi

ab

∂wi

][
v

∂hi

∂wi
vT

]
cd

fc

λc

ad

λd
, (19)
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where Hab = ∑
c vT

acλcvcb is a diagonalization of the Hes-
sian, with λa, vab the eigenvalues and eigenmodes of the
physical Hessian Hab. Here fa = ∑

b vabFb, aa = ∑
b vabAb

are projections of the input and output vectors on each of
the eigenmodes, and fc

λc
, ad

λd
are these same projections, where

each component is scaled by the associated inverse eigen-
value.

We see that regardless of the choice of model for the
physical Hessian Hab, the change in the Hessian due to
learning is given by a sum over symmetric matrices, which
yields a symmetric modification, as required. However, note
that this learning rule does not guarantee that the Hessian
remains positive definite. Violation of positive semidefinite-
ness in this learning rule is a signature of the failure of
the linear approximation. For example, if the learning rule
tries to push a parameter into an unphysical regime, then the
change simply will not happen. We are focusing on learning
in the linear regime where these sorts of processes do not
happen.

We wrote above the modification of the Hessian given
a single task, i.e., input force—output constraint pair. Each
additional task that the network is trained for contributes such
a modification, and therefore the total change in the Hessian
due to a learning step consisting of r = 1 · · · nT tasks is

δHab =
∑

r

δH (r)
ab . (20)

Now that we know how learning modifies the physical Hes-
sian, we can track its evolution and predict the important
features of the system in the neighborhood of the native
state. To do so, we first discuss how the eigenspace of the
Hessian changes in response to learning. Using first-order
perturbation theory, we can compute the changes in the eigen-
values λn and eigenmodes �vn of the Hessian (n = 1 · · · N)
due to each task. To do this, we need to compute sums of
the form

Mab
mn ≡

∑
i,cde f

vac

[
∂hi

cd

∂wi

]
vT

db · vme

[
∂hi

e f

∂wi

]
vT

f n. (21)

In Appendix B we show how our choice of the Hessian model
[Eq. (12)], the fact that there are many interactions, coupled
with some assumptions of their form, results in simplification
of the sum in Eq. (21). We can approximate the sums Mab

mn,
such that are only finite when indices are chosen identical
in pairs, i.e., Mmn

mn ≡ Xmn > 0, Mnn
mm ≡ Ymn � 0, which are

all nonnegative factors. With this in mind, we can estimate
the change in the Hessian eigenvalues and eigenvectors using
first-order perturbation theory:

δλn = �vT
n δH �vn ≈ −αB

∑
m

Ynm
fmam

λ2
m

, (22)

δλ−1
n = −λ−2

n δλn ≈ αB

λ2
n

∑
m

Ynm
fmam

λ2
m

, (23)

δ�vn =
∑
m =n

�vT
m δH �vn

λn − λm
�vm

≈ αB
∑
m =n

Xmn( fman + fnam)

λmλn(λm − λn)
�vm. (24)

Note that the second-order correction to the eigenvalues
is δλ(2)

n ∼ α2 ∑
m =n(λn − λm)−1 [58], and is thus negligible

compared to the first-order term (∼α) in the limit of slow
learning rate α � 1, except when two eigenvalues nearly
cross. At that point an effective “repulsion” prevents eigen-
value crossing.

Two key points about the inverse eigenvalue corrections
are: (1) Changes occur predominantly in the smaller eigen-
values because of the λ−2

n scaling. (2) We may define the
alignment of an eigenmode with the task by taking the product
of its projections on the input and desired output vectors
ρn ≡ fnan. Since all of the factors Ynm are nonnegative, if
eigenmodes are positively aligned, specifically at the lower
eigenvalues, then the eigenvalues are pushed down by learning
(or inverse eigenvalues pushed up). The lower an eigenvalue
is, the more important it is in determining the direction of
these eigenvalue dynamics.

The eigenvector dynamics in Eq. (24) describe the rotation
of the coordinate system of the physical Hessian. Each eigen-
vector changes by incorporating corrections proportional to all
other eigenvectors, with contributions scaling based on their
eigenvalues and projections on the input and desired output
vectors. Note that these dynamics keep all eigenvectors nor-
malized and orthogonal to each other. Eigenvectors associated
with low eigenvalues tend to change more, and also more
strongly affect the change in other eigenvectors, because of
the dependence on the inverse eigenvalues λ−1

m , λ−1
n . Also, we

can show that these eigenvector dynamics imply the alignment
of lower eigenvectors with the learned task. To see this, we
compute the average change in the alignment of mode n due
to learning (see Appendix B for details):

δρn ≈ αB
∑
m =n

Xmn( fman + fnam)2

λmλn(λm − λn)
. (25)

In this expression, the sign of every member of the sum
depends only on the sign of the difference in eigenvalues
λm − λn, as all other expression are positive. This means, e.g.,
that the alignment of the lowest eigenmode ρ1 is becomes
more positive—the lowest mode aligns with the task. Recall-
ing Eqs. (22)–(24), this stronger alignment will result in a
more dominant effect of this mode on the eigensystem dy-
namics. In contrast, the modes associated with top eigenvalues
are expected to misalign with the learned task, making them
overall less important for the learning dynamics. It is notable
that as these dynamics are symmetric with respect to the input
force fn and the desired output vector an. Since these vectors
are random with respect to the initial eigenvectors, we expect
that the alignment of both of them with the lowest eigen-
mode, will increase during learning, i.e., 〈δ f 2

1 〉 ∼ 〈δa2
1〉 > 0.

In another words, the lowest mode tends to rotate into the
plane spanned by the input force and the output vector. We
also note that a fully trained system no longer changes its
eigenvalues or eigenvectors because, while the input force �F
remains constant over training, the output force �F O = −∇�xC
diminishes and vanishes together with the learning cost func-
tion. Therefore, the approximations above are valid during
most of the learning process, but not close to its conclusion.

Above we discussed the eigensystem dynamics for quite
general Hessian models satisfying Eq. (12). We can use these
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FIG. 3. Hessian changes during learning. (a) Hessian inverse
eigenvalues change during training of fully connected linear net-
works (N = 20) for a single task. The top inverse eigenvalue tends
to significantly increase, showing that learning creates a soft mode.
(b) The lowest (blue) eigenmode of the Hessian significantly aligns
with the input force force and output vector defined by the task.
(c–f) Similar results are found for flow and mechanical networks
(N = 40), except that the higher eigenmodes do not align with the
task. Results averaged over 150 realization of networks and tasks.

results for the special cases of networks of interest to us.
For the fully connected linear network given by Eq. (13), the
dynamics are considerably simplified and we can write closed
form expressions:

δλ−1
n ≈ αB

fnan

λ4
n

= αB
ρn

λ4
n

,

δ�vn ≈ αB
∑
m =n

fman + fnam

λmλn(λm − λn)
δ�vm,

δρn ≈ αB
∑
m =n

( fman + fnam)2

λmλn(λm − λn)
. (26)

These expressions clearly show the dynamics we described—
aligned eigenmodes have their eigenvalues reduced (inverse
eigenvalues increased), and low eigenmodes become more
aligned with the task. Meanwhile, eigenmodes with higher
eigenvalues decrease their alignment over training, and we
expect their associated eigenvalues to be further increased by
learning. These considerations are verified in Fig. 3(a), where
we simulate the Hessian dynamics of fully connected linear
networks with physical cost function (13) during learning
of one task. We see that the top inverse eigenvalue (bottom
eigenvalue) is significantly increased, while the bottom in-
verse eigenvalue decreases in networks, here with N = 20
nodes, averaged over 150 realizations of networks and tasks.
Moreover, by calculating the alignment of the eigenmodes ρn,
we find that the bottom eigenmode aligns with the task and top
eigenmodes mis-align with it [Fig. 3(b)]. Note that while we
plot results averaged over realizations, the described scenario
plays out in each individual learning simulation.

For random difference networks (e.g., flow and elastic nets)
of Eq. (16), it is easiest to report the average eigenvalue dy-
namics as the geometry of interaction between nodes is more
complicated than in the previous case. However, the results are
still simplified because the left and right matrices are identical:

δλ−1
n ≈ 4αB

λ2
n

Ne

N2

⎡
⎣2 fnan

λ2
n

+
∑
m =n

fmam

λ2
m

⎤
⎦,

δ�vn ≈ 4αB
Ne

N2

∑
m =n

fman + fnam

λmλn(λm − λn)
δ�vm,

δρn ≈ 4αB
Ne

N2

∑
m =n

( fman + fnam)2

λmλn(λm − λn)
, (27)

where Ne is the total number of edges (resistors or springs) in
the network. The eigenvector and alignment dynamics behave
similarly to the previous case, with the alignment of the lower
modes increasing during learning. The eigenvalue dynamics
are slightly different; a second term appears in the eigenvalue
dynamics which is shared for all eigenvalues. This term tends
to decrease all eigenvalues by the same amount if the eigen-
vectors (specifically the lower ones) tend to align with the
task, and increase all of them otherwise. We therefore expect
that in this case, contrary to the previous one, the alignment
of the lower eigenvectors will cause all the eigenvalues to
be decreased during learning by similar amounts. However,
as in Eq. (24), the change in inverse eigenvalues is most
pronounced in for the lowest modes that align with the task.

We verify these considerations for flow and mechanical
networks with N = 40 nodes in Figs. 3(c)–3(f). The bot-
tom eigenvalue is effectively reduced (inverse eigenvalue
increased) by learning and the associated eigenmode aligns
significantly with the input force (results averaged over 150
realizations).

B. Effective conductance and dimension

The properties of a physical system are often characterized
by its responses to generic forces (e.g., finite temperature
fluctuations), quantified below by an effective inverse-stiffness
and conductance ḡ. Suppose we compute the responses to
M random forces { �F R

m } sampled from some distribution and
indexed by m. In each case we have the free-state response
(�xR − �x0)m = H−1 �F R

m . The effective conductance is the aver-
age amplitude of these responses:

ḡ = M−1
∑

m

∣∣�xR
m − �x0

∣∣∣∣ �F R
m

∣∣ . (28)

Suppose the random forces are drawn component-by-
component independently from a Gaussian distribution and
normalized to amplitude | �F R

m |2 = 1. Define the random force
projections �f R ≡ v �F R. As the eigenmodes are uncorrelated
with the random forces, the components of �f R are inner
products between random vectors on the unit sphere. In high
dimension N , these are approximately drawn from a normal
distribution N (0, N−1). The response of the system to the
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FIG. 4. Training increases the effective conductance and reduces
response dimension in physical networks. (a) Effective conductance
is increased during training in all systems considered, suggesting that
trained systems are softer, with stronger responses to random forces.
Lines show conductance values for different networks normalized to
1 at initialization. (b) The physical response dimension is decreased
in all systems during learning, so that the response of these systems to
random forces is concentrated in low-dimensional manifolds. Lines
show physical dimension values normalized to 1 at initialization.
Results averaged over 150 networks and tasks.

random input force is

H−1 �F R =
∑

b

vT
ab

f R
b

λb
→ |H−1 �F R|2 =

∑
a

(
f R
a

λa

)2

, (29)

where we used the fact that vT v is the identity. The second
line in Eq. (29) equals the sum squared of the components
of �f R scaled by the inverse square of the eigenvalues. Thus,
its expectation value is a scaled sum of the variances of the
components of �f R, each of which equals 1/N . We therefore
find that the expected value of |H−1 �F R|2 is a sum over the
square inverse eigenvalues and the effective conductance is
simply

ḡ =
√∑

a

λ−2
a . (30)

As is well known, the effective conductance ḡ is dominated
by the lower eigenvalues. We saw that successful learning
lowers the lowest eigenvalues, suggesting that trained systems
have an increased effective conductance. Therefore, trained
systems will be “softer” than random systems, exhibiting
larger responses on average to random applied forces. Note
that the increased effective conductance is unrelated to the
specific details of the learned task; such physical systems
trained for different types of tasks (regression, classification)
are expected to become softer and more conductive (see
Appendix A). Figure 4(a) shows how the effective conduc-
tance of the different physical networks studied rises during
learning of a single task. These results are normalized so
that the effective conductance at the beginning of learning
is ḡ(t = 0) = 1, and averaged over 150 different realizations
of the network and training task. Here, the orange curves
correspond to flow networks, the green ones correspond to
mechanical networks, and the blue curves correspond to the
fully connected networks.

We can also directly study the dimension of the space of
responses to random forces. While the system has N physical
degrees of freedom, typical responses are coupled, lowering
the effective dimensionality, as has been observed in, e.g.,
proteins [34] and neural circuits [53]. This effective dimension
can be extracted by measuring how widely the responses are
spread over the different eigenmodes of the Hessian. To
define a measure of this spread, we again consider the
response �xR

m − �x0 to random forces �F R
m . Let pam ≡∑

b vab(�xR
m − �x0)b be the projection of the responses onto

the Hessian eigenvectors. Then the associated participation
ratio is

Dm ≡
[∑

a p2
am

]2∑
a p4

am

. (31)

If a response �xR
m − �x0 is parallel to an eigenmode �va, then

it is orthogonal to the others, so Dm = 1. However, if all
eigenmodes participate in a given response with the same
amplitude, i.e., pam = ±const, then Dm = N . Thus, Dm cap-
tures the effective number of eigenmodes participating in the
response to �F R

m . Therefore, it is natural to define the effective
dimension of the response as

Deff =
〈 ∑

a p2
am

〉2〈∑
a p4

am

〉 , (32)

where the angle brackets denote an expectation value in the
ensemble of random forces. In other words, we are defining
the effective dimension as the ratio of the square of the second
moment and the fourth moment of the projections of the
response space onto the eigenmodes. Note that this is similar
to, but not the same as, another classic measure of response
spread: the participation ratio (PR) dimension [59–61]. The
latter measure simply takes the expectation value of Eq. (31)
in the ensemble of random forces, rather than separately tak-
ing expectation values in the numerator and denominator.

Our effective dimension has a simple and intuitive expres-
sion in terms of the spectrum of eigenvalues of the Hessian
(details in Appendix C):

Deff =
( ∑

a λ−2
a

)2

3
∑

a λ−4
a

. (33)

If one eigenvalue is particularly small, then it will dominate
and lead to an effective dimension of 1/3. As we showed
above, learning reduces the low eigenvalues of the physical
Hessian, suggesting that learning reduces the physical re-
sponse dimension for learned tasks. In Fig. 4(b), we compute
this effective dimension during learning for different physical
systems (averaged over 150 networks and tasks). We find that
the physical dimension decreases during learning as the sys-
tem adapts to accommodate the learned task. There are other
ways to estimate the dimension of the physical response—in
Appendix C we discuss some of them and show that for
alternative definitions, the physical dimension is still reduced
by learning.

IV. TRAINING FOR MULTIPLE TASKS

Above we saw how learning, in the small input force
regime, changes the Hessian and its eigenspace to accom-
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FIG. 5. Hessian changes for systems learning several tasks.
(a) Hessian inverse eigenvalues for a fully connected linear network
trained for five independent tasks, with a few of the top inverse eigen-
values being modified significantly. (b) Alignment of eigenvectors to
the five tasks shows that ∼3 of the eigenmodes align with the tasks.
(c) Varying the number of simultaneous learned tasks, we observe
an increase in the number of lifted inverse eigenvalues, scaling as a
power law. (d–f) Similar results obtained for flow networks learning
several tasks. Results are averaged over 300 realizations of networks
and tasks.

modate a learned task, aligning an eigenmode with the task
induced coordinate system, lowering the associated eigen-
value, and creating a softer mode in the physical cost
landscape. In this section we extend this reasoning to physical
learning of multiple tasks in the same system, whereby the
Hessian changes by averaging over single task modifications,
as in Eq. (20). We thus expect the Hessian eigenvectors to
align with the different tasks. Since these tasks are in general
independent from one another, training is expected to result in
aligning more than one of the Hessian eigenmodes. To verify
this reasoning, we train fully connected node networks with
N = 20 nodes and flow networks with N = 40 nodes to si-
multaneously satisfy five randomly sampled tasks [Figs. 5(a),
5(b) 5(d), and 5(e)], all results averaged over 300 realiza-
tions). In all cases, the tasks were learned well, resulting in
vanishing error.

We see in Fig. 5(a) that several inverse eigenvalues are sig-
nificantly raised in these networks. In the node networks, three
inverse eigenvalues are raised, and we also observe that three
eigenmodes align (by dot product) with the tasks [Fig. 5(b)],
having positive alignment values ρn. In flow networks we see
that all inverse eigenvalues increase, with larger effects at the
bottom of the spectrum, namely for the lowest eigenvalues
or largest inverse eigenvalues [Fig. 5(d)]. Furthermore, the
eigenmodes associated with the top five tend to align with the
input forces [Fig. 5(e)]. It is evident from these simulations
that the number of raised inverse eigenvalues (and associated
aligning vectors) may be smaller than the number of tasks.
To test this, we trained these types of networks simultane-
ously for varying numbers of tasks in the range 1–10. For

FIG. 6. Training physical networks for multiple tasks. (a) Train-
ing error remains low up until a capacity of tasks is reached.
(b) Inverse eigenvalues of a network trained far beyond capacity tend
to decrease. (c) Effective conductance as a function of the number
of tasks—systems trained beyond capacity become less conductive
(stiffer), as opposed to systems successfully trained below capac-
ity. (d) Physical response dimension remains low regardless of the
number of learned tasks. Results averaged over 400 realizations of
networks and tasks.

these simulations, we measured the number of raised inverse
eigenvalues, defined as the number of eigenvalues which were
raised by at least 10% compared to their initial value. Given
this definition, we find that the number of raised inverse eigen-
values scales as a power law in the number of tasks for both
types of networks, but with different exponents [Figs. 5(c) and
5(f)]. While it is clear the number of modes “used” by the sys-
tem for learning increases when more tasks are learned, this
increase is definition dependent, and we leave more precise
study and quantification of this effect to future study.

It is well-known that a system cannot be trained to perform
too many tasks simultaneously; physical and computational
learning models have a capacity MC for trained tasks. Trying
to learn beyond capacity results in failure, where the sys-
tem cannot successfully perform all of the desired tasks [7].
The capacity of simple learning models typically scales at
best with the number of learning degrees of freedom (see
Appendix D, where we argue our physical networks have a ca-
pacity that scales linearly with the number of learning degrees
of freedom). This has been established for flow networks,
where the number of output nodes that can be trained to
respond to a single input is sublinear [56] in the total number
of nodes, but can be raised to linear scaling [62] by avoiding
frustration by tuning outputs in order of increasing distance
from the source. We observe this finite capacity when training
our models for multiple tasks [Fig. 6(a)]. Thus, we studied the
physical effects of training beyond capacity.

Consider again the learning cost function for a linearized
task c(r) ≈ �AT

r (�xF
r − �x0) − Br . Training for such a task yields

output nudging forces as in Eq. (6). We can write down the
average change in an eigenvalue as in Eq. (22), but retain the

024311-10



PHYSICAL EFFECTS OF LEARNING PHYSICAL REVIEW E 109, 024311 (2024)

second term of the output force that we previously neglected,
which we will see comes to dominate. The total change in the
eigenvalues is then computed as the sum of the changes due
to the entire set of nT tasks,

δλ(r)
n = α

[
−B +

∑
c

f (r)
c a(r)

c

λc

] ∑
d

Ydn
f (r)
d a(r)

d

λ2
d

,

δλn = n−1
T

∑
r

δλ(r)
n . (34)

Here, r is a sum on tasks, and the first line is the same as
Eq. (22) except we have now kept both terms in the square
brackets.

To ask how the eigenvalues change for a typical set of
tasks, we can take the components of the input forces Fr

and constraint elements Ar to be independently sampled from
zero mean, unit variance Gaussian distributions N (0, 1) (see
Appendix A). Thus, the input and output forces are random
relative to any given eigenmode va and to each other. The
first term proportional to B vanishes when summed over the
ensemble of such forces, and the second term only has a finite
contribution when we consider the same component c = d ,

δλn ≈ αn−1
T

∑
d,r

Ydn

λ3
d

(
f (r)
d

)2(
a(r)

d

)2 ≈ α
∑

d

Ydn

λ3
d

,

δλ−1
n ≈ − α

λ2
n

∑
d

Ydn

λ3
d

. (35)

The second expression in the first line has taken the sum over
the tasks. We assumed that there are a large number of tasks
(nT � N2) and that they are drawn from a random ensemble
(every component of the vectors �F and �A for each task are
drawn independently from the unit sphere). In this limit, the
learning problem is necessarily over capacity.

We see that all eigenvalues are expected to receive positive
adjustments that scale with the inverse eigenvalues raised to
the third power. Thus, learning will make the system less con-
ductive (stiffer). Below capacity, the Hessian eigenspace can
align with the learned task(s), so that the lower eigenvalues
can be effectively reduced. Above capacity, the Hessian can-
not align with all the tasks, such that trying to learn some of
them will tend to increase all eigenvalues. Equation (35) gives
the limiting behavior for averaging over an infinite number of
tasks, but training over capacity is likely to cause an upward
shift for most eigenvalues during learning.

This reasoning is supported in Fig. 6, where we train a fully
connected node networks with N = 10 nodes for an increas-
ing number of simultaneous tasks (all results averaged over
400 realizations of the network and tasks). In Fig. 6(a), we
plot the error after training as a function of the task number,
demonstrating the finite capacity of the network (dashed line,
nT ∼ 13), defined here as the threshold above which some of
the trained networks are unable to reduce the error to zero
on all tasks. In other words, we are defining capacity as the
threshold in the number of tasks over which the learning
process begins to fail. Figure 6(b) shows the eigenvalues of
the trained networks. As observed above, up to capacity the
top inverse eigenvalues tend to increase by learning. However,

approaching capacity and beyond, the inverse eigenvalues are
shifted down during learning, as suggested by Eq. (35).

In Figs. 6(c) and 6(d), we plot the effective conductance ḡ
and the physical response dimension for systems trained for
multiple tasks. The effective conductance is maximal (dimen-
sion minimal) when the number of tasks matches the capacity
for simultaneous tasks as defined above (nT ∼ 13). The con-
ductance declines if we try to train additional tasks, and
reaches a minimally conductive (stiffer) state when trained
beyond capacity. In contrast, the effective dimension of the
network responses remains low even beyond capacity. These
results can be explained via Eqs. (30) and (33) by the ob-
servation that all inverse eigenvalues of the Hessian tend to
decrease when training beyond capacity, not only the top
inverse eigenvalues. The effective dimension is controlled by
the relative values of the inverse eigenvalues, and hence de-
creasing all of them together does not change the dimension
much. A peculiar feature emerges in this data: correspond-
ing to a bump in the measures of Figs. 6(c) and 6(d) when
trained somewhat above capacity (with ∼35 simultaneous
tasks). The reason for the appearance of this feature is un-
clear and requires further study, but it may be related to
the known tendency of linear learning algorithms to have an
optimal model complexity in the under-parameterized (too
many tasks) regime, often referred to as the bias-variance
tradeoff [63].

Finally, we note that a physical system trained for multiple
tasks can naturally be subject to noise during training: If
the system learns in response to every observed task inde-
pendently, then the order in which tasks are presented can
affect the learning process. Sampling training tasks randomly
gives rise to a stochastic gradient descent-like algorithm [64],
which can potentially affect the physical properties of the
trained system as well. Moreover, physical learning is likely
subject to other sources of noise, e.g., drift in the learning
degrees of freedom, that affect the precision of the learning
rules implemented by the system. In Appendix E we study
physical learning in such noisy conditions, and find that mild
noise conditions, where learning is still possible, do not mod-
ify the physical effects discussed; the learning networks still
find noisy solutions with high conductance and low physical
dimension.

V. DISCUSSION

In artificial neural networks, learning corresponds to
traversing a path within the learning cost landscape that
descends to a minimum. In physical learning systems, the
physical cost landscape also changes as the system approaches
a minimum of the learning cost function, affecting the tra-
jectory in the learning landscape. We chose to focus on the
linear regime of small input signals where we can obtain the
greatest insight into how learning restructures the physical
landscape. We showed that networks can learn complex tasks
ranging from digit recognition [21] to allostery already in this
weak input regime. The structure of the response space is
characterized by the spectrum of the physical Hessian around
the minimum of the physical cost function, and the structure
of the Hessian eigenmodes relative to the learned tasks.
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While previous works demonstrated that training lowers
low eigenvalues in the linear regime [36,40], we have now
traced the evolution of the eigenvalues and eigenvectors of
the physical Hessian during the learning process. We find
that physical systems learning in the linear regime develop
distinctive physical effects including strong responses to ran-
dom inputs, as well as low-dimensional mechanical responses.
This is remarkable as there are, in principle, many possible
networks that satisfy a desired function without having this
distinctive low-dimensional nature. If the number of tasks
networks are trained for is below capacity (see Appendix D
for more details on this capacity), then they can essentially
learn them all perfectly and the system can find multiple so-
lutions. We showed that below capacity, networks physically
evolve during training by becoming more conductive (less
stiff in the case of elastic networks), lowering their effective
response dimension, and aligning their eigenmodes with the
learned tasks. In contrast, networks trained above capacity fail
to learn and become less conductive (stiffer), but still main-
tain a relatively low effective response dimension. Thus, an
anomalously low network response dimension is a signature
of learning, both below and above capacity. Our finding that
training beyond capacity stiffens a physical system suggests a
simple method of avoiding overtraining: as trainers add tasks
to a network, they should test its response dynamics to random
forces, stopping when the stiffness begins to increase.

Our results suggest that low dimensionality is a generic
outcome of learning in physical networks, possibly shedding
light on open questions of why networks of neurons in the
brain manifest surprisingly low-dimensional response spaces.
The generality of our approach further suggests a tool for
analyzing seemingly random physical networks to discover
whether, and for what purpose, they are trained. Specifically,
an experiment could measure system responses to small per-
turbations and then our results suggest that these responses
correlate to the tasks that the system was trained for. In other
words, our results justify the naive intuition that the more
responsive dimensions of a complex system encode its learned
behaviors. Such tools can be useful in understanding newly
discovered trained or evolved networks regardless of the spe-
cific details guiding their physical responses to perturbations.

Our results were obtained in a scenario where the training
data and the learning dynamics are noiseless. We tested that
our findings are robust to the addition of Gaussian noise to
the learning rule with a magnitude small compared to the
learning rate (Appendix E). We also observe that introducing
stochasticity in the selection of the order of training examples,
or the order in which edges are modified, does not change our
results. It would be interesting to extend our results to investi-
gating noisier conditions when learning becomes challenging.

Finally, we note that we have shown that learning in the
linear regime already has a remarkable phenomenology that
can be analyzed powerfully. It would be very interesting to
extend our results to nonlinear situations where the input and
output forces are large. In this case, for example, the free state
resulting from the application of an input may lie in a different
basin of the physical cost function than the native state of the
network in the absence of inputs. Other learning mechanisms
can then come into play, such as the shifting of basins so
that the minima themselves align with desired behaviors. In

these cases, the learning rule may be uncorrelated with the
native state, so that learning would not necessarily create soft
modes lowering the effective response dimension [44]. How-
ever, the ubiquitous appearance of low-dimensional response
manifolds in systems that learn (see, e.g., Ref. [53]) suggests
some of the findings might extend, perhaps in a different form,
to physical learning with large inputs that explore multiple
basins in the physical landscape.
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APPENDIX A: LEARNING TASKS (ALLOSTERY,
REGRESSION, CLASSIFICATION)

In this work we simulate learning in physical networks
with local, physically realizable learning rules, approximating
the gradient of a learning cost function. The learning rules
themselves are explored in the main text. Here we discuss
some cost functions the networks can optimize, i.e., what
tasks the networks can learn to perform. We describe the
prototypical tasks used in the main text to explore the physical
effects of learning. We then show that the physical effects are
similar regardless of the type of task the network is trained to
perform.

Each task explored for fully connected node networks in
the main text is chosen as follows. An input force �Fr is
randomly generated component by component from a zero
mean, unit variance Gaussian distribution ∼N (0, 1). Then an
independent linear constraint �Ar is also generated component
by component from Gaussian distribution ∼N (0, 1) along
with a uniformly distributed scale parameter Br ∼ U (0.2, 1)
in the range 0.2–1. The finite values of Br while the forces
have zero mean places us in the weak input force regime
discussed in the main text. The linear constraint the network
is trained to satisfy is then

0 = c(r) = �ArH−1 �Fr − Br . (A1)

The associated cost function minimized by learning is C(r) =
1
2 (c(r) )2. The results shown in the main text for fully connected
node networks are based on optimizing such cost functions.
In the linear response regime, these tasks form a basis for any
desired functionality.

For difference networks, like the flow networks and me-
chanical networks studied here, these kind of tasks are readily
learned—networks can often learn to satisfy such constraints
with small modifications of the learning degrees of freedom,
and hence small changes in the physical properties. To more
clearly reveal the physical effects of learning, we challenged
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FIG. 7. Training networks for different types of tasks. (a) Al-
losteric tasks imply desired long range source-target relations. Here
we show how networks can be trained for a single allosteric task
involving one input and one output. Errors are shown in the middle
row, and the dynamics of the inverse Hessian eigenvalues on the
bottom row. (b) In regression tasks, the output units of a network
are trained to recover a particular linear relation with the input units.
Here we train networks for a set of two equations with two variables.
(c) Networks are trained to classify the Iris dataset [65] with four
inputs and three classes (Iris species), using 10 of 50 samples per
flower for training. It does so by minimizing the cross entropy error,
showing full line for the training error and dashed line for the test
error. For all these tasks the physical learning phenomenology is
similar; learning creates physical soft modes (results averaged over
10 networks).

the difference networks to learn more difficult functions. The
basic task we chose is allostery, which requires large target
responses far away from source perturbations, a phenomenon
previously observed in biological and mechanical networks
[38] [see schematic in Fig. 7(a)]. For each task, a random
source node is chosen, and a force of magnitude Fr = 1 is
applied as input at that node (in the positive direction for
flow nets, and in some random direction in 2D for mechanical
spring networks). Then, a random target node o is chosen, and
the allosteric task is defined such that the response at that node
has a finite amplitude |(�xF − �x0)o| = B (B = 0.3 for flow net-
works, B = 0.5, and a random response direction is chosen for
the 2D mechanical spring networks). When multiple simulta-
neous tasks are considered, we select multiple pairs of sources
and targets, and apply such constraints to each pair. These
allosteric tasks are more challenging for difference networks
to learn, so that learning produces significant modifications to
the network, and the physical effects discussed in the paper
can be observed readily.

To show that the physical effects of learning that we dis-
cussed are generic in the linear response regime, not only

in terms of the physical network, but also in terms of the
task(s), we train fully connected node networks for various
types of tasks inspired by biology and computational ma-
chine learning. First, we train N = 20 networks on allosteric
tasks similar to those defined for difference networks, with
results shown in Fig. 7(a) (averaged over 100 realizations of
networks and allosteric tasks). We find that training consis-
tently reduces the error by orders of magnitude, and that the
eigenvalues behave similarly to what we have seen earlier in
Fig. 3(a).

Other tasks of interest in supervised machine learning in-
clude regression, where the output of a network learns to
recover some relation to the inputs based on training data.
We train N = 20 fully connected linear networks to compute
the results of a set of two linear equations. To do so, we
randomly choose two input nodes i1, i2 and two output nodes
o1, o2. Input forces correspond to the independent variables in
the equations Fi1 , Fi2 , and the system is trained such that the
response in the output nodes relates to the input forces as(

0.5 0.2

−0.1 0.7

)
Fi = (xF − x0)o. (A2)

This is done by applying the learning rule of Eq. (10) for 50
random training forces, sampled from a Gaussian distribution
as before. We further sample 100 test forces to measure the
regression performance on data that is not used for training.
Results are shown in Fig. 7(b) (averaged over 10 networks
and training and test sets). The networks generally succeed
in learning the desired input-output relation, decreasing the
MSE cost by many orders of magnitude for both the training
set (solid line) and test set (dashed line). More importantly,
we track the eigenspace of the Hessian during learning, and
find that two eigenvalues are strongly reduced (inverse eigen-
values increased) when the network learns these two relations.
Furthermore, the bottom two eigenmodes strongly align with
the training set responses. This suggests the physical effects
of learning are similar to the case of training for several tasks,
discussed in the main text.

Finally, we train networks for classification, where the sys-
tem learns to assign labels to inputs. Networks with N = 20
nodes are trained to classify the iris dataset [65], where the
inputs correspond to 4 measurements of 3 species of iris
specimens. For each species of iris we choose 10 specimens
as a training set and the 40 others as the test set. The Iris mea-
surements are applied as forces at four randomly chosen input
nodes. A further three output nodes are chosen to correspond
to the iris species. Since this is a discrete task (iris specimens
have discrete labels), the network ‘selects’ a label by having
the largest response at the associated output node. Networks
are trained by minimizing a cross entropy cost function that
is more appropriate for discrete classification [24]. In essence,
the modified learning rule is the same as Eq. (10) for speci-
mens that are not classified correctly, while the output force
vanishes for specimens that are classified correctly.

The results are shown in Fig. 7(c) (averaged over 10 real-
izations of networks and choices of training sets). As before,
learning generally succeeds, significantly reducing the cross
entropy error for both the training set (full line) and test set
(dashed line). In terms of classification accuracy, the trained
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networks reach 100% training accuracy and 95% test accu-
racy. More importantly, the effects of learning on the physical
network itself are again similar to the previous cases. The low-
est Hessian eigenvalues are significantly lowered by learning
(inverse eigenvalues increased), reducing the physical dimen-
sion and increasing the effective conductance of the system.
These results suggest that in the linear response regime the
effects of learning on physical systems are generic and do not
depend on the desired function.

APPENDIX B: EIGENSYSTEM DYNAMICS
FOR LEARNING IN GENERAL LINEAR

PHYSICAL NETWORKS

In this Appendix we derive in more detail the main re-
sults for learning in linear physical networks. We show that
when these networks learn to perform tasks characterized by
weak input forces (compared to the desired output and initial
curvature of the energy function), certain eigenvalues of the
physical Hessian are decreased and associated eigenmodes
align with the learned task.

Assume a linear physical system whose energy is given
by Eq. (1). For convenience, let the native state define the
origin �x0 = 0. To discuss a generic linear system, we consider
a family of possible physical Hessians at the native state,
given by

Hab = 1

2

∑
i

φi(wi )
[
LaiRib + RT

aiL
T
ib

] ≡
∑

i

H i
ab. (B1)

This Hessian can be understood as follows. There exists a set
of learning degrees of freedom wi, each of which is potentially
subject to a nonlinear transformation φi(wi). These learning
degrees of freedom are transported into the components of
the physical Hessian Hab by means of a left matrix Lai and
a right matrix Rib, which determine how the different physical
degrees of freedom xa interact through the learning param-
eters. For this to be a sensible physical Hessian, note that
we must require that it is symmetric and positive definite.
The symmetry requirement is always satisfied by the sum of
the two terms in Eq. (B1), but one should be more careful
about the Hessian being positive definite (with only positive
eigenvalues). Also note that the matrices L, R describe the
“geometry” of the network and are fixed during learning;
only the learning degrees of freedom wi are modified. The
specific physical networks discussed in the main text are given
by special choices for the L, R matrices and a linear relation
φi(wi ) = wi.

For the flow and mechanical systems described in the
main text, the left and right matrices are the same with
R = LT = �, the incidence matrix [Eq. (16)]. That is not
the case for the node network [Eq. (13)]. We chose a smart
representation of the learning degrees of freedom in a square
matrix, with the left and right matrices the same, Hab(wab) =
1
2

∑
i j[δaiwi jδ jb + δbiwi jδ ja], a choice which greatly simpli-

fies calculations. However, if we had represented the learning
degrees of freedom as a vector wi, then the Hessian for the
node network would have different left and right matrices,
corresponding to the way in which every element of the vector
wi should be placed in the correct component of Hab.

We previously discussed how such a network can learn a
task in the context of weak input forces. For a given linear
constraint the network must satisfy, a learning step is per-
formed by clamping with a particular output force [Eq. (34)],

�F O = −( �A �AT )H−1 �F + B �A ≈ B �A, (B2)

where we assumed the input force �F is weak, or conversely
that the physical Hessian H is initially stiff (with low inverse
eigenvalues) compared to the desired output scale given by
B > 0. As discussed in the main text, this is a typical case for
training realistic physical networks where the input and output
sectors are generally not correlated. We make the weak input
assumption so that the output force remains essentially fixed
throughout training (see explanation in main text). We now
use the inherent coordinate system of the Hessian, specified by
a matrix v with rows that are eigenvectors so that H = vT 
v

to rotate the input and output force vectors into these natural
coordinates, fa ≡ vabFb and f O

a ≡ vabF O
b ≈ BvabAO

b ≡ Baa.
Our derivation of the physical learning dynamics in

Eq. (11) is valid for any Hessian H , so we can write (setting
the learning rate α = 1)

δwi ≈ − �F T H−1 ∂H

∂wi
H−1 �F O

≈ −B �f T 
−1v
∂H

∂wi
vT 
−1�a

= −B

2
�f T 
−1v[φ′

i (LR + RT LT )i]v
T 
−1�a

≡ −B
∑
cd

fc

λc
Mi

cd

ad

λd
, (B3)

where we defined a set of square symmetric matrices, Mi
ab ≡=∑

cd vac
∂Hcd
∂wi

vT
db, one for each learning degree of freedom.

The change in each Hessian component Hab is given by
Eq. (19), where we assume, as before, that the change in the
native state �x0 due to learning is small. Therefore, we can write

δHab =
∑

i

∂Hab

∂wi
δwi

= −B
∑
i,cd

∂Hab

∂wi

fc

λc
Mi

cd

ad

λd
. (B4)

As in the main text, we utilize first-order perturbation theory
to compute the change in eigenvalues due to learning

δλn ≈
∑

ab

vnaδHabv
T
bn

= −B
∑
cd

fc

λc

[∑
i

Mi
nnMi

cd

]
ad

λd
. (B5)

Similarly, we use perturbation theory to compute the modifi-
cation of each eigenvector:

δvna ≈
∑
m =n

∑
cd vmcδHcdv

T
dn

λn − λm
vma

≈ B
∑
m =n

∑
cd

fc

λc

[∑
i Mi

mnMi
cd

] ad
λd

λm − λn
vma. (B6)
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We see that the eigenvalue and eigenvector dynamics are
dictated by the product of the input and output forces fc

λc
, ad

λd

(in the natural Hessian frame of reference), with inner product
defined by the matrix Mcd

mn ≡ ∑
i Mi

mnMi
cd . We will next given

an argument for the structure of these matrices Mmn.
Using our model for the physical Hessian and the defini-

tions above, we can explicitly write this matrix as

Mcd
mn =

∑
i

(φ′
i )

2

4
[(�vmL)i(R�vn)i(�vcL)i(R�vd )i

+ (�vmL)i(R�vn)i(R�vc)i(�vd L)i

+ (R�vm)i(�vnL)i(�vvL)i(R�vd )i

+ (R�vm)i(�vnL)i(R�vc)i(�vd L)i]. (B7)

Here �vm denotes the eigenvector associated with the mth
eigenvalue. Equation (B7) is a sum over edges i, where each
summand is a sum of four terms, themselves products of four
vectors that involve the components of eigenvectors of the
Hessian �vn. We will assume that initial system is a random
network, i.e., the interactions in the system connect randomly
chosen physical degrees of freedom. We will also assume that
the rows of L and columns of R sum to zero on average.
The latter assumption is true exactly for every interaction
of a flow or elastic network, because, as described above,
the entries of L and R are signed depending on whether the
edge flows in or out of the node degree of freedom. Here
we relax this assumption to allow for networks in which
this is only true on average for each interaction. We also
assume that each interaction, or network edge contributes
positively to the total energy of the system even when ob-
served in isolation. This is also true for flow and elastic
networks.

With these assumptions, we can understand the behavior
of products like (�vmL)i(R�vn)i(�vcL)i(�vdR)i. First, sums over
interactions

∑
i(�vmL)i,

∑
i(�vmR)i will vanish for large sys-

tems because the sum on i will add equally many plus and
minus ones on average for every component of �vm. So, in the
random initial network, we can treat

∑
i(�vmL)i,

∑
i(�vmR)i as

zero mean random variables. Next, recall that the eigenvectors
�vm are high-dimensional orthonormal vectors, resulting from
large random physical networks. Therefore, their components
for different vectors should be weakly correlated. In that case,
for our random vectors, (�vmL)i(R�vn)i is effectively the product
of two independent zero mean random variables unless m = n,
in which case we are looking at correlated variables. Thus,
the sum

∑
i(�vmL)i(R�vn)i can only be nonzero if we consider

the same eigenvector m = n. We can continue similarly for the
products four quantities appear in each term of the summand
of Eq. (B7).

We find that to have a finite contribution in Eq. (B7),
the indices c, d, m, n must appear equal in pairs, or all be
equal. All other options, where at least one index has a unique
value, cause the associated component of M to vanish after
summing on i. We confirmed this observation numerically
for networks with randomly chosen interactions satisfying the
conditions described above. The vanishing of all these compo-
nents becomes more precise as the system size, and the total
number of random interactions increases. We therefore find
that for large systems, only components of M where indices

appear identical in pairs will contribute to the eigensystem
dynamics. We next argue that these remaining components are
nonnegative.

If all the indices are equal, then we have Mnn
nn =∑

i(φ
′
i )

2(�vnL)2
i (R�vn)2

i ≡ Xnn > 0. The next case of interest is
when the bottom indices and top indices of M are equal
in pairs, Mcc

nn. The result is given by Mnn
mm ≡ Ymn = Ynm.

We can show that Ymn is nonnegative as follows. First,
note that the physical system must be stable in its native
state and that we have assumed that each interaction term
is separately nonnegative, i.e., 2Ei(�x) = φi

∑
ab xaLaiRibxb ≡

φi(�xL)i(R�x)i � 0. Now we observe that the components of Y
are given by

Ymn =
∑

i

(φ′
i )

2(�vmL)i(R�vm)i(�vnL)i(R�vn)i

= 4
∑

i

(
φ′

i

φi

)2

Ei(�vm)Ei(�vn) � 0. (B8)

The last nonvanishing case occurs when the top and bot-
tom pairs in Mcd

mn are equal, but the two members of the
pair differ, i.e., m = c, n = d or m = d, n = c. In these cases

we have Mnm
nm = ∑

i
(φ′

i )
2

4 [(�vnL)2
i (R�vm)2

i + (�vmL)2
i (R�vn)2

i ] +
1
2Ynm ≡ Xnm = Xmn > 0. As above these matrix elements must
be positive.

We are now in position to estimate the change in the
eigenvalues and eigenvectors due to one learning step. The
eigenvalue change is

δλn ≈ −B
∑
cd

fc

λc
Yncδcd

ad

λd

= −BYnn
fnan

λ2
n

− B
∑
c =n

Ync
fcac

λ2
c

. (B9)

The first term reduces the eigenvalue λn if the associated
components of the input and output forces align ( fnan > 0)
or increases it otherwise. The second term tends to decrease
all eigenvalues if the forces align, particularly at the low end
(
∑

n λ−2
n fnan) or increase all of them otherwise more or less

equally, since the components of Ync are positive, all of the
same scale, and the components of the forces are random.
The result of these dynamics is that eigenvalues corresponding
to aligned eigenmodes ( fnan > 0) tend to decrease com-
pared to the bulk of the eigenvalues. As for the eigenmodes,
we have

δvna ≈ B
∑
m =n

∑
cd

fc

λc
Xmn(δmcδnd + δmdδnc) ad

λd

λm − λn
vma

= B
∑
m =n

Xmn( fman + fnam)

λmλn(λm − λn)
vma, (B10)

which leads to a rotation of the eigenmodes. We see that
this rotation depends on their alignments with the forces
fman, fnam, as well as whether the associated eigenvalue λn

is low or high (because of the difference in the denominator).
For the bottom eigenmode, these dynamics causes stronger
alignment with the input and output forces. To see this ex-
plicitly, we can estimate the change in alignment due to
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learning:

δ( fnan) =
∑

a

δvnaFaan + fn

∑
a

δvnaAa

≈ B
∑

m =n,a

Xmn( fman + fnam)

λmλn(λm − λn)
vmaFaan

+ B
∑

m =n,a

Xmn( fman + fnam)

λmλn(λm − λn)
fnvmaAa

= B
∑
m =n

Xmn( fman + fnam)2

λmλn(λm − λn)
. (B11)

We therefore see that the alignment of eigenvector n with the
task, defined in terms of the product of fn, an, the input and
output forces in the natural coordinates of the Hessian, must
grow for low eigenmodes and decrease for high eigenmodes.
The λ scaling in the denominator means that this process
occurs preferentially in the lower eigenmodes, which tend
to align with the task. Connecting this with Eq. (B9) above,
this increased alignment of the low eigenmodes will cause
them to be reduces compared to the rest more effectively
(due to larger fnan). The physical networks discussed in the
main text are both special cases of this theory, explaining the
phenomenology of both of them.

This analysis also shows that the introduction of edgewise
nonlinearities does not change the overall story, since they
only enter the eigensystem dynamics in squared form. To test
this observation, we simulated fully connected (N = 20) net-
works like those of Eq. (14), but with nonlinear interactions of
two types, φab = exp(wab) and φab = w2

ab. The results for the
dynamics of the eigenvalues and mode alignment are given in
Fig. 8. We observe that these dynamics are qualitatively sim-
ilar to those observed in the linear Hessian case of Figs. 3(a)
and 3(b): The lowest eigenvalue is reduced by learning, and
the associated eigenmode aligns with the task. It is notable
that in these node connected networks, the off-diagonal ele-
ments of matrix Ync vanish, so that the higher eigenvalues in
the spectrum tend to rise because their eigenmodes become
misaligned with the task.

APPENDIX C: PHYSICAL RESPONSE DIMENSION

In this Appendix we discuss measures for the physical
response dimension, in particular the effective response di-
mension defined in the main text. Define a large set of M →
∞ random forces �F R

m , each of which sampled from the set of
normalized vectors on the N-sphere, where N is the physical
dimension of the system (number of physical degrees of free-
dom). The physical response of the system to these forces is
given by

�δR
m ≡ �xR

m − �x0 = H−1 �F R
m . (C1)

Applying the random forces, we obtain a set of M physical
responses �δR

m. The Hessian of the native state can be decom-
posed to a set of nonnegative eigenvalues λa and associated
eigenmodes �va (whose number is equal to the number of phys-
ical degrees of freedom N). These eigenmodes correspond to
different orthonormal ways in which the system can respond
to perturbations. Thus, to estimate the response dimension,

FIG. 8. The physical effects of learning persist when the physical
Hessian is associated with edgewise nonlinearities. (a, b) Training
fully connected linear networks with exponential edgewise nonlin-
earity φ(w) = exp(w). Learning still causes the lifting of an inverse
eigenvalue and the alignment of its associated eigenmode. (c, d)
Similar results are observed for fully connected linear networks with
quadratic nonlinearities φ(w) = w2. Results are averaged over 150
sets of networks and tasks.

we can “count the number of eigenmodes participating in the
response.”

Projecting the physical response over the Hessian eigen-
modes gives the amplitude of each mode’s activation due to
the external force pam ≡ �vT

a
�δR

m. Summing this quantity over
the eigenmodes and different random forces is self-averaging
to zero because eigenmodes can be activated both positively
and negatively. The physical response dimension is defined
using these projections as an effective way to count the num-
ber of participating eigenmodes. For a given random force �F R

m
we have

Dm ≡
[∑

a p2
am

]2∑
a p4

am

. (C2)

As discussed in the main text, this measure for the physical di-
mension has reasonable limits; it is Dm = 1 if only one mode
participates, and Dm = N if all modes participate equally.

In view of this, we propose to characterize the effective
response dimension by the quantity

Deff =
〈∑

a p2
am

〉2〈 ∑
a p4

am

〉 , (C3)

where the angle brackets indicate an expectation value over
the ensemble of random forces. Thus, Deff measures the effec-
tive dimension as the ratio of the square of the second moment
of the projections and the fourth moment of the projections.

We can compute Deff by recalling that the inverse Hessian
can be decomposed as H−1 = v
−1vT , where 
−1 is a diag-
onal matrix of the inverse eigenvalues λ−1

a , and v is a matrix
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whose columns are the eigenvectors:

pam = �va · �δR
m = �vav

T 
−1v �F R
m =

( �f R
m

)
a

λa

. (C4)

Here we used the fact that �vav
T is a vector with zeros at all

components, except a single 1 at component a. Therefore,
only the ath component of the vector �
−1

a is nonzero, and
equals λ−1

a .
As we saw in the main text, the set of eigenvectors �va

form a fixed orthonormal basis in N dimensions, while the
forces �F R

m are random N-dimensional unit vectors. Thus, high-
dimensional systems (N � 1) the components �f R

m will be
distributed according to a zero mean Gaussian with variance
1/N , N (0, N−1). Averaged over the ensemble of random
forces, the second and fourth moments of pam are given by〈

p2
am

〉 = 1

N
λ−2

a ,
〈
p4

am

〉 = 3

N2
λ−4

a , (C5)

where we used the Eq. (C4) and the standard moments of a
Gaussian distribution with variance 1/N .

Thus, the effective dimension in Eq. (C3) is

Deff =
(∑

a λ−2
a

)2

3
∑

a λ−4
a

. (C6)

If one eigenvalue is very small and thus dominant, then the
effective dimension in response to random forces is 1/3 re-
flecting that fact that many forces will not drive the system
much at all.

While in the main text we discussed Deff as a measure
of the physical response dimension of the system, there are
several other measures of the intrinsic dimension of manifolds
inspired by machine learning. We tested that our key qual-
itative results are independent of the choice of the measure
of dimension. To do this we randomly select 500 normalized
forces and applied them to systems during training (either
fully connected linear networks or flow networks). We used
the resulting responses to estimate the physical dimension
using different methods: manifold-adaptive dimension esti-
mation (MADA) [66], correlation dimension (CORR) [67],
maximum likelihood estimate (MLE) [68], and the TwoNN
algorithm [69]. Figure 9 shows that the physical dimension
is decreased during learning in physical systems regardless of
the chosen method for dimension estimation.

APPENDIX D: LEARNING CAPACITY

In the main text we discussed how physical systems are
able to learn multiple tasks up to a finite capacity. Here we
argue that for systems trained in the linear response regime,
this learning capacity is linear in the number of learning
degrees of freedom Nw, itself at most quadratic in the system
size N .

For small input forces in the linear response regime, any
learning cost function can be expressed as a sum of linear con-
straints, relating response of the physical degrees of freedom
(�xF

r − �x0) to an input force �Fr :

c(r) = �Ar
(
�xF

r − �x0
) − Br

= �ArH−1 �Fr − Br . (D1)

FIG. 9. Different measures of the physical dimension. (a) While
in the main text we mainly used a measure derived from the par-
ticipation ratio dimension to discuss dimensional reduction in the
physical response, multiple other measures for the intrinsic di-
mension of the response manifold show the same result. Here we
train fully connected linear networks and show how the physical
dimension changes during training for several machine-learning-
inspired measures. (b) Similar results are found when training flow
networks—physical dimension is reduced for all methods used to
measure it.

Successful learning means that c(r) = 0, or that for every task
r the system solves a linear equation,

�ArH−1 �Fr = Br . (D2)

Note that the input force �Fr , as well as �Ar, Br , are constants
defined by the task to be learned, and the learning process
only modifies elements of the Hessian H . For a system with
N physical degrees of freedom, we are allowed to modify the
(at most) 1

2 N (N + 1) independent elements of the Hessian to
find a solution to Eq. (D2).

When training the system for nT simultaneous tasks, each
defined by its own set of input �Fr and constraints �Ar, Br ,
the system has to find a solution to nT independent linear
equations at the same time. Learning attempts to modify the
Hessian H such that all of these equations are satisfied simul-
taneously. As shown, the system has at most 1

2 N (N + 1) free
parameters to satisfy nT equations. A feasible solution exists
only if the number of equations is at most equal to the number
of free parameters. The network can thus learn a number of
tasks which is at most equal to the number of independently
trainable components of the Hessian. We thus expect a capac-
ity proportional to the number of learning degrees of freedom,
i.e., network weights, scaling at most quadratically with the
system size and with a coefficient typically less than 1. This
finite capacity is visible in Fig. 6(a), where the error cannot
be maintained at zero beyond nT ≈ 13, which also marks a
turning point in the effective conductance of the network.

Realistic physical networks are typically more constrained
in the availability of adaptive (learning) degrees of freedom. In
physical flow networks (e.g., vasculature) and mechanical net-
works (e.g., proteins), edges typically connect spatially neigh-
boring nodes, so that the connectivity between nodes is short
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FIG. 10. Noise limits the system’s learning ability, but the phys-
ical effects of learning persist. (a, b) Training fully connected linear
networks and mechanical spring networks for five independent tasks
with a noisy learning rule, we find that learning is still successful, yet
is limited by an error floor. (c, d) However, the dynamics of the eigen-
spectrum are weakly affected by the noise, dominated by a reduction
of the lowest lying eigenvalues (increasing inverse eigenvalues). (e, f)
Therefore, the physical properties of the networks trained with noise
remain similar to the noiseless case. In particular, we observe that
training sharply decreases the physical response dimension of the
network. All results are averaged over 100 sets of tasks.

ranged, and the number of edges scales linearly with system
size [16,56,62]. Thus, their learning capacity is linear in N .

APPENDIX E: PHYSICAL LEARNING WITH NOISE

So far we discussed learning in pristine systems, where
the learning rule is performed perfectly without any noise. In
such cases, we found that physical learning can reduce errors
arbitrarily [Fig. 2(b)] as long as the number of tasks is below
the network capacity. However, it is clear that real physical
systems are prone to imperfections and noise, and that these
issues can limit learning [28]. In this Appendix we discuss the
effects of noise on learning and its physical effects on learning
systems.

A straightforward way to include imperfections in learning
is to introduce additive Gaussian white noise in the learning
rule [Eqs. (14) and (17)]. We add such noise, with a small
amplitude compared to the learning rate α, sampled from
N (0, (5 × 10−3α)2), and train fully connected node networks
and mechanical networks for five independent tasks (Fig. 10).
The noise in the learning rule produces a floor in the error
achievable by the network [Figs. 10(a) and 10(b)].

However, this noise does not strongly affect the physi-
cal dynamics of the Hessian and its eigenspectrum; compare
Figs. 10(c) and 10(d) to Fig. 5. In this noisy case, learning still
predominantly affects the lower eigenvalues, lowering them
(increasing inverse eigenvalues) and aligning the associated
eigenmodes with the task. We find that the noise tends to raise
the upper eigenvalues, but as shown above, these typically
have only minor influence on the physical responses of the
system. As the eigenspectrum dynamics are largely unaffected
by this noise, we can verify that the physical effects of learn-
ing discussed previously also persist, in particular the physical
response dimension [Figs. 10(e) and 10(f)].

Besides noise in the learning degrees of freedom that
would exist in any physical or biological realization, different
learning protocols may introduce additional sources of noise.
For example, consider stochastic gradient descent (SGD),
where the system is trained at each iteration for a subset of
the tasks. Although SGD introduces effective noise in the
training dynamics, it is known to perform implicit regular-
ization and improve generalization in computational machine
learning [64]. Another plausible source of noise is the fact
that in biological learning systems, the learning degrees of
freedom are not synchronized, each evolving independently
from the rest [70]. We implement both SGD and the update
desynchronization in our dynamics, letting the physical sys-
tem train on one task and update 10% of the learning degrees
of freedom at every learning iteration. We note that in these
simulations, we do not add white noise to the learning rule
as done above, so that the desynchronized SGD learning dy-
namics are able to achieve perfect performance with vanishing
error. While applying these protocols slows learning, we ob-
serve no qualitative difference in the physical properties of the
trained system. These results suggest that the physical effects
of learning in the linear regime that we described in this
work are robust to noise that will likely exist in experimental
realizations, such as recent experiments in learning resistor
networks [28,30].
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