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Nonrandom behavior in the projection of random bipartite networks
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There are two main categories of networks studied in the complexity physics community: Monopartite and
bipartite networks. In this paper, we present a general framework that provides insights into the connection
between these two classes. When a random bipartite network is projected into a monopartite network, under
quite general conditions, the result is a nonrandom monopartite network, the features of which can be studied
analytically. Unlike previous studies in the physics literature on complex networks, which rely on sparse-network
approximations, we provide a complete analysis, focusing on the degree distribution and the clustering coeffi-
cient. Our findings primarily offer a technical contribution, adding to the current body of literature by enhancing
the understanding of bipartite networks within the community of physicists. In addition, our model emphasizes
the substantial difference between the information that can be extracted from a network measuring its degree
distribution, or using higher-order metrics such as the clustering coefficient. We believe that our results are

general and have broad real-world implications.
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I. INTRODUCTION

In the past three decades, networks have been a major re-
search subject [1-3] for the study of the relationships between
multiple agents. Among them, bipartite networks are one par-
ticular class that is widely studied in the literature [4—7]. We
can present a bipartite network as a set of people who are
connected to a set of events. For example, agents can partic-
ipate in events and, if everyone randomly chooses a few of
them, we obtain a typical random bipartite graph. Traditional
networks, instead, belong to the so-called class of monopartite
networks. We can present a random monopartite network as
formed by people only. If each agent chooses randomly to
connect with a few other agents, then we obtain a random
monopartite network with nodes solely represented by people.
This is the well-known Erdos-Renyi network [8].

Networks of the latter class can be constructed from those
of the former class by projection [9,10]: A new monopartite
network can be constructed in which two individuals are con-
nected if, in the bipartite counterpart, they have at least one
common event. In the literature, such people-events networks
are called affiliation networks [11,12], and their projections
are studied in many different real systems. In many appli-
cations, these projections are explicit, such as the process
of connecting diseases associated with the same gene [13],
countries exporting the same product [14], people belonging
to the same group or team [15], scientists collaborating on
the same project [16,17], or actors appearing in the same
movie [18,19]. In other cases, projection is more implicit, e.g.,
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when connections in a social network arise from shared inter-
ests [20]. In addition, the projection method has been applied
to make predictions about the bipartite network itself [21] or
to design recommendation systems [22,23].

One of the reasons for studying projections is that some
structural properties of real monopartite networks, particu-
larly social networks, can be explained if we assume that
such networks result from a projection of a latent bipartite
network. Empirical evidence indicates that in social networks,
the clustering coefficient—the fraction of connected triplets of
nodes—is significantly higher than that of a random network
with the same degree distribution [24,25]; at the same time, in
the projection of any bipartite network, notably high cluster-
ing is generally observed compared to a random network with
the same degree distribution [4,26,27]. In addition to various
nontrivial mechanisms influencing the formation of a social
group [28,29], the observed high clustering coefficient could
be partially explained as a consequence of a projection mech-
anism [24]. In short, projected networks manifest nontrivial
properties.

For these reasons, many physicists have explored the prop-
erties of projected networks, specifically focusing on their
degree distribution and clustering coefficient, starting from
the seminal paper by Newman, Watts, and Strogatz [4]. How-
ever, in the physics literature on complex networks, analytical
results have consistently been derived under the assump-
tion of sparse networks [30]. This approximation has two
motivations. First, in most real-world cases, social network
density is low [31] (indeed, the generating function method, a
popular tool to investigate network properties, is exact only
for treelike networks [32]). Second, projecting a bipartite
network gives rise to nontrivial topological issues. Unlike
traditional monopartite networks, where each tie is formed
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FIG. 1. Difference between a projected bipartite network and a
random network (i.e., the projected network without considering
correlations) with four events and three agents. In the bipartite con-
figuration, there is a unique list of events (green squares). Meanwhile,
in the random network case, there is an independent list of events
(red squares) for each possible link, i.e., for each pair of individuals
(white circles).

independently, this is not the case in projected bipartite net-
works (see Fig. 1) where an independent link in the bipartite
system simultaneously generates multiple connections in the
projected network [26]. However, with the increasing amount
of data at our disposal and the availability of social media,
the interconnectedness of most social systems is growing sig-
nificantly [33]. In other words, the approximation of sparse
networks may no longer be applicable. Therefore, it is essen-
tial to develop theoretical frameworks that can be validated or
used as null models even for denser networks.

In this paper, we complement the results obtained in the
community of physicists working in bipartite projection by
exact analytical results on the degree distribution and cluster-
ing coefficient. In particular, we introduce a simple random
bipartite network model, and we study the behavior of its
projection when varying the bipartite network density. Apart
from the technical contribution, our findings illustrate, within
a simple and intuitive framework, the profound distinction
of the information about a network when measured by its
degree distribution and other higher-order moments such as
the clustering coefficient.

The rest of the paper is organized as follows. In the sec-
ond section, we introduce our random bipartite projection
framework. The third section is divided into three parts: In
the first, we compute exactly the degree distribution of the
projected network generated by our model, and then we show
that in the limit of sparse and large networks, it corresponds
to that of an Erdos-Renyi network; in the second, we perform
exact calculations also for the clustering coefficient, showing,
however, that this metric does not reduce to that of a random
network in the limit of sparse networks; in the third part, we
show alternative interpretations to explain the emergence of
correlations in the projection process and study the scaling
properties of the clustering coefficient. Finally, in the last
section, we conclude the paper.

II. THE FRAMEWORK

Keeping with the people and events metaphor for bipartite
networks (although our framework could be applied to any
bipartite network), we construct a random network consisting

of K people and N events, and we assume that each person
connects to any of the events independently with probability
B € [0, 1]. Thus, the elements of the adjacency matrix n of the
bipartite network are written as

~ _J I with probability B, )

Mie =10 with probability 1 — B,
where individuals are labeled by i = 1, ..., K and events by
o =1,...,N. From this adjacency matrix, we can compute

all the network measures. For our purposes, it is useful to work
with the degree distribution, i.e., the probability By (m) that
an individual is connected to m events out of N. Since the
network is random, this probability is a binomial distribution:

N
By(m) = <m)ﬂ’"(1 -, @)

as is the case in a random bipartite network. From this we con-
struct the monopartite network, resulting from the projection
of the bipartite network. Since two agents are connected when
they share at least one event, the elements of the adjacency
matrix A in the projected monopartite network can be written
as

N
Ajj=0 (Z nianjrx)a 3)
a=1
where 0(-) is the Heaviside function, and i, j = 1, ..., K.

III. ANALYTIC DEVELOPMENTS

We want to study the properties of A averaged over all
the realizations of the bipartite network. In particular, we are
interested in the probability of the entire adjacency matrix,
i.e., the probability P(A;,Al, ..., Axkx) = P(A) to observe
a specific configuration of A. This can be written as

K K
PAY= Y S(n)l—[nszi(fzaman/a)’ (4)

nenyg i=1 j=1

where §? is the Kronecker delta (equal to 1 if x =0 and 0
otherwise), nyg is the set of all possible adjacency matrices
of a bipartite network with K people and N events, and

s(n) = ﬂZi/' "i/(l — IB)NZ_Z,‘/ nij

is the probability to have a specific configuration n € nyg.

Note that, according to Eq. (4), there are K? conditions
on the probability of the adjacency matrix of the projected
network. Consequently, computing it becomes a challenging
task. Instead, we calculate a simpler quantity—the probability
p that an element A;; is 1. In a first-order approximation, p
is given by the extremal distribution of sampling at least one
element out of N (two people are connected if they share at
least one event). Given that in our model the probability of not
sharing a specific event is (1 — B2), the probability of sharing
at least one event is

p=1-(01-pH". ®)

By symmetry, p is the same for any i and j, so the expected
value of A;; is (A;;) = DA P(A)A;; = p. Hence, the link prob-
ability p provides no information about the bipartite structure
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in the monopartite version. Neglecting the correlation arising
from the transition from a bipartite to a monopartite network,
one might mistakenly assume that the network is random with
connection probability p, akin to Erdos-Renyi. Nevertheless,
for finite N, correlations play an important role for the degree
distribution, and the projected network cannot be approxi-
mated as a random network. In Fig. 1, we provide a simple
example with N = 4 and K = 3 that illustrates the effect of
neglecting correlations. To show it formally, in the following
we compute the degree distribution P(d) of the projected
network.

A. Degree distribution

The degree d; of the individual i in the monopartite net-
work is given by d; = ) ;jAij. If an individual with degree d
participates in m events, there must be d individuals out of
K — 1 (we do not allow self-link) meeting her at one of those
m events. Summing over m, we have

al K-1
P(d)=ZBN<m>( J )[1—Bm<0>]dBm<0)K‘d. (6)
m=0

As mentioned in the physics literature of complex networks,
the degree distribution of a projected network was derived
in the sparse network limit, i.e., when N — oo and BN is
fixed. In this limit the sum in Eq. (6) is dominated by the
maximum of By(m), i.e., when m = BN. In this case, P(d)
is a binomial distribution with the probability parameter given
by 1 — e #*N & p. Thus, one retrieves the degree distribution
of an Erdos-Renyi network with connection probability p.

In general, one can calculate the moment-generating func-
tion to show that P(d) is binomial in the large-N limit:

K—1

=y [(ﬁ(l =B+ =p)

=0

« (Kl_ 1><e—k _ 1)’}, ™

and at large N we have [B(1 — B) + (1 — B)IY ~ ¢~ F"N S0
we obtain

(&™)

()~ D — e PN — e ®)

which corresponds to the moment-generating function of a
binomial distribution with probability parameter 1 — e #°V.
Hence, with many events, the projected network and a random
monopartite network cannot be distinguished when measuring
their degree distributions. Note that the above argument would
fail if K scaled with N.

B. Clustering coefficient

In addition to the degree distribution, we also consider
a higher-order measure, namely the clustering coefficient C
of the projected network [19]. It is defined as the ratio of
the number of closed triplets (three nodes connected to each
other) to the number of open triplets (two unconnected nodes

—-

(a) (b)

FIG. 2. Illustration of the two configurations of the bipartite
network leading to a triangle in the projected network. Individuals
are represented by white circles, and events by red squares. The
configuration in (a) appears with probability P;; the configuration
in (b) appears with probability P;.

with a common neighbor). Formally,

Cc—3 (triplets) 2k (AijA kAR ©)
(open triplets) > (( Y, Ai)( YA — 1))

This quantity represents the probability that, when select-
ing two links with one end in common, the other two ends
are also connected. In other words, it measures the level of
connectivity between the neighbors of a node. While there
exist different definitions of the clustering coefficient in the
literature [34], we follow the most widely accepted definition.
Understanding the properties of this metric is important not
only in the study of social networks where, as mentioned in
the Introduction, a high clustering coefficient has been empir-
ically observed, but also in the study of nonsocial networks
such as the brain or information network. Indeed, the cluster-
ing coefficient is clearly related to the concept of triadic motifs
or 3-cliques, i.e., triangular patterns that play an important role
in information processing within networks [35].

Note that, in the case of a random network generated with
probability p, the clustering coefficient is exactly p [36]. To
compute the numerator of Eq. (9) in our projected network,
we must consider the probability that three agents i, j, k are
connected. There are two contributions to this probability. The
first is the probability P, that in the bipartite network i, j, k
participate in the same event at least once [Fig. 2(a)]. Similarly
to the derivation of p in Eq. (5), P, is given by the extremal
distribution of sampling at least one element out of N. Since
the probability of three people not sharing a specific event is
(1 — B%), the probability that they share at least one is P, =
1 — (1 — B*)". The second contribution is the probability P;
that the three individuals participate pairwise in three different
events [Fig. 2(b)]. This is computed as follows:

Py = Z By (m)B,,(n)[B,,(0)By—n(D][1 — By (0)]. (10)

m,n,l

The first factor in this sum is the probability that the first indi-
vidual, say i, participates in m events out of N; the second and
third factors are the conditions that j participates in n of these
m events and that k participates in / of the remaining m — n
events, respectively. In this way, individuals j and k both meet
i, but they do not meet each other in any of the m events
chosen by i. The last factor is the condition that j and k meet
in the other N — m events. Note that in the physics literature
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FIG. 3. Clustering coefficient vs 8. The clustering of our pro-
jected network is compared with that of a random network with
connection probability p and that of the Newman model in [4].

on bipartite networks, this term has always been overlooked in
the analytical derivations of the clustering coefficient, as only
the sparse network limit has been considered (see, in partic-
ular, the derivation of the clustering coefficient in a projected
network in [30]). Indeed, in this limit, P, dominates, and the
effect of P; is negligible.

Now, the denominator of Eq. (9) is straightforwardly writ-
ten as K(d;(d; — 1)), and, after some algebra, the clustering
coefficient can be written as

24428V = BN =30 = Y

R ) Wy gy

(1)

Figure 3 shows that our analytical result is consistent with
numerical simulations. It is interesting to note that our model
is equivalent to a special case of a model studied in mathemat-
ics, namely the random intersection graph, where the same
functional form for the clustering coefficient can be derived
using a different approach [37].

From Eq. (11), the clustering is 1 at 8 & 1/N. Here the net-
work is separated into disconnected communities composed
of individuals that share all the events they participate in (i.e.,
within a community, each individual participates in all the
events shared with their neighbors and does not participate
in all others). Increasing B, spurious links start to appear be-
tween communities, reducing the clustering until g ~ N~1/2
(see Fig. 4), where links between two randomly sampled
individuals are highly frequent. From this point on, the in-
crease in link density generates a higher clustering coefficient.
Actually, the clustering reaches its minimum value when the
network seems to move from a phase of isolated communities
to one with a unique connected component. To evaluate this

1.0
109 .
0.8
107 .
0.6
z,
10° 1
0.4
3
10 0.2
10! T T
1010 10-7 10~4 101

g

FIG. 4. Phase diagram of the clustering coefficient of Eq. (11)
in the [B, N] parameter space. When N increases, the width of the
minimum valley increases since the left border scales as 1/N and the
right one as 1/+/N.

minimum, we compute C by expanding (11) at small 8:

1 + N2 ﬁ3 ;
C=——- . 12
NB+1 +o(B7) (12)
The minimum is reached when B satisfies the following
equation:

2B°N? 4+ 3B°N> —N = 0. (13)

For large N, the solution S, scales as N~2/3_ Instead, the
clustering at this minimum decreases quite slowly with N:

C(B.) ~ N~ (14)

Note that, when looking at the clustering coefficient, our
projected network is fundamentally different from a random
network, as shown in Fig. 3. Unlike the case of the degree
distribution, this is also true for large N (sparse network). This
is a consequence of the aforementioned correlations arising
from dimensionality reduction due to the transition from a
bipartite to a monopartite network. While this was already
known from the results obtained in the sparse network limit
(without the term P3;), our findings emphasize even more
the special properties of projected networks. We not only
show that they generally have a higher clustering coefficient
compared to that of classic monopartite networks with the
same degree distribution, but also that their clusterization with
density is nonmonotonic. Therefore, an important message to
draw is that when measuring the properties of a network (real
or artificial), the degree distribution is not a sufficient measure
to extract all the information. The formation process of such a
network (e.g., whether it is the result of a projection or not)
is crucial for higher-order measures such as the clustering
coefficient and their dynamics when other parameters, such
as density, change.
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C. Other properties of the model

In this section, we discuss additional properties and impli-
cations of our framework.

1. The geometrical argument

First we want to further elucidate why, in light of our
model, the clustering coefficient of a projected network is
higher than that of a standard monopartite network with the
same degree distribution. We have already mentioned that
this is due to the presence of correlations arising from the
dimensionality reduction (bipartite to monopartite network).
The presence of correlations can also be explained by a ge-
ometrical argument. For any individual i, let us define v; =
{nia}a=1,...~ as the vector whose elements are 1 if i partic-
ipates in event «, and zero otherwise. We can interpret this
vector also as a vertex of an N-dimensional hypercube. Thus,
each vector (or individual) is a randomly drawn vertex on the
hypercube with an average distance from the origin equal to
BN. On this hypercube, two individuals are connected when-
ever their inner product is positive, that is, when v; - v; > 0.
From this perspective, correlations in the projected network
naturally appear as dimensional constraints on the hypercube.

2. The Hamiltonian approach

To generalize our results from a statistical mechanics per-
spective, one can introduce a Hamiltonian for the matrix A’:

K K
HIAT =) ") A (1—vi-v)). (15)

i=1 j=1

This describes a model in which individuals have a nonzero
probability—determined by the Boltzmann weights and
the associated temperature 7T—of being connected in the
projected network even though they have no common events
in the bipartite network. The minimum of the Hamiltonian
is when A’ is identically the adjacency matrix in Eq. (3). So,
by studying this Hamiltonian in the zero-temperature limit,
one can study the properties of A. Computing the partition
function Z, we find

1
7 = 1_[ Z e‘%H[A/] — 1_[ (1 + e_%(l—vi'vj))’ (16)

ij A;=0 ij

and the link probability is
a7)

which is a Fermi distribution with chemical potential
wij =V;-v;. Note that these chemical potentials are not
independent, so when averaging, correlations appear when
computing quantities involving three or more individuals.

3. The scaling properties

Finally, it is interesting to study the properties of our sys-
tem as a function of N as the scaling gives different behaviors.
For example, in [30], Newman, Watts, and Strogatz describe
a random bipartite network model in which, differently from
above, they fix the average degree z = O(1) in the bipartite

network so that § = z/N, and they study the large-N limit.
Since B scales as 1/N, for large N the bipartite network is
sparse. In this case, it is possible to neglect the term Ps,
and the resulting monopartite network of people is clustered
into different communities, as we have shown above (when
B < 1/N). Thus, with the approach of [30], the effects aris-
ing at higher values of B8 cannot be observed (see Fig. 3),
and the network always remains fragmented. In this context,
our findings complement and extend this and the subsequent
traditional physicists’ models on bipartite projections, which
are extensively employed as null models and benchmarks
for various real systems. In fact, we show exact results that
hold for any network density and not just in the (analytically)
simpler limit of large N, which is appropriate only for sparse
networks. Examining a naturally dense real network, or in-
creasing the density artificially by reducing the number of
events (for example, through aggregating similar events or
limiting the data set), can lead to a richer scenario in which
links between different communities facilitate communication
and information diffusion. One can argue that interesting so-
cial phenomena can be detected by observing the system at a
fixed scale (low N).

However, some systems are inherently sparse, and it would
not make sense to reduce the number of events to increase
their density. For instance, in real offline social networks,
there is a cognitive constraint on the number of connections
each individual can handle [38]. Our exact results can also
offer additional insights into these systems. For example, we
can fix, in the manner of Newman, the average degree in the
projected network to be of the order of 1:

(d) =Kp=K[1—(1-p)"]~0() (18)

for any i. In this way, we obtain a new scaling:

11— -H"~1/K — ﬁ~‘/]%. (19)

So the probability to participate in an event depends on both
N and K. If K ~ /N, the population is clustered in different
communities. Instead, if K < \/ﬁ, the system is more co-
hesive. This mechanism can help to understand and manage
social phenomena such as the observed social fragmentation
and polarization [33,39].

IV. CONCLUSIONS

To summarize, in this paper we have examined the pro-
jection of a random bipartite network of people connected
to events. Averaging over all the realizations, it is possible
to extract information about the bipartite structure only with
measures involving three or more agents. Indeed, lower-order
quantities (e.g., the degree distribution) are not distinguishable
from those of a random network if the number of events is
large enough. This is evident by mapping the bipartite struc-
ture into a hypercube and noting that this imposes geometrical
constraints. We have shown analytically how these constraints
affect the properties of the projected network. In particular,
we have investigated the scaling properties of the clustering
coefficient in the monopartite network, showing, for example,
that when there are many events, the system is fragmented into
smaller communities.
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We have also demonstrated that our model adds value over
classical works by physicists on bipartite projection. In fact,
we have obtained exact analytical results outside the limit of
sparse networks. Consequently, our model can be validated
for a wider range of real bipartite systems, or used as a null
model. For example, one can analyze an evolving bipartite
network system, where the number of links increases over
time, and compare the results of our model with the observed
clustering coefficient. It might also be interesting to analyze
real monopartite evolving networks with the hypothesis that
their topology is a consequence of an underlying bipartite
network. Indeed, in most data sets of social systems, we can
only detect the monopartite network, that is, the connections
between individuals, and the above approach could help reveal
the hidden reasons (such as the coparticipation in different
events). This could be a driving force for the apparent person-
to-person relationships.

Moreover, a natural extension of our framework, which
needs to be explored, is the study, using the same analytical
approach, of the properties of the projected network when

weights are included. This occurs when the links between
two individuals in the projected network are weighted, cor-
responding to the number of events the two individuals
share in the bipartite network. In this paper, we chose
not to include weights not only for the sake of simplic-
ity but also because our primary focus was on studying
the standard projected network. Indeed, the intriguing ef-
fects we observed stem precisely from the fact that, by
excluding weights, a significant amount of information from
the bipartite network is lost during the projection pro-
cess. However, our model can be extended to include
weights, and the results could, for example, give bench-
marks on the effectiveness of similarity measures in real data
sets.

In conclusion, our work offers an alternative framework
for understanding the differences between monopartite and
bipartite networks, and although we do not claim that our
model accurately represents any specific real-world system,
we believe it can provide valuable insights as a benchmark
model.
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