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Evolution of cooperation in deme-structured populations on graphs
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Understanding how cooperation can evolve in populations despite its cost to individual cooperators is an
important challenge. Models of spatially structured populations with one individual per node of a graph have
shown that cooperation, modeled via the prisoner’s dilemma, can be favored by natural selection. These results
depend on microscopic update rules, which determine how birth, death, and migration on the graph are coupled.
Recently, we developed coarse-grained models of spatially structured populations on graphs, where each node
comprises a well-mixed deme, and where migration is independent from division and death, thus bypassing the
need for update rules. Here, we study the evolution of cooperation in these models in the rare-migration regime,
within the prisoner’s dilemma. We find that cooperation is not favored by natural selection in these coarse-grained
models on graphs where overall deme fitness does not directly impact migration from a deme. This is due to a
separation of scales, whereby cooperation occurs at a local level within demes, while spatial structure matters
between demes.
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I. INTRODUCTION

Cooperation between individuals is commonly observed
in living systems at the cell scale [1–4], between animals
[5–8], and in human societies [9–11]. For instance, bacte-
ria often produce diffusible resources (e.g. enzymes, toxins,
or signaling molecules) that can benefit neighboring bac-
teria, including those that do not produce this resources
(cheaters) [12,13]. Because producing these resources is gen-
erally costly, natural selection a priori works against the
producers of public goods, and favors cheaters. Therefore,
understanding how cooperation can evolve and spread is an
important question [13,14], which has led to intense debates.
Kin selection can lead to the evolution of cooperation under
some conditions [15,16]: if the individuals that benefit from
cooperation are related to cooperators, then cooperation can
be selected even if it carries a cost. Spatial structure can
also favor cooperation in some models [13,17–21]. Since spa-
tial structure generally entails that closely located individuals
are genetically related, its ability to promote cooperation is
related to kin selection [22]. In evolutionary game theory,
individuals play games such as the prisoner’s dilemma [23,24]
or the snowdrift game [23,25] using fixed strategies. Their
fitnesses depend on the composition of the surrounding pop-
ulation, via the payoff they receive from the games played
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with their neighbors [26–29]. This allows us to model coop-
eration in a straightforward way and to study its evolution.
In these models, each individual is located on a node of a
graph [30], allowing us to investigate the impact of complex
spatial structures on the evolution of cooperation [17,18]. It
was found that, in the prisoner’s dilemma game, a cooperator
mutant can be favored by natural selection in some graphs
under specific update rules that prescribe how individuals are
chosen to divide, die, and replace each other [17,18].

Recently, we developed more general models of spa-
tially structured populations on graphs, where each node
comprises a well-mixed deme instead of a single individ-
ual, and where migration between demes is independent
from division and death [31,32]. These models therefore do
not require an update rule, contrary to other models with
demes on graphs [33–35]. We showed that, for mutants
with constant (nonfrequency-dependent) fitness, some spatial
structures with specific migration asymmetries can amplify
natural selection in the regime of rare migration [31]. We
further found that suppression of selection is pervasive with
more frequent migrations, in the branching-process regime
[32]. Importantly, these results do not depend on update rules,
contrary to models with one individual per node where sup-
pression or amplification of natural selection for a given graph
strongly depends on the update rule choice [36–39]. In the
rare-migration regime, this dependence on update rules was
replaced by a dependence on migration asymmetry, which
can be experimentally tuned and measured, while update rules
model assumptions about the microscopic dynamics at the cell
scale, which are generally not strictly followed by natural or
experimental populations.

Can spatial structure favor the evolution of cooperation
in these deme-structured models, as in models with one in-
dividual per node of the graph? To address these questions,
we consider the prisoner’s dilemma in spatially structured
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populations within the frameworks of Refs. [31,32]. In these
models, the fate of mutants is impacted by the choice of
graph structure and specific migration rates between demes,
but the average fitness of a deme does not directly impact the
intensity of its outgoing (or incoming) migrations. In other
words, selection is essentially soft [40], as we aimed for a
minimal incorporation of spatial structure. Note, however, that
cooperation can be favored via a coupling between composi-
tion and population size [13,19–21].

We first lay out our models of deme-structured popula-
tions on graphs with cooperation in the case of the prisoner’s
dilemma. Next, we consider a single cooperator (mutant),
placed in a population entirely composed of defectors (wild-
types), and we ask what the probability is that it takes over
(i.e., fixes). We address this question in different graphs, for
rare migrations. We compare the fixation probability of a
single cooperator to that of a single defector, and to that of a
neutral mutant, to determine whether cooperation is favored.
We also evaluate the impact of structure by comparing the
fixation probability of a cooperator mutant in a structure to
that in a well-mixed population with the same total size. We
find that cooperators are not favored by natural selection in
our models. The impact of spatial structure on their fixation
probability reduces to that observed for mutants with fixed
fitness disadvantage. This is due to a separation of scales, with
cooperation occurring within demes, while spatial structure
matters between demes. We make complete comparisons with
models with one individual per node of the graph, includ-
ing formal calculations in the Appendix, where we show the
points that differ between these two classes of models.

II. MODEL AND METHODS

A. Spatially structured populations with demes on graphs

We model spatially structured populations on directed
graphs. Each of the D nodes of the graph contains a well-
mixed subpopulation or deme. The specific graphs considered
here are shown in Fig. 1. Two types of individuals make up
the population: mutants (M) and wild-types (W ). We com-
pare two different models, which differ by how deme size
is regulated. In the first one, each individual can divide, die,
and migrate with given rates, deme sizes are limited by a
carrying capacity, and we consider the regime where they
fluctuate around a steady-state value [31]. In the second one,
inspired by serial transfer experiments, the population under-
goes an alternation of growth and bottleneck phases. Starting
from a bottleneck state, each deme undergoes exponential
growth, and then some individuals are sampled and migrate
to form a new bottleneck state [32]. Formally, the first model
is close to a Moran model, but deme size is not strictly fixed
[31]. Meanwhile, the second one is close to a Wright-Fisher
model [32]. We mainly study the first one, which is more
directly comparable to models with one individual per node
[17,18,30]. The second model allows us to extend our results
to more frequent migrations.

Within our models of spatial structure, we consider an evo-
lutionary game theory setup that provides a simple description
of cooperation, following Refs. [17,18,28]. Our two types
of individuals then correspond to cooperators and defectors,

FIG. 1. Highly symmetric population structures: (a) clique,
(b) cycle, (c) star, and (d) 3×3 regular lattice. Panels (a)–(c) have five
demes, while panel (d) has nine demes, represented by large white
circles. Each deme holds a well-mixed population of microorganisms
represented by red circles. Individuals can migrate from one deme to
another along the depicted arrows, following the written migration
rates.

interacting within a prisoner’s dilemma with payoff matrix

P =
(

b − c −c
b 0

)
, (1)

where b > c > 0. If a cooperator interacts with another co-
operator, then both receive a benefit b but also lose a cost c;
this yields b − c in the upper left corner of P. If a cooperator
interacts with a defector, then the cooperator does not receive
anything, but it loses c because of the interaction (upper-right
corner), while the defector receives b (bottom-left corner).
Finally, if two defectors interact, both get zero. Note that here,
being a cooperator or a defector in our model is an intrinsic
(genetic) characteristic of an individual. Individual fitnesses
are expressed as f = 1 − w + wπ , where w is the intensity of
selection and π is the total payoff received by the individual
upon interactions with all its partners. In what follows, we
usually consider cooperators as mutants M and defectors as
wild-types W and ask how likely it is that cooperator mutants
take over.

We consider that interactions between individuals occur
inside demes, which are well-mixed. Thus, each individual
interacts with all other individuals in the same deme. Denoting
by k the number of mutants in a deme of size N , the payoffs
πM (k, N ) for a mutant individual and πW (k, N ) for a wild-type
individual in this deme read [28]

πM (k, N ) = (b − c)
k − 1

N − 1
− c

N − k

N − 1
,

πW (k, N ) = b
k

N − 1
. (2)

In these expressions, (k − 1)/(N − 1) is the fraction of mu-
tants among the individuals that a mutant of focus can
interact with (i.e., all but itself), while (N − k)/(N − 1) is the
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FIG. 2. Fixation of a mutant in a clique. We start with a single
mutant individual (yellow) in one deme, while all the other individ-
uals are wild-types (red). In the rare-migration regime, mutants first
fix in the initial deme before one migration event to another deme
occurs. This process is repeated until mutants take over the complete
structure.

fraction of wild-types among them. Similarly, k/(N − 1) is
the fraction of mutants among the individuals that a wild-type
of focus can interact with. In each of our two models, fitness
can be expressed from these payoffs, giving rise to frequency-
dependent fitnesses (see below).

B. Model with carrying capacities

We first consider the model introduced in Ref. [31]. In
this model, each deme has maximum carrying capacity K .
Besides, each individual has fitness fM or fW , and death rate
gM = gW = g, as we focus on selection on division. Here, fit-
ness represents the maximal division rate of microorganisms
reached in exponential growth. The division rate of individ-
uals of type A = M,W in deme i is given by the logistic
function fA(1 − Ni/K ), where Ni is the number of individuals
in deme i. As in Ref. [31], we focus on the rare-migration
regime, where fixation or extinction within a deme occurs on
much shorter timescales than migrations (see Fig. 2). In this
regime, we describe the evolution of the microbial population
as a Markov process where each event is a migration and
where each deme is either fully mutant or fully wild-type
[31,41]. Note that we present an extension to more frequent
migrations using our second model (see below). We focus on
the regime where deme sizes Ni fluctuate weakly around their
deterministic steady-state value K (1 − g/ fW ) (where we have
neglected differences between fM and fW , which is acceptable
for weak selection, and where we have neglected migrations,
which is acceptable if they are rare). Note that the deter-
ministic steady-state size is equal to the maximum carrying
capacity K if g = 0. In what follows, we refer to K as the
deme carrying capacity, for simplicity. We approximate the
fixation process of a type within a deme by a Moran process
[42,43] for a population of size K (1 − g/ fW ), thus neglecting

size fluctuations. Here, we implement logistic regulation in
the division rate, which decreases if Ni grows. Appendix C
briefly discusses a variant where it is instead implemented in
the death rate. Our conclusions are not affected.

Denoting by k the number of mutants in a deme of size
N as above, the frequency-dependent fitnesses fM (k, N ) for a
mutant individual and fW (k, N ) for a wild-type individual in
this deme read

fM (k, N ) = 1 − w + wπM (k, N ),

fW (k, N ) = 1 − w + wπW (k, N ), (3)

where payoffs πM and πW are given by Eq. (2). Under this
convention, where fitnesses depend linearly on payoffs, we
focus on the weak-selection regime defined by w � 1 and
wN � 1, where both fM and fW are close to the base fit-
ness f = 1 [17,18]. We then briefly discuss an alternative
convention where fitnesses depend exponentially on payoffs
[44], which allows an extension of our results beyond the
weak-selection regime.

We perform analytical calculations and stochastic simula-
tions. For the latter, we use a Gillespie algorithm [31,45,46],
described in detail in Appendix D. We refer to this model in
figures as the “carrying-capacity” (C. C.) model.

C. Model with serial dilutions

Recently, in Ref. [32], we introduced a model of spa-
tially structured populations on graphs, directly inspired by
the batch culture setups with serial transfers that are used
in many evolution experiments [47–54] and are important
in ecology [55]. This serial dilution model is a variant of
the Wright-Fisher model and features demes placed on the
nodes of a graph with possible migrations along its edges,
like the carrying-capacity model defined above. Each deme
holds a well-mixed subpopulation, and within-deme interac-
tions implement cooperation between individuals following
the payoff matrix (1). In this model, all demes have the same
bottleneck size B, and repeatedly undergo a two-step process.
To clarify notations, quantities common to the two models will
be denoted with a prime for the serial dilution model.

(1) First, subpopulations grow exponentially in each deme
during a fixed growth time t . Time within this growth phase
is denoted by τ ∈ [0, t]. Starting at τ = 0 from k′(0) mutants
and l ′(0) wild-types in a deme at bottleneck, such that k′(0) +
l ′(0) = N ′(0) = B, these numbers grow as

dk′

dτ
(τ ) = f ′

M (τ )k′(τ ),

dl ′

dτ
(τ ) = f ′

W (τ )l ′(τ ), (4)

with rates fM (τ ) and fW (τ ) reading

f ′
M (τ ) = 1 − w′ + w′πM (τ ),

f ′
W (τ ) = 1 − w′ + w′πW (τ ). (5)

Here πM (τ ) is a shorthand for the payoff πM (k′(τ ), N ′(τ ))
given in Eq. (2), with population size N ′(τ ) = k′(τ ) + l ′(τ )
[and similarly for πW (τ )]. The growth rates in Eq. (5) are
chosen to have a similar form to the fitnesses given in Eq. (3).
Here too, the payoffs obtained from the prisoner’s dilemma
within demes directly impact the ability of cells to divide.
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(2) Next, a dilution and migration step occurs (see details
in Sec. B of the Appendix), bringing the system to a new
bottleneck state. For each deme, we perform a multinomial
sampling to pick exactly B individuals that form the new
bottleneck state of this deme. These incoming individuals are
sampled from all demes, according to migration probabilities
(all incoming migration probabilities to a given deme sum to
one).

In addition to bridging with experiments, this model has
the advantage of facilitating the treatment of frequent migra-
tions. Indeed, in our carrying capacity model under frequent
asymmetric migrations, some demes can have a steady-state
size that exceeds K , which prevents division there. Choosing a
division rate independent from N and a death rate proportional
to N/K would instead result in substantially faster turnover
in these demes. These situations lack realism and strongly
depend on the exact form of deme size regulation. The serial
dilution model does not suffer from this drawback.

We perform stochastic simulations under this serial dilu-
tion model [32], and we refer to it in figures as the “dilution”
one. Considering the serial dilution model allows us to test
the robustness of our conclusions from the carrying-capacity
model in the rare-migration regime and to extend our study
beyond this regime.

To quantitatively compare results from the two models, we
choose the bottleneck size B in the dilution model to be equal
to the steady-state size of the demes, K (1 − g/ fW ), in the
carrying-capacity model. Furthermore, in the dilution model,
we introduce the effective intensity of selection 2w′t . Indeed,
it plays the same role as the intensity of selection w in the
carrying-capacity model, see Sec. B 3 of the Appendix (in par-
ticular, the factor of two comes from the difference between a
Moran and a Wright-Fisher description in the diffusion limit).

III. RESULTS

A. Fixation probability in a deme and in a structured
population with rare migrations

In the rare-migration regime, fixation of a mutant in the
whole population starts by fixation in the deme where the
mutant was introduced (see Methods and Fig. 2). Thus, we can
write the fixation probability ρstruct

M of a mutant in the structure
as

ρstruct
M = ρM�1, (6)

where ρM is the fixation probability of one mutant in a well-
mixed deme where all other individuals are wild-type, while
�1 is the fixation probability of the mutant type in the whole
population starting from one fully mutant deme and D − 1
wild-type demes.

Let us first focus on ρM and let us compute it in the
carrying-capacity model. Neglecting deme size fluctuations in
the fixation process within a deme (see Methods) and denoting
by N the number of individuals in the deme, we can follow the
calculation of Ref. [28], which yields

ρM =
⎛
⎝1 +

N−1∑
j=1

j∏
k=1

fW (k, N )

fM (k, N )

⎞
⎠

−1

. (7)

Note that N corresponds to the deterministic steady-state
deme size N = K (1 − g), where we have neglected the impact
of fitness differences on N and used fW ≈ fM ≈ 1, as we
focus on the weak-selection regime (this amounts to neglect-
ing terms of order wg/( f − g), which are explicitly written
in Ref. [31]—this is acceptable if g � f , which is realistic).
Similarly, the fixation probability ρW of one wild-type in a
well-mixed deme where all other individuals are mutant reads

ρW =
⎛
⎝1 +

N−1∑
j=1

j∏
k=1

fM (N − k, N )

fW (N − k, N )

⎞
⎠

−1

. (8)

Inserting the fitness expressions from Eq. (3) into Eqs. (7) and
(8) and performing an expansion in w in the weak-selection
regime w � 1 and wN � 1 yields

ρM = 1

N

{
1 − w

2
[b + c(N − 1)]

}
+ O(w2), (9)

ρW = 1

N

{
1 + w

2
[b + c(N − 1)]

}
+ O(w2). (10)

We note that ρM < 1/N < ρW : we recover the result that in a
well-mixed population, natural selection favors defectors over
cooperators.

To calculate the fixation probability ρstruct
M of a mutant in

the whole structured population, we need to express the prob-
ability �1 that the mutant type fixes, starting from one fully
mutant deme, see Eq. (6). Importantly, �1 depends on the
specific graph that is considered for the structured population.
Below, we focus on the simple graphs shown in Fig. 1 and
investigate how each of them impacts the evolution of coop-
eration. To compute �1, we notice that, in the rare-migration
regime, the state of the population can be fully described by
specifying which demes are fully mutant and which ones are
fully wild-type. Furthermore, this state evolves due to migra-
tion events, which may change it if they result into fixation
in the destination deme. The evolution of the state of the
population is a Markov chain [31,41].

B. Evolution of cooperation in the clique and cycle

Let us first consider the clique and the cycle, where all
demes are equivalent. To compute �1, and more generally
the fixation probability �i when starting from i fully mutant
demes (consecutive in the case of the cycle) and D − i fully
wild-type demes, we follow the method we used in Ref. [31],
which is based on Ref. [28]. Briefly, we write down a re-
currence relation on �i by discriminating over all possible
outcomes of the first migration event: either i increases by one
if a mutant migrates to a wild-type deme and fixes there, or it
decreases by one in the opposite case, or it stays constant in
all other cases (see Appendix A 1 and Ref. [31] for details).
Solving this recurrence relation yields

�
clique
1 = �

cycle
1 = 1 − γ

1 − γ D
, (11)

with

γ = ρW

ρM
. (12)

The reasoning made with frequency-independent fitness in
Ref. [31] thus extends to the present case with cooperation,
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and, accordingly, the formal expression of �1 is the same
in both cases. However, the expression of γ differs because
the fixation probabilities within a deme are impacted by the
cooperation model. In the present case, γ can be expressed
using Eqs. (9) and (10). Note that Eq. (11) is independent of
migration rates. In particular, in the case of the cycle, Eq. (11)
does not depend on the ratio mA/mC of the anticlockwise
migration rate mA to the clockwise one mC , see Fig. 1.

In Ref. [31], we further showed that all circulation graphs
(such that the sum of incoming migration rates to any given
deme is equal to the sum of outgoing ones from that deme), in-
cluding the cycle, have the same fixation probability, thereby
extending the circulation theorem which holds for graphs with
one individual per node [30]. The circulation theorem further
extends to the present case with cooperation. Indeed, the exact
same proof as in Ref. [31] holds, albeit with a different γ .
Therefore, all circulation graphs have the same fixation prob-
ability of cooperator mutants, given by Eqs. (11) and (12). We
henceforth denote it �circ.

1 .
Using Eqs. (9) and (10) to express Eq. (11) yields

�circ.
1 = 1

D

{
1 − D − 1

2
[b + c(N − 1)]w + O(w2)

}
, (13)

which gives the fixation probability of a mutant in the whole
population, using Eqs. (6) and (9):

ρcirc.
M = 1

ND
− 1

2N
[b + c(N − 1)]w + O(w2). (14)

Importantly, this fixation probability is smaller than the neu-
tral value 1/(ND) for all b > c > 0: cooperation is never
favored by natural selection in circulation graphs, including
the clique or the cycle. It is also very similar to the fixation
probability of a mutant in a well-mixed population of size
ND [obtained from Eq. (9) by replacing N with ND]—both
coincide for N � 1 (see also Ref. [31]).

In Fig. 3(a), we compare numerical simulation results
and analytical predictions for the fixation probability ρ

cycle
M

in the cycle. We find that stochastic simulation results do
not depend on migration asymmetry α = mA/mC , consis-
tently with our analytical calculations of ρ

cycle
M = ρM�

cycle
1 . A

slight discrepancy can, however, be observed between ana-
lytical predictions and simulation results. It arises from the
constant-size approximation we made to compute the analyt-
ical expressions of ρM and ρW , which are both involved in
the expression of ρ

cycle
M . Indeed, using Gillespie simulation

results obtained on well-mixed demes for ρM and ρW instead
of their analytical expressions for fixed size within the ex-
pression ρ

cycle
M = ρM�

cycle
1 yields an excellent agreement with

simulation results [see Fig. 3(a)].
In Fig. 3(b), we explore more frequent migrations, using

the serial dilution model introduced above. Our simulation
results suggest that the fixation probability for a cycle re-
mains the same for more frequent migrations. Besides, as
expected, matching the effective intensity of selection 2w′t in
this model to w in our first carrying-capacity model, simula-
tions from both models give close results for rare migrations.
The rare migration analytical prediction for the dilution model
is obtained with Eq. (11), but replacing ρM and ρW with
their expressions ρ ′

M and ρ ′
W derived in the dilution model

FIG. 3. (a) Mutant fixation probability ρ
cycle
M in the cycle versus

intensity of selection w for different migration asymmetries α =
mA/mC , in the rare-migration regime. Solid lines represent analytical
predictions; red “+” markers are semi-analytical predictions; other
markers are simulations. The well-mixed-population case (black
dashed line), and the neutral-mutant case (gray line) are shown for
reference. Analytical and semi-analytical predictions are obtained
using Eqs. (6) and (11), with ρM and ρW calculated either using
Eqs. (7) and (8) that hold for fixed deme size, or using simula-
tions on well-mixed demes (107 replicates) to avoid errors from
assuming fixed deme size. Pure simulation results are obtained
over 106 replicates with (mA, mC) ×105 = (4,1), (1,1) and (1,4).
(b) Mutant fixation probability ρ

cycle
M in the cycle versus effective

intensity of selection 2w′t in the dilution model, for different mi-
gration asymmetries and intensities. The solid red line represents
the analytical prediction in the rare-migration regime in the dilu-
tion model, from Eqs. (6) and (11), using Eqs. (B5) and (B6) for
ρM and ρW . The well-mixed-population case (black dashed line)
in the dilution model and simulations for the carrying-capacity (C.
C.) model in the rare-migration regime (versus w) are shown for
comparison. Dilution simulation results are obtained over 106 real-
izations for (mA, mC) ×10 and ×103 = (4,1), (1,1), and (1,4). In
this figure, we consider D = 5 demes with carrying capacity K = 20,
death rate g = 0.1 yielding steady-state size N = 18, and benefit and
cost b = 2 and c = 1. The well-mixed population holds DN = 90
individuals.
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(see details in Sec. B of the Appendix). Note that Ref. [32]
extended the circulation theorem to the dilution model without
cooperation, both for rare migrations and for frequent migra-
tions within the branching-process approximation.

Our results stand in contrast with those of Ref. [18], where
the present model of cooperation was studied in a cycle
graph with one individual per node. There, it was found that
cooperators could be favored by natural selection under the
death-Birth (dB) and imitation update rules, but not under the
Birth-death (Bd) update rule (the uppercase B indicates that
selection on fitness happens at the birth step). Specifically,
natural selection was found to favor cooperation in the dB case
if b/c > 2 + 4/(D − 4) [18]. To understand the formal origin
of this difference, we revisit the derivation of Ref. [18] in
Appendix A 1. The key difference is that in our model, cooper-
ative interactions occur within a deme and are not involved in
migration events. Conversely, in the model of Ref. [18], they
impact the spread of mutants on the graph since birth, death,
and migration events are coupled via update rules.

C. Evolution of cooperation in the star

Let us now consider the star graph, where the center sends
out individuals to any leaf with rate mO and receives individ-
uals from any leaf with rate mI [see Fig. 1(c)]. This graph
structure has been extensively studied for mutants with con-
stant fitness. In evolutionary graph theory with one individual
per node, the star amplifies or suppresses natural selection
depending on the update rule [30,36–38]. For instance, it
is an amplifier of selection using the Bd update rule, but a
suppressor with the dB rule. In evolutionary graph theory with
nodes containing subpopulations, the evolutionary outcome
also depends on the specific update mechanism [35]. In our
model with rare migrations [31] that does not rely on a specific
update rule, the star’s behavior depends on migration asym-
metry α = mI/mO, as α > 1 amplifies selection while α < 1
suppresses it. This same outcome holds for the rare-migration
regime in the serial dilution model [32]. However, for more
frequent migrations, the star becomes a suppressor for all
migration asymmetries in the branching-process regime [32].
How does the star graph impact the fixation of a cooperator in
the rare-migration regime and beyond?

To address this question, we extend the calculation of
Ref. [31] to our cooperation model, and we express the fix-
ation probability �star

1 starting from one fully mutant deme,
uniformly chosen among all demes, in the star graph. As in
Ref. [31], we obtain

�star
1 = (1 − γ 2)[γ + αD + γα2(D − 1)]

D(α + γ )[1 + αγ − γ D(α + γ )2−D(1 + αγ )D−1]
,

(15)

where γ is given by Eq. (12), while α = mI/mO is the ratio of
the migration rate incoming to the center from a leaf mI to that
outgoing from the center to a leaf mO, see Fig. 1. Equation (15)
shows that migration asymmetry α directly impacts the
fixation probability in the star. In Ref. [31], we demonstrated
that the star amplifies natural selection for α > 1 and
suppresses it for α < 1. For α = 1, the fixation probability
reduces to Eq. (11), as the star is then a circulation graph.

FIG. 4. (a) Mutant fixation probability ρstar
M in the star versus

intensity of selection w for different values of migration asymmetry
α = mI/mO in the rare-migration regime. Pure simulation results are
obtained over 106 replicates, with (mI , mO )×105 = (4, 1), (1,1), and
(1,4). (b) Mutant fixation probability ρstar

M in the star for the dilu-
tion model versus effective intensity of selection 2w′t for different
migration asymmetries and intensities. Simulations for the dilution
model are obtained over 106 realizations for (mI , m0)×10 and
×103 = (4, 1), (1,1), and (1,4). In both panels, analytical predictions
in the rare-migration regime use Eq. (15) instead of Eq. (11). They
yield values close to the well-mixed case for α = 1 [green (middle)
solid line], larger values for α = 1/4 [purple (upper) solid line], and
smaller values for α = 4 [yellow (bottom) solid line].

Using Eqs. (9) and (10) to express Eq. (15) yields

�star
1 = 1

D

{
1 − α(D − 1)[α(D − 2) + 2]

(α + 1)[α(D − 1) + 1]

× [b + c(N − 1)]w + O(w2)

}
. (16)

Studying the ratio between Eqs. (16) and (13) shows that the
fixation probability of a cooperator mutant is larger in the star
than in the clique for α < 1 (i.e., when the star behaves as a
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FIG. 5. (a) Mutant fixation probability ρ lattice
M in the square lattice

with periodic boundary conditions versus intensity of selection w

for different values of migration rates, in the rare-migration regime.
(b) Mutant fixation probability ρ lattice

M in the square lattice with pe-
riodic boundary conditions for the dilution model versus effective
intensity of selection 2w′t , for different migration asymmetries and
intensities. Here, we consider D = 9 demes with carrying capacity
K = 20 and steady-state size N = 18. Other parameter values and
conventions are the same as in Fig. 3. All simulation results are
obtained over 106 replicates.

suppressor of selection [31]) and smaller for α > 1 (i.e., when
the star behaves as an amplifier of selection [31]). This result
is confirmed by stochastic simulations in Fig. 4(a). These
effects are purely due to the population structure and not to the
cooperation model. In other words, what we find here holds
as well for a deleterious mutant without frequency-dependent
fitness (see Ref. [31]). Simulations in Fig. 4(b) show that
cooperation does not impact the star’s behavior in the dilution
model either, compared with the case of mutants with constant
fitness [32]. Indeed, the rare-migration regime recovers results
from the carrying-capacity model, but as migrations become
frequent, the star becomes a suppressor of natural selection
regardless of migration asymmetry [32].

D. Evolution of cooperation in the square lattice

In Ref. [18], a general rule for cooperation on graphs was
found for the model with one individual per node, where
interactions are defined by a specific update rule. The key
result of Ref. [18] is that, under the death-Birth (dB) update
rule, natural selection favors cooperators (i.e., mutant individ-
uals here) if b/c > k, where k here is the average degree of
the graph (i.e., the average number of neighbors per node).
No such effect exists under the Bd update rule [18]. In Ap-
pendix A 2, we revisit step-by-step the derivation of Ref. [18],
which uses a pair approximation, and adapt it to our model.
We find that the fixation probability �1 starting from one fully
mutant deme, given in Eq. (A25), does not involve the average
degree k and that natural selection never favors cooperation.
Again, the key differences are that in our model, birth, death,
and migration are all independent, and that cooperation occurs
within demes.

The proof of Ref. [18] is exact for Bethe lattices, i.e.,
infinite graphs without cycles where each individual has ex-
actly k neighbors. Graphs possessing this last property are
said to be regular. Because Bethe lattices pose some diffi-
culties for simulations, finite regular graphs, including square
lattices, were simulated in Ref. [18], yielding good overall
agreement with the prediction that cooperators are favored
if b/c > k. Thus motivated, here we study the square lattice
with D = 9 demes shown in Fig. 1, adding periodic boundary
conditions so that each deme is connected to exactly four
other demes. This graph is a circulation, since for each deme,
the incoming migration rates sum to mN + mS + mE + mW ,
and the outgoing ones too. Therefore, we predict that the
fixation probability of a mutant in the rare-migration regime
is the same as in other circulation graphs (see Sec. III B), and
does not depend on migration asymmetry. Figure 5(a) shows
that our simulation results are in good agreement with this
prediction. In addition, this result seems to extend to frequent
migrations in the dilution model, see Fig. 5(b).

E. Beyond weak selection

So far, we assumed that fitnesses depend linearly on pay-
offs [see Eq. (3)], and we remained in the weak-selection
regime where w � 1. This allowed us to give simple ana-
lytical expressions of fixation probabilities in demes and to
conduct a direct comparison with Refs. [17,18].

It is analytically difficult to go beyond weak selection if fit-
nesses depend linearly on payoffs. However, Ref. [44] showed
that calculations beyond the weak-selection regime simplify
if fitnesses depend exponentially on payoffs. This amounts to
writing

fM (k, N ) = ew̃πM (k,N ),

fW (k, N ) = ew̃πW (k,N ), (17)

where w̃ is a parameter that determines the intensity of se-
lection (as w in the linear case), instead of Eq. (3). Payoffs
πM (k, N ) and πW (k, N ) remain expressed by Eq. (2).

Using the same reasoning as before, we obtain the same
expressions for the probabilities of fixation of cooperator mu-
tants in subdivided populations for rare migrations, namely,
Eq. (11) for the clique, the cycle, and all circulations, and
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Eq. (15) for the star. What changes is the expression of the
fixation probabilities within demes, which now read [44]

ρM = 1 − exp {w̃[c + b/(N − 1)]}
1 − exp {Nw̃[c + b/(N − 1)]} , (18)

and

ρW = 1 − exp {−w̃[c + b/(N − 1)]}
1 − exp {−Nw̃[c + b/(N − 1)]} . (19)

Their ratio, which enters Eqs. (11) and (15), is

γ = ρW

ρM
= exp {w̃[c(N − 1) + b]}, (20)

where we neglected the dependence of steady-state deme size
on fitness, which is acceptable if w̃ � 1 (see Methods and
Ref. [31]). Hence, this exponential convention for fitnesses
yields simple analytical expressions of fixation probabilities
for rare migrations in our model of spatially structured pop-
ulations. Here, we assumed w̃ � 1 but not Nw̃ � 1: in this
sense, these results hold beyond weak selection. In addition,
the first-order expansions of Eqs. (18) and (19) when w̃ � 1
and Nw̃ � 1 exactly match Eqs. (9) and (10), respectively,
with w̃ standing in for w. Thus, the exponential and the linear
conventions for fitnesses are equivalent in the weak-selection
regime.

Importantly, because only the fixation probabilities within
demes are modified by changing from linear to exponential fit-
nesses, our main conclusions remain valid in the exponential
case. This includes our results for circulations and stars which
are based respectively on Eqs. (11) and (15), as well as our
reasoning for general graphs based on the pair approximation
in Appendix A 2. Our main result that natural selection does
not favor cooperation in our model of spatially structured
populations therefore extends beyond weak selection, at least
to the regime where w̃ � 1 without needing Nw̃ � 1.

IV. DISCUSSION

In all structures we considered, the fixation probability of
a cooperator in a population of defectors is smaller than vice
versa. Thus, cooperation is never favored in our model. The
reason for this is that cooperation only takes place within
nodes. Migration events do not directly involve cooperation or
any interaction between individuals from different demes, not
even competition. Cooperation is therefore a local interaction.
In contrast, cooperative interactions happen at the level of the
graph in Ref. [17]. Indeed, each individual (placed on one
node) interacts with its nearest neighbors on the graph, which
affects its fitness and thus its probability of being picked at the
birth step. This separation of scales entails that cooperation
cannot be favored by natural selection in our model, including
in other graphs, complex networks [56], and structures with
multiple network layers [57].

More formally, our model decouples migration, birth, and
death events. In the rare-migration regime, fixing in one
deme and spreading to the whole spatially structured popu-
lation happen on two different timescales. Because of this,
fitnesses enter overall fixation probabilities only through the
fixation probabilities in one well-mixed deme, namely, ρM

and ρW . Assuming that fitnesses depend linearly on payoffs,

in the weak-selection regime, we can compare Eqs. (9) and
(10) to the fixation probabilities that would be obtained in
the frequency-independent case, i.e., fM = fW (1 − ε) with a
slightly deleterious mutant with fitness disadvantage ε satis-
fying 0 < ε � 1, Nε � 1. We get a perfect mapping when
choosing ε = w[c + b/(N − 1)]. Moreover, assuming that
fitnesses depend exponentially on payoffs as in Sec. III E,
Eqs. (18) and (19) also match the frequency-independent fix-
ation probabilities obtained in that convention with fM/ fW =
exp{−w̃[c + b/(N − 1)]}, and this holds beyond weak selec-
tion, assuming w̃ � 1 without needing Nw̃ � 1. Thus, the
fixation probabilities ρM and ρW have the same expression as
with constant fitnesses, as long as we pick an effective fitness
disadvantage for the mutant, which depends on the parameters
of cooperation. This confirms that at the level of the whole
structure, the frequency-dependence of the model does not
matter. Because of this, cooperation cannot benefit from the
specificities of the structure. Thus, our previous results re-
garding the impact of spatial structure on mutant fixation for
constant fitnesses [31,32] extend to the present model with
cooperation.

In our framework, selection is essentially soft, i.e., the
contributions of demes are not affected by their average fit-
nesses [40]. Indeed, in our dilution model, the total size of
each deme after growth does not impact its contribution to
the next bottleneck state. In our carrying-capacity model, the
carrying capacity of each deme is fixed and independent of
its composition, and equilibrium sizes depend only weakly on
it. We implemented soft selection because we aimed to assess
the impact of population structure in its most minimal form.
A promising direction for future research would be to study
such a model with hard selection. Indeed, in models where
subpopulations contribute to the next bottleneck proportion-
ally to their sizes, the fraction of cooperators can increasing
overall despite decreasing within each subpopulation [19]:
this is known as the Simpson paradox [58–61]. Such a cou-
pling between composition and population size can favor the
evolution of cooperation [13,20,21]. It will thus be important
to understand how this effect is impacted by graph structure.
A first interesting step in this direction was conducted in
Ref. [62], which determined conditions under which cooper-
ation can be favored at mutation-selection equilibrium, in a
model with constant total population size but variable deme
sizes.

In this context, we can summarize our results as follows:
The ability of specific graphs and update rules to favor the
evolution of cooperation in models with one individual per
node of the graph [17,18] does not survive coarse-graining in
a model with soft selection. This result does not arise from
considering larger deme sizes, but from separating scales.
Indeed, in our model, migration is independent from birth
and death, and cooperation occurs locally within demes, while
spatial structure matters between demes.

In addition to considering hard selection, possible exten-
sions include addressing other ways through which migration
may couple with cooperation [63], studying other games such
as the snowdrift game [25], and explicitly modeling the dy-
namics of a diffusible resource [12].

Code accessibility. Our code is freely available in the Zen-
odo archive [64].
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APPENDIX A: FORMAL COMPARISON WITH MODELS
WITH ONE INDIVIDUAL PER NODE

1. Cycle [17]

In Ref. [17], evolutionary games, and especially the pris-
oner’s dilemma, were studied in the context of the cycle graph
with one individual per node and with different update rules
(Birth-death, death-Birth, imitation). Analytical expressions
were obtained for the fixation probability of a cooperator in a
population of defectors and vice versa, in the weak-selection
regime w � 1. The key result of Ref. [17] is that selection
can favor cooperators over defectors for death-Birth and imi-
tation updates but not Birth-death updates. To understand the
similarities and differences with our model, let us compare
the derivations of the fixation probabilities in the cycle within
each of the two models.

In our model with a well-mixed deme on each node of
the cycle and migration events independent from birth and
death events, and in the rare-migration regime, let i denote the
number of fully mutant demes. Upon each migration event,
the number of mutant demes can either increase by one with
probability λi, due to a migration of one mutant individual to
a wild-type deme and its subsequent fixation in it, or decrease
by one with probability μi upon the opposite succession of
events, or stay constant in all other cases. A recurrence rela-
tionship can then be written on the fixation probability �

cycle
i

in a cycle of D demes starting from i consecutive fully mutant
demes. For this, one considers all the possibilities at the first
migration event that occurs, which allows us to relate �

cycle
i to

�
cycle
i−1 and �

cycle
i+1 . Solving this recurrence relationship yields

�
cycle
i = 1 + ∑i−1

k=1

∏k
j=1 γ j

1 + ∑D−1
k=1

∏k
j=1 γ j

, (A1)

where γ j = μ j/λ j = ρW /ρM , which is independent of j.
Therefore, Eq. (A1) gives

�
cycle
i = 1 − γ i

1 − γ D
, with γ = ρW

ρM
. (A2)

A more detailed derivation (which is presented without
frequency-dependent fitness but extends to the present case)
is given in Ref. [31], and the general method is presented in
Ref. [28]. Note that the expression in Eq. (A2) also holds
in the case of the clique, where it can be obtained with an
extremely similar derivation [31].

In the model with one individual per node of a cycle with
N nodes considered in Ref. [17], the same approach was em-
ployed to express the fixation probability ρ

cycle
M of one mutant,

yielding

ρ
cycle
M = 1

1 + ∑N−1
k=1

∏k
j=1 γ j

, (A3)

which is formally equivalent to �
cycle
1 in our model [see

Eq. (A1)]. However, in this model, γ j = μ j/λ j , where λ j (μ j)
represents the probability that the number of mutant nodes
increases (decreases) by one upon an update, takes different
expressions depending on the update rule [17]. Indeed, with
the Birth-death update rule,

γ j = f e
W

f e
M

= 1 − w + wb

1 − w + w(b − 2c)
, (A4)

for 2 � j � N − 2, where f e
W ( f e

M) is the fitness of a wild-type
(mutant) at the edge of the cluster of mutant nodes, i.e., which
has a mutant neighbor and a wild-type neighbor. Here we
expressed each fitness as 1 − w + wπ where the total payoff
π received by an individual on the cycle is computed by
summing the payoffs they receive from interactions with their
two neighbors, with the payoff matrix in Eq. (1). We also
used the fact that during the fixation process, starting from
one mutant, there is a cluster of consecutive mutant nodes that
cannot break. With the death-Birth update rule, the fitnesses
involved in γ j depend on whether the mutant that was at an
edge of the cluster of mutant nodes (individual 1) or its wild-
type neighbor (individual 2) is selected to die. If individual 1
is selected to die, which can lead to a decrease of j by one,
the fitness of the wild-type (mutant) neighbor of individual 1
is denoted by f e

W ( f e
M). If individual 2 is selected to die, which

can lead to an increase of j by one, the fitness of the wild-type
(mutant) neighbor of individual 1 is denoted by f ′e

W ( f ′e
M ). We

have

γ j = f e
W

f e
W + f e

M

f ′e
W + f ′e

M

f ′e
M

= 1 − w + wb

2 − 2w + w(3b − 2c)

2 − 2w + w(b − 2c)

1 − w + w(b − 2c)
, (A5)

for 3 � j � N − 3. The expressions in Eqs. (A4) and (A5)
differ for all b > c > 0, which leads to different probabilities
of fixation under these two different update rules [17].

This comparison of the derivation of fixation probabilities
within our model and within that of Ref. [17] shows that
the key difference is that, in our model, migration events do
not depend on birth or death and are thus decoupled from
interactions between individuals, while in models with one
individual per node, any move on the graph is coupled to birth
and death via the update rule.

2. General graphs with pair approximation [18]

While Ref. [17] focused on the cycle, Ref. [18] derived
a general rule for cooperation on graphs in the same model
with one individual per node. The key result of Ref. [18] is
that, under the death-Birth (dB) update rule, natural selection
favors cooperators (i.e., mutant individuals here) if b/c > k,
where k here is the average degree of the graph (i.e., the
average number of neighbors per node). No such effect exists
under the Bd update rule [18]. To understand the origin of
the difference between these results and ours, we here follow
the main analytical derivation of Ref. [18] and adapt it to our
model. Again, the key difference is that our model does not
involve any update rule, as birth, death, and migration are all
independent. We will point out where this matters.
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Following Ref. [18], let pM (pW ) denote the frequency of
fully mutant M (wild-type W ) demes in a given graph com-
prising D nodes. In our model, each of these nodes contains
a well-mixed deme, while it comprises a single individual in
Ref. [18]. Let us also introduce the frequencies pMM , pWW ,
pMW , and pW M of neighboring MM, WW , MW , and W M
pairs of demes, and the conditional probability qX |Y to find an
X deme at a certain position given that one randomly chosen
nearest-neighbor of this X deme (i.e., a deme connected to
it by an edge) is a Y deme. We focus on the rare-migration
regime. As in Ref. [18], we make a pair approximation
where only the pair correlation is accounted for, meaning that
higher-order correlations are fully determined by these pair
correlations. The pair approximation requires Bethe lattices
(or Cayley trees), which are regular graphs (i.e., all nodes have
the same degree) with no loops. We thus focus on regular
graphs, and we further assume k > 2 (the case k = 2 cor-
responds to the cycle, treated in the previous section). The
following identities hold:

pM + pW = 1,

qM|X + qW |X = 1,

pXY = qX |Y pY ,

pMW = pW M . (A6)

Thus, the system is fully described by pM and qM|M . We focus
on these two quantities.

To derive the fixation probability of a mutant starting from
a fully mutant deme (and D − 1 fully wild-type demes), we
first compute the probabilities that pM changes upon one
migration event [18]. The probability that the total number
of M demes increases by one (meaning that one M individual
has migrated from a fully M deme to a fully W deme and has
fixed there) is given by

P

(

pM = 1

D

)
= pW

k∑
kM=0

(
k

kM

)
qkM

M|W qk−kM
W |W

kM

k
ρM, (A7)

where k is the degree of our regular graph, while kM (k − kM)
is the number of M (W ) neighbors of a deme. Indeed, for
this to happen, a W deme needs to be picked as the deme
of arrival of the migration (probability pW ), one of its M
neighbors needs to be picked as the deme of origin of the
migration (probability kM/k), and the mutant migrant has to
fix in the wild-type deme (probability ρM). In addition, we
need to take into account all different possibilities for the
numbers of neighbors of each type that the W deme where the
migration arrives possesses, leading to a sum with binomial
weights. Recognizing a binomial sum, we obtain

P

(

pM = 1

D

)
= pW qM|W ρM = pMW ρM, (A8)

which has a simple interpretation: we need to pick a W M
neighboring pair for our migration event, and then the mutant
needs to fix in the wild-type neighboring deme. Importantly,
this last simplification cannot be made in the proof of Ref. [18]
because the replacement probabilities upon an update (which
are replaced by fixation probabilities ρM in our model) depend
on the state of the neighborhood (i.e., on the value of kM) due

to the cooperative interaction. In the model of Ref. [18], this
dependence involves the update rule and vanishes for the Bd
update rule while it remains for the dB update rule. In fact,
here, the reasoning we just made starts by picking the arrival
deme of the migration (in a dB spirit), but an equivalent one
can be made by first picking the deme where the migration
originates (in a Bd spirit):

P

(

pM = 1

D

)
= pM

k∑
kM=0

(
k

kM

)
qkM

M|M qk−kM
W |M

× k − kM

k
ρM = pMW ρM . (A9)

Indeed, an M deme needs to be picked as the deme of origin
of the migration (probability pM), one of its W neighbors
needs to be picked as the deme of arrival of the migration
[probability (k − kM )/k], and the mutant migrant has to fix in
the wild-type deme (probability ρM), and we need to take into
account all different possibilities for the numbers of neighbors
of each type that the M deme where the migration originates
possesses.

Similarly, the probability that the total number of M demes
decreases by one (meaning one W individual has migrated
from a fully W deme to a fully M deme and has fixed there)
reads

P

(

pM = − 1

D

)
= pMW ρW . (A10)

Upon one migration event, only the two types of events dis-
cussed above can change the state of the population. Either the
total number of M demes increases by one with the probability
in Eq. (A9) or it decreases it by one with the probability in
Eq. (A10). Therefore, the expectation of the variation 
pM of
pM upon a migration event reads

〈
pM〉 = 1

D
P

(

pM = 1

D

)
+

(
− 1

D

)
P

(

pM = − 1

D

)

= 1

D
pMW (ρM − ρW )

= 1

D
(1 − qM|M )pM (ρM − ρW ). (A11)

In the weak-selection regime w � 1, we can compute a Tay-
lor expansion of the two fixation probabilities ρM and ρW [see
Eqs. (7) and (8)]. 〈
pM〉 can then be simplified as

〈
pM〉 = − w

ND
[b + c(N − 1)](1 − qM|M )pM + O(w2).

(A12)
In the deterministic limit of a very large number of demes, the
evolution of pM is therefore described by

d pM

dt
= − w

ND
[b + c(N − 1)](1 − qM|M )pM + O(w2)

= w F1(pM, qM|M ) + O(w2), (A13)

where we introduced

F1(pM, qM|M ) = − 1

ND
[b + c(N − 1)](1 − qM|M )pM , (A14)

and where the unit of time corresponds to one migration step.
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To fully describe the dynamics of the system in the deter-
ministic regime and within the pair approximation, we also
need to write an equation on the conditional probability qM|M
[18]. For this, let us focus on the joint probability pMM , and
write down the probabilities that the number of MM pairs in
the graph increases or decreases upon a migration event. Let
us reason in a dB spirit, i.e., by first choosing the arrival deme
of the migration (here again, reasoning in a Bd spirit gives
the exact same result). For pMM to increase, the arrival deme
needs to be a W deme, which occurs with probability pW , and
a migration needs to arrive there from a neighboring M deme,
the associated probability being kM/k, where kM is the number
of M neighbors of the arrival W deme. Then, if the mutant
fixes, which occurs with probability ρM , pMM increases by
2kM/(kD). Thus,

P

(

pMM = 2kM

kD

)
= pW

(
k

kM

)
qkM

M|W qk−kM
W |W

kM

k
ρM , (A15)

and similarly

P

(

pMM = −2kM

kD

)
= pM

(
k

kM

)
qkM

M|Mqk−kM
W |M

k − kM

k
ρW .

(A16)
The expectation of 
pMM thus reads

〈
pMM〉 =
k∑

kM=0

2kM

kD
P

(

pMM = 2kM

kD

)

−
k∑

kM=0

2kM

kD
P

(

pMM = −2kM

kD

)

= 2

kND
pM (1 − qM|M )

[
1 + (k − 1)

pM − qM|M
1 − pM

]

+ O(w). (A17)

In the deterministic limit, we have

dqM|M
dt

= d

dt

(
pMM

pM

)
= 1

pM

d pMM

dt
+ O(w)

= 2

kND
(1 − qM|M )

[
1 + (k − 1)

pM − qM|M
1 − pM

]

+ O(w)

= F2(pM, qM|M ) + O(w), (A18)

where we introduced

F2(pM, qM|M ) = 2

kND
(1 − qM|M )

[
1 + (k − 1)

pM − qM|M
1 − pM

]
.

(A19)

By computing the probabilities that pM and pMM change in
one migration step, we derived two differential equations on
our two variables of interest, pM and qM|M , in the deterministic
limit. In the weak-selection regime, we suppose that the condi-
tional probability qM|M which describes the local interactions
reaches an equilibrium much more quickly than the frequency
pM (which describes the overall state of the structure) [18].
Therefore, the system quickly converges onto the space de-

fined by F2(pM, qM|M ) = 0. This gives

qM|M = k − 2

k − 1
pM + 1

k − 1
. (A20)

Under this assumption, the system is fully described by pM .
To compute probabilities of fixation, we need to go beyond

the deterministic limit, and to work in the diffusion limit [18].
To write a diffusion equation satisfied by pM , we need the
second moment 〈
p2

M〉 of 
pM , which reads

〈

p2

M

〉 = 1

D2
P

(

pM = 1

D

)
+ 1

D2
P

(

pM = − 1

D

)

= 1

D2
pMW (ρM + ρW ) = 2

ND2
pMW + O(w)

= 2

ND2
pM (1 − qM|M ) + O(w)

= 2

ND2

k − 2

k − 1
(1 − pM )pM + O(w), (A21)

where we have used Eq. (A20). We can now write down a
Kolgomorov backward equation on the fixation probability
φM (y) of M starting with an initial frequency pM (t = 0) = y:

m(y)
dφM (y)

dy
+ v(y)

2

d2φM (y)

dy2
= 0, (A22)

where m(y) and v(y) are given by

m(y) = − w

ND

k − 2

k − 1
[b + c(N − 1)](1 − y)y and

v(y) = 2

ND2

k − 2

k − 1
(1 − y)y. (A23)

Recall that k > 2 and that we focus on the weak-selection
regime w � 1. This Kolgomorov backward equation can be
solved with the two conditions φM (0) = 0 and φM (1) = 1
(which describe the two absorbing states):

φM (y) = y − wD

2
[b + c(N − 1)]y(1 − y) + O(w2). (A24)

Starting from one single fully mutant deme, the probability
that mutants take over the population is thus

�1 ≡ φM

(
1

D

)

= 1

D

{
1 − w

2
[b + c(N − 1)](D − 1)

}
+ O(w2). (A25)

Similarly, starting from one single fully wild-type deme, the
probability that wild-types take over the population is

�1,W ≡ 1 − φM

(
D − 1

D

)

= 1

D

{
1 + w

2
[b + c(N − 1)](D − 1)

}
+ O(w2).

(A26)

Thus, in the weak-selection limit, for all b > c > 0, we have

�1 <
1

D
< �1,W , (A27)
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where 1/D is the neutral fixation probability. Therefore, nat-
ural selection never favors cooperation in our model. This
stands in contrast to the result of Ref. [18], where, under
the dB update rule, the fixation probability of a single (co-
operator) mutant exceeds that of a single (defector) wild-type
organism if b/c < k. As mentioned above in the case of the
cycle, this is because cooperation does not come in at the same
level in both models. In Ref. [18], each individual (placed on
one node) interacts with its nearest neighbors on the graph.
Cooperative interactions thus happen at the level of the struc-
ture. Conversely, in our model, cooperative effects only occur
within a deme.

APPENDIX B: DETAILS OF THE SERIAL
DILUTION MODEL

1. Model for structured populations on graphs

The dilution model is directly inspired from Ref. [32] but
adds cooperation through the payoff matrix in Eq. (1). We
consider D demes located on the nodes of a graph. Migrations
can happen along the edges of the graph, according to a matrix
(mi j )i, j=1,...,D, where mi j is the migration probability from
deme i to deme j at each bottleneck. To ensure conservation
of the total number of individuals at each bottleneck, migra-
tion probabilities satisfy

∑
j m ji = 1 for all i = 1, . . . , D. The

population undergoes successive bottlenecks where all demes
have size B (which we take equal to N , the steady-state size in
the carrying-capacity model), following a two-step process:

(1) A local growth phase with cooperation occurs in each
deme, as explained in Sec. II C. We denote by k′

i (0) [l ′
i (0)]

the number of mutant (wild-type) individuals that are in deme
i at a given bottleneck, satisfying k′

i (0) + l ′
i (0) = N . These

numbers grow following Eq. (4) during a fixed time t . At
the end of the growth phase, deme i contains k′

i (t ) mutants
and l ′

i (t ) wild-types. Note that because the growth phase is
modeled via ordinary differential equations, these numbers
are not necessarily integers. The fraction of mutants at the end
of the growth phase in deme i is xi = k′

i (t )/[k′
i (t ) + l ′

i (t )].
(2) A dilution and migration step then occurs, where we

sample the incoming individuals to a deme i from a multi-
nomial distribution with N trials and with probabilities x jmji

[(1 − x j )mji] to sample a mutant (wild-type) from deme j, for
all j ∈ {1, . . . , D}. Sampling from this law, we get numbers
k′

ji (l ′
ji) of mutants (wild-types) sent to deme i from each deme

j. Thus, the total number of mutants in deme i at the new
bottleneck is k′

i = ∑D
j=1 k′

ji, and the total number of wild-

types is l ′
i = ∑D

j=1 l ′
ji. These two numbers sum to N , due to

the properties of multinomial sampling. They play the part
of the numbers k′

i (0) and l ′
i (0) introduced above for the next

iteration of steps 1 and 2.

2. Fixation probability in a deme in the dilution model

Let us consider a single well-mixed deme, which corre-
sponds to the previous case with D = 1. The multinomial
distribution then turns into a binomial law, and the serial di-
lution model thus becomes similar to a Wright-Fisher model.
To calculate the fixation probability of a mutant, we can use
Kimura’s diffusion approximation [65], in the regime of large
population size N and small intensity of selection w′t , as de-

tailed in Ref. [32] for mutants with constant fitness. To adapt
this approach to cooperator mutants, we need an analytical ex-
pression of the fraction of mutants x(t ) = k′(t )/[k′(t ) + l ′(t )]
at the end of a growth phase, starting from a fraction x(0) ≡ x0

at the bottleneck. During the growth phase, i.e., for τ ∈ [0, t],
the numbers k′ and l ′ grow according to Eq. (4), which yields

dk′(τ )

dτ
= k′(τ )

[
1 − w′ + w′

(
b

k′(τ ) − 1

k′(τ ) + l ′(τ ) − 1
− c

)]
,

(B1)

dl ′(τ )

dτ
= l ′(τ )

[
1 − w′ + w′b

k′(τ )

k′(τ ) + l ′(τ ) − 1

]
. (B2)

With parameters b, c of order one and N � 1, we can neglect
the −1 in the denominators in the two equations above, which
then yield

k′(t )

l ′(t )
= k′(0)

l ′(0)
exp(−w′ct ). (B3)

Note that the same equation holds with mutants with constant
fitness [32], where wild-types have fitness fW = 1, and mu-
tants have fitness fM = 1 + s, but with s instead of −w′c.
Thus, here, with the approximations we made, −w′c plays
the part of a constant fitness advantage. The evolution of the
mutant fraction x = k′/(k′ + l ′) can be directly deduced from
Eq. (B3). Under Kimura’s diffusion approximation, the fixa-
tion probability ρ ′(x0) starting from a fraction x0 of mutants
in a population of size N � 1, with w′ � 1, then reads

ρ ′(x0) = 1 − e2Nw′ctx0

1 − e2Nw′ct
. (B4)

This yields the probability ρM of fixation of a single mutant

ρ ′
M ≡ ρ ′(1/N ) = 1 − e2w′ct

1 − e2Nw′ct
. (B5)

The probability ρ ′
W of fixation of a single wild-type individual

in a population where other individuals are mutants can be
obtained similarly and reads

ρ ′
W = 1 − e−2w′ct

1 − e−2Nw′ct
. (B6)

We can use these expressions to calculate the fixation proba-
bility in a structure in the rare-migration regime, via Eq. (6).

3. Mapping between carrying-capacity and dilution model
in the diffusion approximation

For simplicity, let us first consider the case where indi-
viduals have constant fitness. In our work, evolution within
a deme is modeled via the Moran model in the carrying-
capacity model (neglecting deme size fluctuations), and via
a dilution model close to the Wright-Fisher model, where the
es′t − 1 ≈ s′t plays the role of the fitness advantage sWF in
the Wright-Fisher model [32]. In a well-mixed population of
constant size N , the mutant fixation probability starting from
a fraction x0 of mutants is well known in the diffusion limit,
both for the Moran and the Wright-Fisher models [65–67].
Let fW = 1 denote the wild-type fitness, s the mutant’s fitness
advantage in the Moran model and s′ in the Wright-Fisher
model. If N � 1 and s, s′ � 1, the diffusion approximation
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predicts the fixation probability

ρdiff.(x0) = 1 − eNσx0

1 − eNσ
, (B7)

where σ = s in the Moran model, while σ = 2sWF in the
Wright-Fisher model, and σ = 2(es′t − 1) ≈ 2s′t in our di-
lution model. Thus, there is a mapping between s in the
carrying-capacity model and 2s′t in the dilution model. Note
that the factor of two differs between the Moran model and the
Wright-Fisher model: it arises from their different variances in
offspring number [68].

Let us now include cooperation. In our serial dilution
model, the probability of fixation of a single cooperator mu-
tant is given by Eq. (B5) in the diffusion limit. Let us write the
first-order expansion of the previous equation in w′, assuming
that w′ct � 1 and w′ctN � 1:

ρ ′
M ≈ 1

N
[1 − (N − 1)w′ct] + o(w′). (B8)

In the regime of parameters we consider here, where N � 1,
while b and c are of order one, this is the same as the
probability of fixation ρM obtained in Eq. (9) within the
carrying-capacity model, but replacing w by 2w′t . Thus, 2w′t
is the effective selection intensity we use in the dilution model
for our quantitative comparisons with the carrying-capacity
model.

APPENDIX C: VARIANT OF THE
CARRYING-CAPACITY MODEL

In the logistic model used throughout, the division rate
of individuals of type A = M,W in a deme is given by the
logistic function fA(1 − N/K ), where fA is the fitness given
in Eq. (3) and N is the number of individuals in the deme.
Meanwhile, the death rate g is independent from type and
deme size (see Model and methods). An alternative way of
implementing logistic regulation of population size is to con-
sider division rates that do not depend on deme size but a
death rate that does. Let us consider such a variant of the
carrying capacity model by taking a division rate fA for in-
dividuals of type A = M,W and a death rate f̄ N/K , where
f̄ is the mean fitness in the deme, for all individuals. Since
f̄ = [k fM (k, N ) + (N − k) fW (k, N )]/N , the death rate reads
[k fM (k, N ) + (N − k) fW (k, N )]/K . In this model, the steady
state of the deme is equal to its carrying capacity K , which
thus plays the role of K (1 − g/ f ) in our usual model.

In the rare-migration regime, within-deme events enter
the fixation probabilities in graph-structured populations only
through the fixation probabilities in demes. Therefore, to com-
pare the two variants of the carrying capacity models in this
regime, it is sufficient to compare the fixation probabilities in
demes. In Fig. 6, we present simulation results corresponding
to these two variants, which are in good agreement. As ex-
pected, they are also both close to the analytical prediction
obtained within the Moran model. The slight discrepancy
arises from deme size fluctuations, which do not exist in
the Moran model. Note, however, that the two models yield
different timescales. For instance, in the simple case where
fW = fM = 1, at steady state a division event occurs every
1/g time units on average in the first model, and every time
unit in the second model.

FIG. 6. Mutant fixation probability ρM in a deme versus intensity
of selection w. The cyan solid line represents analytical predic-
tions; markers are simulation results obtained for two variants of the
carrying capacity model. The first one (“Sim. 1”) is the one used
throughout this work, while the second one (“Sim. 2”) is the one
presented here, where the logistic regulation is implemented in the
death rate and not in the birth rate. The neutral mutant case (gray line)
is shown for reference. Analytical predictions are obtained using
Eq. (7) that holds for fixed deme size. Simulation results are obtained
over 107 replicates. In the first model, we consider a deme with
carrying capacity K = 20, death rate g = 0.1 yielding steady-state
size N = 18. In the second model, we consider a deme with carrying
capacity K = 18. In both cases, benefit and cost are b = 2 and c = 1.

APPENDIX D: NUMERICAL SIMULATION METHODS

In the carrying-capacity model, the Gillespie algorithm
[45,46] allows us to exactly simulate the stochastic evolution
of our population, without requiring any time discretization.
In a population with D demes indexed by i, and with migration
rates mi j from deme i to deme j, where two types, W and M,
exist, the possible elementary events (or “reactions”) are, for
all i and j:

(1) Mi
k+

M−→ Mi + Mi: birth of one mutant in deme i with
rate k+

M = fM[1 − (NW,i + NM,i )/K];

(2) Wi
k+

W−→ Wi + Wi: birth of one wild-type in deme i with
rate k+

W = fW [1 − (NW,i + NM,i )/K];

(3) Mi
k−

M−→ ∅: death of a M in deme i with rate k−
M = gM ;

(4) Wi
k−

W−→ ∅: death of a W in deme i with rate k−
W = gW ;

(5) Mi
mi j−→ Mj : migration of a M from deme i to deme j;

(6) Wi
mi j−→ Wj : migration of a W from deme i to deme j.

Here, we have denoted by NM,i and NW,i the numbers of
mutant and wild-type individuals in deme i. The total rate of
possible events is then given by

ktot =
D∑

i=1

[(k+
W,i + k−

W,i )NW,i + (k+
M,i + k−

M,i )NM,i]

+
D∑

i, j=1

mi j (NW,i + NM,i ). (D1)
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Reactions occur at time intervals picked in an exponential
distribution with mean 1/ktot , and the specific reaction that
occurs is selected randomly proportionally to the ratio of its
rate and ktot. Reactions are performed until one of the two
types takes over the entire population.

In the dilution model, we performed our simulations as
described in Ref. [32], except that multinomial sampling was
employed throughout, as described in Appendix B, and that
the deterministic growth was performed using a numerical
resolution of Eq. (B1) to include cooperation.
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