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Diversity and ecotones in a model ecosystems of sessile species
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Sessile species compete for space and accessible light, with directed interactions evident in one species
overgrowing another and with multispecies systems characterized by nontransitive relationships. Such patterns
are observed in coral reefs or lichens on rock surfaces. Open systems with episodic invasions of such species have
been predicted to exhibit a stable high-diversity state when the interaction probability is below a certain critical
threshold. Here, we explore this metastable high-diversity state and find that the diversity in the high-diversity
state scales with the square root of the system area. When introducing two different environments, we predict
a hugely increased diversity along mutual environment border. Further, the presence of spatially segregated

environments is predicted to allow for increased robustness of the high-diversity state.
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I. INTRODUCTION

The biological diversity observed in ecological systems
often surpasses expectations from random interaction models
[1]. Although incorporating predator-prey preferences into
random interaction networks enhances robustness, the max-
imal feasible diversity is still significantly constrained [2,3].
Traditional dynamical models limit the diversity through com-
petitive exclusion [4,5] with possible modifications due to
predatory relations [3,6]. In any case, well-connected ecosys-
tems are mathematically fragile, suggesting separation by
distance as a main determinant of stability. This effect is
particularly pronounced in sessile species, whose migration
is limited by generational timescales.

The population and spreading dynamics of sessile species
have primarily been considered for microbes [7-12] and for
the mutual rock-paper-scissor-like competition between these
[13,14]. In recent years a two-dimensional cellular automata
model of competing sessile species was introduced [15,16].
This model was based on randomly interacting species, in-
spired by the behavior of lichen on a rock surface or coral
communities [17,18]. While Ref. [18] explored the loss of
diversity in a model system with frozen rules of interac-
tions for a fixed set of species, Refs. [15,16] allowed for
the introduction of new species. This opened for a dynamic
steady state exhibiting high species diversity. Reference [19]
obtained similar results with slowly evolving species instead
of introducing them from outside. Noticeably, then Ref. [16]
demonstrated that an occasional random break down of cyclic
relationships involving four or more species created an in-
crease in number of distinct patches formed by species in the
system, which subsequently allowed for an increase in species
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diversity. In this context, a cyclic relationship of four species
means that individuals from species i overgrow j, j overgrows
k, k overgrows [, and [ finally closes the cycle by being able
to overgrow i.

The central parameter in the model is y, representing the
probability that species i will take over the space of species
Jj, if these two species are brought into contact. This potential
overgrowth is assigned when species are introduced and does
not change with time. The model allows us to introduce new
species defined by new randomly assigned interactions. The
introduction rate of new species is considered infinitesimally
small, as detailed in Ref. [16]. In this limit, new species are
only introduced when the dynamics in the whole lattice are
frozen, meaning that no species can overgrow its neighbor.
This is similar to adaptive-dynamics approaches to evolu-
tion [20-22]. A key result of this model was the emergence
of a stable high-diversity state when y < y. with a critical
¥e ~ 0.06 (for system size L = 200). Above this threshold,
diversity eventually collapses to an absorbing state with only
one species [16]. Noticeably, spatial separation was essential
for the obtained diversity, in the sense that diversity col-
lapsed when species were allowed to interact without spatial
constraints.

Drawing inspiration from the role of ecotones in generating
[23] or maintaining ([24], Table 1) species diversity, we pro-
pose a modified version of this model. Our adaptation includes
two distinct ecosystems separated by a boundary, allowing
us to explore the effects of ecosystem interactions, where the
interactions among individual species are location dependent.

II. MODEL

We model our ecosystem as a two-dimensional, square
lattice of size of L x L, where individuals of different species
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compete for space. Each species is characterized by a node in
a directed network I', referred to as the interaction network.
In the adjacency matrix of this network, each nondiagonal
edge is assigned a value of one with probability y and zero
otherwise. Thereby, the interaction network becomes a di-
rected Erd6s-Rényi network, with y being the probability that
an edge exists between two nodes. Edges in I' indicate the
possibility that an individual from the upstream species may
overgrow a site occupied by a member of the downstream
species. Importantly, this matrix is highly asymmetric, as it
is rare that a pair of species can invade each other.

System updates occur by selecting a lattice site along with
one of its four von Neumann adjacent neighbors, ensuring that
the selection respects the closed boundaries of the system.
One site is designated as the attacker, the other as the defender.
If there is an edge in I" from the species in the attacking site
to the species in the defending site, the attacker takes over
the defending site. One may here think of the attacker as a
sessile species that overgrows the defender, provided that the
I" matrix allows it.

In scenarios with two interacting ecosystems, each is de-
fined by its unique interaction network. While these networks
share the same nodes, their edge structures are distinct and
assumed to be uncorrelated. Each lattice site is assigned to
an ecosystem and therefore an interaction network. To obtain
clear results about the interaction between ecosystems, we fo-
cused on two ecosystems sharing a straight border represent-
ing the demarcation line between two different ecosystems.
In any interaction event, the outcome is determined by the
interaction network associated with the defending lattice site,
as this is the location where the interaction occurs.

To utilize parallel updates on graphics cards, and the
speedup associated with them, we update the system follow-
ing Ref. [25]: Specifically, the ecosystem is segmented into
2 x 2 blocks, arranged in a chessboard pattern. In each update
cycle, we randomly select a defender from each block of one
color in this pattern. Subsequently, an adjacent cell to this
defender is chosen as the attacker. The interaction between
the attacker and defender then proceeds according to the rules
defined in the interaction network.

This update method enables simultaneous updates of L*/8
cells, ensuring that no cell is overwritten during its interaction.
After each update, there is a 50% chance that the pattern is
inverted. This inversion guarantees that, on average, all cells
in the lattice receive an equal number of updates. By repeating
this process 8 times, each cell in the lattice is, on average,
updated once, which we define as one timestep.

The parallel update method is repeated until no further site
can be invaded by its neighbors, meaning the spatial configu-
ration is frozen. When such a situation arises, « new species
are introduced in the system. Each new species k is introduced
at arandom point in space and assigned interactions with other
species according to two rules. First, we assume that the new
species k is able to overgrow the species existing at point of in-
vasion e, meaning that I'(k, e) = 1. Secondly, all interactions
with all other species are assigned interactions by adding a
new column and a new row to I" with interaction I'(k, j) = 1
with probability y and I'(j, k) = 1 with probability y for each
j=1,...,D. If the interaction is not set to 1, it is = 0 by
default.

During the initial simulation phase, « is set to two, driving
the system into a high-diversity state. Once the high-diversity
state is reached, « is reduced back to one and we record
if the system collapses back to a low-diversity state. The
o =2 when species richness D = 1 is needed for avoiding
an absorbing state at D = 1, while the choice of @ = 1 at the
high diversity makes it simpler to record instability in terms
of diversity collapse.

Despite the parallel updates it can take long until the sys-
tem reaches a stationary state. This is in large part due to
cyclical interactions between species. We follow Ref. [16] in
speeding up these cyclical interactions until termination:

If no stationary state has been reached after t;, time-
steps since the introduction of a new species, we determine
all species capable of invading their neighbors. Out of these
species, we select one randomly and remove all outgoing
links in I'. This ensures that the selected species is no longer
competitively dominant to any other species, and as such the
cyclical interaction is turned in a hierarchical one. In Ref. [16]
Tmin above 400 timesteps caused no noticeable change in
system behavior. Despite the parallel updating method, our
system shows a similar lower bound. Consequently, we con-
ducted all simulations with a T, of 10* timesteps. If the
removed links cause the system to reach a frozen state then
the removed links in T" are reintroduced. If the system has
not reached such a frozen state after another 7., timesteps,
the outgoing links of another active species are removed. This
process is repeated until a stationary state is reached.

III. RESULTS

First, we observe the patchwork structure of different
populations/species in the high-diversity state, displayed in
Fig. 1(a). Here, diversity D is defined simply as the number
of different species. In this picture, the majority of bound-
aries are frozen, as the adjacent species i and j have no
edge between them in I'. As the two species cannot invade
each other, a long-lived boundary between them is formed.
However, some neighboring species may overgrow each other,
leading to the hierarchical elimination of some species, or to
cyclic competition among three or more species. In the model
section, we describe how to speed up this cyclic competition
until only frozen boundaries remain.

To compare our implementation to the previous research,
i.e., Ref. [16], we plot the time evolution of a system with
L =400 in Figs. 1(b) and 1(c). There, each t; corresponds
to a state with only frozen boundaries. The two panels show,
respectively, the number of different species (diversity D), and
the number of distinct patches (P). A patch is defined as a
connected region of the lattice that is occupied by one species,
and surrounded by different species. One observes that the
number of patches P easily exceeds D by a factor 10, reflect-
ing a distribution of each species in several separate patches.
These patches are typically caused by the collapse of transient
cycles among four species [16] (i — j — k — m — i), that
collapse to two species (i, k) that cannot invade each other.
Such collapse happens when one species by random is elimi-
nated from a part of the lattice. This then, in turn, allows the
directly downstream species to grow and eliminate its “prey,”
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FIG. 1. (a) Example state with L = 400 and y = 0.05 (b), (c) Di-
versity D and number of patches P for a system with L = 400. For the
first 5000 stationary states, two species are introduced. Afterwards
one new species is introduced.

leading to a frozen configuration with two species that cannot
invade each other [16].

The time series in Figs. 1(b) and 1(c) show the transient dy-
namics for systems with different values of y. Each system is
initialized completely empty with o set to 2 for the first 5000
stationary states. Afterward, « is set back to 1. For y < 0.07
the high-diversity state remains stable, while higher values of
y lead to a collapse into a state with one species covering
the entire lattice. The critical value of y = y, & 0.07 and the
metastability of the high-diversity state around y, is consistent
with earlier findings of Ref. [16], here with slightly higher y,
for the larger L = 400 system with closed boundaries.

To further analyze the diversity and number of patches, we
plot their time averages as a function of y in Figs. 2(a) and
2(b). In systems driven to a high-diversity state (¢« = 2, green
dots) the average diversity and the number of patches de-
creases smoothly as y is increased. Here we exclude the initial
phase, where diversity and number of patches are increasing
[see Figs. 1(b) and 1(c)] from the average. For the reduced
introduction rate « = 1 (black crosses) the (D) and (P) follow
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FIG. 2. (a), (b) Average diversity (D) and number of patches (P)
for a system with L = 400 and y € [0.02, 0.1]. Green dots mark val-
ues measured for o = 2. Black crosses indicated the values observed
for o = 1. (c) Example states, showing a complete transformation of
the structure within 6 stationary states for a supercritical y of 0.1.
Only every other stationary state is displayed.

the green dots for subcritical values of y. However, for larger
y > v, the diversity collapses. Thereby the plot reflects the
hysteresis above y, and also that the high-diversity state loses
robustness against collapse.

Figure 3(a) demonstrates that (D) increases linearly with
linear dimension L of the lattice, with a prefactor that de-
creases with y. Thus diversity increases with the square root
of the area (L?) of the modeled ecosystem, which qualitatively
is consistent with the sublinear species-area relationships, that
has been reported in literature [26,27]. In our model, the
diversity is supported by a number of separate patches that
are independent of y, as displayed in Fig. 3(b). Thereby,
larger y are associated with fewer coexisting species, where
each is distributed into a larger number of distinct patches.
Noticeably, both P and D approach 0 when L decreases below
~150 [16]. The reason for this constraint is that one needs a
finite diversity of about ~20 to obtain sustainable diversity;
for lower diversity, a single species is often able to expand
across the entire lattice and the system collapses into the
low-diversity state.

In Fig. 3(c), we examine the probability that two lattice
sites, separated by a Manhattan distance d, are occupied by
the same species. For lower values of y, this probability ex-
hibits an exponential decay, indicating a reduced likelihood of
distant sites being occupied by the same species. However, as
y increases, this dropoff in probability occurs more gradually.
When sampling unstable values of y from the (¢ = 2) phase,
a different behavior is observed. Moreover, the highest y
value we categorized as stable displays similar characteristics,
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FIG. 3. Average diversity (D) (a) and average number of patches
(D) (b) as function of system size L and interaction-probability y.
(c) Probability that two lattice sites separated by Manhattan distance
d [where d = |x; — x2| + |y1 — y2| for lattice points (x;,y;) and
(x2, ¥2)] are occupied by the same species, sampled from 3000 static
states in a system of L = 400.

potentially implying that a system with y = 0.07 might expe-
rience collapse during an extended simulation period.
Systems with two sets of interaction rules are examined
in Fig. 4. There the two resulting subecosystems interact at
a boundary, that splits the system into a left and a right part.
Panel (a) presents a system snapshot, displaying a pronounced
discontinuity at the boundary, akin to an ecotone as described
in ecological studies [28]. Inspired by Ref. [28] we investigate
the diversity in this boundary area, measuring diversity as the
number of species along subsequent columns parallel to the
border, and similarly for the number of patches. As depicted
in Fig. 4(b), the diversity near the boundary is significantly
higher than in areas further away, consistent across all in-
teraction probability y levels. Both species diversity (D) and
patch number (P) reach their maximum at the boundary and
decline sharply with increasing distance. However, as one
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FIG. 4. (a) Example state of a model ecosystem with L = 400
and two interaction networks. The left 200 columns in the lattice
are governed by interaction network I'y and the right 200 columns
by . Both interaction networks are generated with an interaction
probability of y = 0.05. (b),(c) Columnwise diversity and the aver-
age number of patches of an ecosystem of size 400 x 400 with two
interaction networks. Only stable values of y are displayed.

moves further from the boundary, this decline becomes more
gradual, particularly evident in the patch number at high y
values. One also sees that the presence of the left subsystem
leads to a noticeable increase in both diversity and number
of patches in a substantial part of the right subsystem (and
reversed). Thus the mutual synergistic effects of the systems
are felt far beyond the boundary.

The interaction between the two ecological ecosystems
even has an impact on the overall diversity and its robustness.
This is illustrated in Fig. 5, where we see that the critical y.
changes from 0.07 to 0.10 when the ecosystem is split into
two parts. One observes that the lowest high-diversity state in
the uniform state has (D) ~ 90 while the lowest high-diversity
state in the split system has (D) ~ 50 (value of blue cross at
y = 0.10). One thus concludes that the split ecosystem can
sustain a high-diversity state with much fewer species than
the uniform ecosystem. In fact, at high y the effect of the split
ecosystem has a profound global effect across the total system,
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FIG. 5. Comparison between average diversities of the unmodi-
fied ecosystem and an ecosystem composed of two subecosystems
as displayed in Fig. 3. Both the unmodified ecosystem and the split
ecosystem have system size of 400 x 400. In total, the results from
40 simulations are displayed, the majority of data points however
overlap each other. The vertical gray and blue lines indicate the
presumed critical values of the unmodified and the split system
respectively.

which becomes able to sustain much larger diversity than one
would have guessed by just adding two independent systems
that each only allow for very low species diversity.

IV. DISCUSSION

The current paper analyzes a simple model for sessile
species with the property that it sustains many competing
species, even when random matrix considerations [1,2] would
suggest this to be impossible. The model considers large
systems with many species that interact randomly with each
other, in a way that would lead to the extinction of all but
one species if we disregarded their distribution in space [15].
Thus space is an essential part of the obtained diversity be-
cause the protection of one species from another species by
barriers formed by a third bystander species is an inherent
property of the model. This protection diminishes when y
increases, or if one allows individuals to give offspring far
from their location, and as a consequence, the high-diversity
state eventually collapses. The diversity in our model is not
caused by externally imposed heterogeneity [29], but rather
by species that generate a spatial heterogeneity that allows for
more species. Noticeably, the obtained diversity needs space
to be sustainable but needs transient cyclic interactions to
be generated [16]. If we repeated any of the above calcula-
tions but only allowed the introduction of species that did
not form cyclic interactions, then diversity would stay close
to one. The overall dynamics is that occasional species form
transient cycles, which subsequently break into man patches

(heterogeneity), which in turn each allows for the introduction
of a new species [16].

The relative competitive relationship between the species
is assumed to be random, and quite dilute in the sense that y
is on the scale of ~5%. For corresponding system diversity of
about 200 this still means that each species could overgrow
~ 10 other species present somewhere in the system at any
given time. However, due to spatial constraints, many species
are implicitly protected from each other by passive bystander
species. The overall patchwork of species thereby becomes
sustainable, and even robust to introductions of new species.
Whether this is biologically reasonable depends on the types
of ecosystem under consideration, with lichen communities
on rocks probably being closest to fulfilling our basic assump-
tions of local dispersion.

Our model predicts a diversity that scales with the square
root of the area:

D  Area’?, (D

a sublinear relationship that is reported with various power-
law exponents in the substantial literature on species-area
relationships, starting with the classical paper of Arrhenius
[26] and with a recent scaling exponent of about 0.2 for plant
species versus the area reported in Ref. [30]. In our case,
species are distributed in patches, which in turn allows one
patch to be overgrown by a new species without necessarily
reducing diversity. Noticeably, the number of patches is inde-
pendent of the density of interactions, which in turn implies
that systems with relatively high y ~ y,. will have relatively
“few” species, D ~ 100, distributed among more but smaller
patches. This also means that the longer-range correlations for
large y ~ y. of Fig. 3(c) are obtained for species that each is
distributed across multiple separate patches.

Our model ecosystem consists of individuals that only
spread to neighbor sites, thereby simplifying the possibil-
ity of long-range dispersal used in classical models of trees
[31]. In contrast to neutral models [32,33] where the fate
of individual population would be governed by variants of
critical branching processes, we here deal with species with
fitnesses that are context dependent. In particular, the success
of a given subpopulation of a species (a patch) is dependent
on the properties of neighbors in space. In this perspective,
one may see our interaction matrix as an idealized spatial
implementation of Ref. [34]. One prediction of our model
is a stronger dependence of species richness with the area
than observed for real forest [30]. This may be caused by a
combination of our assumption of nearest-neighbor spreading
of all species, contrasting real seed dispersal that varies hugely
between different types of vegetation [35].

The review by Ref. [28] discusses “ecotones,” defined as
stress lines in ecological systems, that separate two differ-
ent ecological regions. This “transitional area between two
ecological communities” is suggested to provide special op-
portunities. As a consequence, ecotones often harbor more
species than core areas of ecosystems, and may further facili-
tate the development of new traits or species [36]. Ecotones
are often observed by a substantial change in vegetation
patterns, caused by environmental factors like humidity or
soil quality. Models of vegetation changes across ecotones
based on different availability of water and nitrogen have
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been proposed [37], but they include so many parameters and
assumptions that general lessons are difficult to extract.

Our paper offers an idealized in silico perspective on eco-
tones in systems ruled by sessile species. In our system, the
ecotone causes increased diversity because a species may
obtain refuge from an attacker on one side of the boundary
by having part of its population on the other side of the
boundary where they are protected by different interaction
rules. Thus it is not the one-dimensional boundary that helps,
but rather the bet-hedging aspect associated with subdividing
its populations into regions with different rules of engage-
ment. Our simulations demonstrated that two coupled systems
may allow for many more species at substantially larger

interaction frequencies than a single system. Importantly, if
one simply separated the 400 x 400 system into two halves
that did not interact, there would not be any substantial diver-
sity for > 0.07. Our simulation shows that invasion across
a common boundary supports high-diversity states up to an
interaction probability y ~ 0.10. Thus the coupling of sys-
tems makes the whole substantially richer than the sum of its
parts.
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