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Strongly clustered random graphs via triadic closure: An exactly solvable model
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Triadic closure, the formation of a connection between two nodes in a network sharing a common neighbor,
is considered a fundamental mechanism determining the clustered nature of many real-world topologies. In this
work we define a static triadic closure (STC) model for clustered networks, whereby starting from an arbitrary
fixed backbone network, each triad is closed independently with a given probability. Assuming a locally treelike
backbone we derive exact expressions for the expected number of various small, loopy motifs (triangles, 4-loops,
diamonds, and 4-cliques) as a function of moments of the backbone degree distribution. In this way we determine
how transitivity and its suitably defined generalizations for higher-order motifs depend on the heterogeneity of
the original network, revealing the existence of transitions due to the interplay between topologically inequivalent
triads in the network. Furthermore, under reasonable assumptions for the moments of the backbone network,
we establish approximate relationships between motif densities, which we test in a large dataset of real-world
networks. We find a good agreement, indicating that STC is a realistic mechanism for the generation of clustered
networks, while remaining simple enough to be amenable to analytical treatment.
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I. INTRODUCTION

A network representation is a powerful tool for studying a
huge variety of complex systems. Random network models,
such as the Erdős-Rényi model [1,2], the more general con-
figuration model [3–5], and its various extensions [6], have
enjoyed considerable popularity due to their amenability to
mathematical analysis. These random networks have a locally
treelike structure in the infinite size limit, which facilitates
the study of branching processes (e.g., percolation, epidemic
spreading) and interacting systems (e.g., the Ising model) on
top of these substrates [7].

An important feature of many real-world networks is a
nonvanishing density of short loops, in particular triangles [8],
which is at significant odds with the locally treelike structure
assumption. The propensity of node triads to form triangles
is often quantified by the local clustering coefficient or the
global transitivity [6]. While the presence of clustering in
networks has significant effects on processes such as perco-
lation and epidemics [9–11], both the mean local clustering
coefficient and the transitivity tend to zero in the infinite size
limit of locally treelike random networks. To account for non-
vanishing clustering, i.e., a nonvanishing density of triangles
in the infinite size limit, Strauss [12] proposed an exponential
random graph model with soft constraints on the number
of edges and the number of triangles in the network. One
may introduce further constraints to achieve specific network
structures [13–16]. Although such models are easily general-
izable and rather flexible, their use is impeded by the highly
nontrivial phase diagrams that can emerge [17], making it
difficult to fit real network structures and to study dynamical
models.

The latter problem is circumvented in a model proposed
by Newman [18] where each node belongs to a prescribed
number of partial cliques (fully connected subgraphs where
edges are removed with a certain probability) whose sizes are
randomly distributed. Since the building blocks—the partial
cliques—overlap only at nodes and not at edges, this model
allows for analytical treatment using generating functions to
study percolation and related processes. The same approach
is used in Refs. [19,20] where each node is prescribed an edge
degree and a triangle degree, and nodes are randomly joined
together in pairs to form edges (as in the original configura-
tion model) and randomly joined together in groups of three
to form triangles. Using only triangles and no higher-order
cliques allows for better control over the degree distribution
to fit real network data. In an elegant approach Gleeson [21]
is able to fit an arbitrary degree distribution and clustering
spectrum CK (the mean clustering coefficient of nodes of
degree K) by prescribing an appropriate joint degree and
clique size distribution. The modeling approach of randomly
connecting cliques or partial cliques may be generalized to
randomly connecting arbitrary subgraphs [22]. As long as
these subgraphs overlap only at nodes, standard generating
function techniques can be used to solve for various network
properties such as percolation.

Most real network structures cannot be accurately de-
scribed by the above random graph models due to the complex
overlapping patterns of clustered subgraphs. A very simple
and reasonably realistic mechanism—particularly in social
networks—that is able to produce high clustering and com-
plex community structure is triadic closure [23]. The idea is
that as a network evolves many new links are created be-
tween nodes that share a common neighbor, i.e., by closing
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triads. Triadic closure is widely considered to be an essential
mechanism of structure formation in social networks [24–34].
Most existing models of network formation involving triadic
closure are dynamic in nature, that is, the triadic closure mech-
anism is generally part of a growth or rewiring process. This
often makes it difficult to obtain an analytical description and
to identify what network features may be directly attributed to
triadic closure.

Here we consider a minimal static model of triadic closure,
whereby given an existing (backbone) network, a fraction
f of existing triads is, on average, closed. In the case of a
configuration model backbone this model can be seen as a
special case of a more general model recently considered in
Ref. [35]. There triadic closure was applied after creating a
network with community structure and degree correlations,
using a generalized configuration model. For f = 1 static
triadic closure implies that all nodes at distance 2 in the back-
bone become nearest neighbors in the new network. Hence
a process involving nearest neighbors on the new clustered
network is equivalent to the same process with an extended
range of interaction in the original backbone network [36].

The simplicity of this model allows for a detailed analytical
description, which is lacking in most of the studies involving
triadic closure. By means of the generating function formal-
ism we derive exact results in the case where the original
backbone is locally treelike. In particular, network transitivity
and densities of other higher-order motifs (such as diamonds
or loops of length 4) are expressed in terms of moments of
the backbone degree distribution. In this way we uncover
the existence of sharp transitions in clustering properties
of the model as a function of the heterogeneity of the
backbone. The origin of these transitions is traced to the
competition between topologically distinct types of subgraphs
created by the closure process. A comparison between the
model predictions and a large database of networks confirms
the plausibility of static triadic closure as a generative mecha-
nism for many real-world structures.

II. MODEL DESCRIPTION

Given a graph G = (V, E ) with N = |V| nodes and E = |E |
edges, a triad centered on node j is a sequence of three
consecutive nodes (i, j, k) = (k, j, i), i.e., an unoriented path
of length two made by the edges (i, j), ( j, k) ∈ E . A triangle
{i, j, k} is a closed undirected path of length three. Note that
for each triangle there are three distinct closed triads. We
define the static triadic closure (STC) mechanism as a random
process in which each triad becomes a triangle with probabil-
ity f through the addition of an edge joining its end nodes.
Using this STC mechanism, it is possible to build a graph in
the following way. We start from a network G0 = (V, E0), and
we write all the triads in it. For each triad (i, j, k), we update
the edge set E0 by adding to it the edge (i, k) with probability
f . When the triadic closure has been attempted on all the
triads in G0, the process ends. The result is a new edge list
E f with E f = |E f | edges, from which we can define a new
network G f = (V, E f ) with a rich variety of short loops and
highly complex structure (see Fig. 1). This algorithm defines
an ensemble of random networks, which we will refer to, with
a slight abuse of notation, as G f .

FIG. 1. Pictorial representation of the STC algorithm. The edges
of the backbone network G0, a tree with N = 12 nodes and E0 = 11
edges, are represented with solid red lines; the dashed black lines
represent the edges created by the STC procedure. The result is a
network G f with N = 12 nodes and Ef = 21 edges, a variety of
short loops, and a much more complex structure: many new triads,
such as ( j, i, l ) and (m, i, l ), and many triangles, such as {i, k, l}, are
created, as well as other higher-order motifs, for instance, 4-loops—
unoriented closed paths of length 4, e.g., {i, j, k, l}—and 4-cliques
(e.g., the one formed by the nodes shaded in green).

This algorithm may describe quite different specific mech-
anisms for triadic closure. One could imagine, for instance,
a triadic closure process in which a node is inclined to be
connected with one of its second neighbors with probability
ψ , but the triangle is closed only if both nodes agree. This
would correspond to a probability of triadic closure f = ψ2.
Alternatively, the triad (i, j, k) may be closed if at least one
among i and k likes the other, the resulting triadic closure
probability is f = 1 − (1 − ψ )2. In both cases the STC pro-
cess described as above works with the prescription of using
the appropriate probability in place of f .

It is worth remarking that our definition of static triadic
closure is fully general: it is possible to generate, using this
STC mechanism, random clustered networks starting from
any given backbone. In the following sections, however, we
study the ensemble of graphs G f , generated by static triadic
closure starting from a random, uncorrelated locally treelike
backbone G0, generated using the Uncorrelated Configuration
Model [37,38] with a prescribed degree distribution pk . We
develop the theoretical framework to characterize these STC
random graphs, using generating functions to describe the
properties of G f (see Appendix A 1 for general definitions).
Exploiting the local treelikeness of the network G0, it is pos-
sible to compute average quantities in G f in terms of averages
with respect to pk . Note that in our model there are two
distinct and independent sources of randomness: the first is
the random nature of the backbone G0, and the second is the
random nature of the STC process.

We will denote with lower-case letters quantities which
refer to the backbone G0, and with capital letters quantities
related to the graph G f . In particular k, r, g0(z), g1(z) and
K, R, G0(z), G1(z) denote the degree, excess degree, and cor-
responding probability generating functions, in the networks
G0 and G f , respectively.
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III. THE GENERATING FUNCTION OF THE DEGREE
DISTRIBUTION

We begin the study of the network ensemble G f by in-
vestigating the behavior of its degree distribution PK ( f ). For
the sake of brevity, we will omit the explicit dependence on
f of PK ( f ) by writing PK . Even if we are not able to com-
pute PK explicitly, it is possible to determine its generating
function G0(z) by expressing it in terms of the generating
functions of the degree and of the excess degree distributions
in the network G0, g0(z), and g1(z), respectively. The result
we obtain relies on the fact that the generating function of a
sum of independent random variables is the product of their
generating functions.

Consider first the case f = 1. K is the random variable
representing the degree of a node in G1. Assume that this node
has degree k in G0, and label with i = 1, . . . , k its first neigh-
bors. We can write K = k + ∑k

i=1 ri, where ri is the excess
degree of first neighbor i. Since the network G0 is uncorre-
lated, the generating function of the variable K , conditioned
on having degree k in G0, is given by [zg1(z)]k . Averaging then
over the degree distribution pk we get G0(z) = g0[zg1(z)].
This standard argument can be generalized to arbitrary f
by considering K = k + ∑k

i=1 ni, where ni are random vari-
ables, ranging from 0 to ri, representing the number of new
connections made with second neighbors in the ith branch.
The variables ni are independent random variables distributed
according to binomial distributions B(i)(n; ri, f ) = (ri

n

)
f n(1 −

f )ri−n. We can now repeat the argument used for f = 1 by
simply conditioning not only on k, but also on r1, . . . , rk .
Hence, for fixed k, r1, . . . , rk , we get zk

∏k
i=1[(1 − f + f z)ri ],

where (1 − f + f z)ri is the generating function of the bi-
nomial distribution B(i)(ni, ri; f ). Averaging over the excess
degree distributions qr1 , . . . , qrk and over pk we finally get for
the generating function of the degree distribution PK in G f

G0(z) = g0[zg1(1 − f + f z)]. (1)

The degree distribution PK may be computed, at least
in principle, from Eq. (1) by differentiation, since G0(z) =∑

PK zK ; see Appendix A 2. Unfortunately, this cannot be
done explicitly in a closed form for a generic pk .1 However,
in general it is possible to obtain asymptotic estimates of
PK for large K . For instance, if G0 has a power-law (PL)
degree distribution pk ∼ k−γ , the resulting G f is a PL network
with PK ∼ K−γ ′

, with γ ′ = γ − 1, that is, the exponent is
decreased by one (see Appendix A 2 a for details).

From the generating function in Eq. (1) we can compute
every moment 〈Kn〉. In particular, the average degree in G f is
given by

〈K〉 = G′
0(1) = 〈k〉 + f 〈k(k − 1)〉, (2)

which simply states that, on average, each node is connected
to a fraction f of its second neighbors, reflecting the basic
mechanism of static triadic closure. It is important to notice
that if G0 is a truly sparse graph, that is, if 〈k〉 = O(1), see

1It is possible to obtain an exact expression for PK if the backbone
is a random regular network.

[39], the STC procedure creates a truly sparse graph G f only
if 〈k2〉 = O(1). In some cases, such as PL with γ < 3, 〈k2〉 =
O(Nα ) for some 0 < α < 1, and hence 〈K〉 = O(Nα ). Models
defined on such networks with a slowly diverging mean degree
may exhibit a qualitatively different critical behavior from the
truly sparse case; see, for instance, [36].

It is useful to define the factorial moments μn by

μn = 〈k(k − 1) · · · (k − n + 1)〉 = g(n)
0 (1) (3)

(see Appendix A 3 for more details).

IV. CLUSTERING

Armed with the generating function for the final degree
distribution, we may study the various properties of the new
network. Since it is the principal motivation for the model,
we begin by studying clustering properties, the presence of
triangles in the network.

We first focus on the global clustering coefficient of the
network G f , also called transitivity, which is the ratio between
three times the total number of triangles to the number of
triads in the network. We then discuss the behavior of the
mean local clustering coefficient which is the ratio between
the number of triangles connected to and the number of triads
centered on a particular node, averaged over all nodes.

A. Transitivity

The global clustering coefficient is defined as [38]

T = 3N�
N∧

, (4)

where N� and N∧ denote the average total number of triangles
and triads, respectively.2

1. General results

Exploiting the local treelikeness of the underlying back-
bone network, it is possible to exactly compute the transitivity
of the network G f .

The average number of triads in G f can be evaluated easily.
Take a node of degree K in G f . To form a triad, we can pick
one among K of its neighbors, and then one among K − 1
remaining other neighbors: hence such a node is the center
of K (K − 1)/2 different triads. Averaging over the degree
distribution PK we get

N∧ = N

〈(
K

2

)〉
= N

2
G′′

0 (1)

= N

2
{g′′

0(1)[1 + f g′
1(1)]2 + 2 f g′′

0(1) + f 2g′′′
0 (1)}

= N

2
[μ2(1 + f μ2/μ1)2 + 2 f μ2 + f 2μ3], (5)

where we express the average over PK in terms of the deriva-
tives of the generating function G0(z) and we use Eq. (1).

2The factor 3 takes into account the fact that in each triangle there
are three distinct triads.
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FIG. 2. Visualization of the triangle counting. Consider node i
of degree k = 4, colored in red, and its neighbors. The edges in G0

are represented with solid red lines, and the black dotted lines are
the edges that may be created by the STC mechanism and hence
may appear in G f . We can distinguish between triangles of type A
[shaded in green in (a)] made of two already existing edges and one
new edge, and triangles of type B [shaded blue in (b)] made of three
new edges. The total number of potential A triangles is

(4
2

) = 6, i.e.,
the number of edges in the 4-clique composed of i′s neighbors, and
each one of them is created with probability f . Over many STC
realizations, there are 6 f of them on average. The total number of
potential B triangles is

(4
3

) = 4, i.e., the number of triangles in the
4-clique composed of i′s neighbors. Each one of them appears with
probability f 3, hence on average there are 4 f 3 of them. The average
number of triangles for a node of degree k = 4 is then 6 f + 4 f 3.
Repeating this argument for all nodes we obtain Eq. (6). Note that in
this way each triangle is counted exactly once.

To compute the average total number of triangles we can
proceed in the following way. Consider a node i of degree k
in G0, and consider its neighborhood. We evaluate the average
number of triangles that are created in its neighborhood, and
then average over the degree distribution pk . With the help
of Fig. 2, it is easy to see that triangles in the neighborhood
of node i can be of only two types: either they are made
by joining two neighbors of node i via the triadic closure
process, with probability f (type A); or they are made by
joining together three neighbors of node i, with probability
f 3 (type B). Since both these types are defined with reference
to the node i, one may verify that the triangles will only
be counted once. The average number of triangles of type
A is f k(k − 1)/2, while the average number of triangles of
type B is f 3k(k − 1)(k − 2)/3!; hence summing these two
contributions together and averaging over pk we obtain

N� = N f

6
(3μ2 + f 2μ3). (6)

Substituting into Eq. (4) we get

T = f (3μ2 + f 2μ3)

μ2(1 + f μ2/μ1)2 + 2 f μ2 + f 2μ3
. (7)

For Erdős-Rényi (ER) backbones, since μn = cn, Eq. (7) re-
duces to

T = 3 f + f 3c

1 + 2 f (1 + c) + f 2c(1 + c)
. (8)

In Fig. 3 we compare Eq. (8) with numerical simulations of G f

networks created from an ER backbone, for different values of
the original mean degree c and of the closing probability f . It

FIG. 3. Transitivity T (filled symbols) and mean local clustering
coefficient C (empty symbols) as a function of f in networks G f

generated from ER backbones with mean degree c = 2 (circles),
c = 8 (squares), and size N = 106, averaged over 10 realizations of
the STC procedure. The continuous lines correspond to the exact
expression for the transitivity in Eq. (8), and they are in perfect
agreement with simulation results. Dashed lines are not an analytic
solution but simply a guide to the eye.

is worth noting the nonmonotonic behavior of T ( f ) for large,
fixed c: for c > c∗ = 5.7531 . . ., T ( f ) admits a maximum and
a minimum in the interval [0,1]. This implies that from the
same backbone with c > c∗, we can create two graphs G f1 and
G f2 having the same transitivity and f1 
= f2.

2. The case of power-law backbones

The case of G f generated from power-law (PL) degree
distributed backbones G0 with pk ∼ k−γ is of particular inter-
est. We assume that k ∈ [kmin, kc(N )], and that the maximum
degree grows as a power of N whose value depends on the
exponent γ : kc(N ) ∼ Nω(γ ) → ∞ as N → ∞ [37], with 0 <

ω � 1/2 for 2 < γ � 3 and ω = 1/(γ − 1) for γ > 3. Some
moments of a PL distribution diverge in the infinite-size limit,
depending on the value of γ (see Appendix B). This implies
that, for some values of γ , N� and N∧ may grow faster than
linearly in N .3 A careful analysis of Eq. (7) can be carried out,
using the fact that, when the factorial moments diverge, they
are dominated by the leading term, hence μn ∼ 〈kn〉, so that
they can be used to stand in for the moments of the degree
distribution. Expressions for them are given in Appendix B.
For γ > 4 none of the terms appearing in Eq. (7) diverge
in the limit of infinite network size, and the transitivity is a
nonlinear function of f and γ which can be computed using
the expressions for μn in Eqs. (B7)–(B10). More interesting is
the case γ � 4, in which some of the terms in Eq. (7) diverge.
We get, in the limit kc → ∞,

T 
⎧⎨
⎩

0 for 2 < γ < 5/2,
f

1+c(kmin ) for γ = 5/2,

f for 5/2 < γ � 4,

(9)

where c(kmin) is a constant, depending only on kmin, given by
the ratio of the diverging moments μ3

2/(μ3μ
2
1) evaluated at

3Of course, 3N� � N∧ always.

024306-4



STRONGLY CLUSTERED RANDOM GRAPHS VIA TRIADIC … PHYSICAL REVIEW E 109, 024306 (2024)

FIG. 4. Analytical expressions for (a) transitivity, Eq. (7), and
(b) 4-transitivity, Eq. (22) for n = 4, in STC networks with a PL
backbone, as a function of γ , for two different values of the STC
probability f . These curves are obtained evaluating Eqs. (7) and (22)
within a continuous degree approximation, with kmin = 3. Continu-
ous lines correspond to the infinite-size limit kc → ∞; dashed lines
are for kc = 103, 105, 1010. Circles in panel (a) correspond to the
values for γ = 5/2 given in Eq. (9).

γ = 5/2. Within the continuous degree approximation (see
Appendix B) c(kmin) = 3kmin. Equation (9) reveals a dis-
continuity in T at γ = 5/2, as observed in Fig. 4(a). This
discontinuous behavior occurs because, while the number
of triangles is asymptotically 〈k3〉, the number of triads is
asymptotically proportional to 〈k2〉3 + a〈k3〉, where a is a
constant. At γ = 5/2 the dominant term in the number of
triads changes, causing the abrupt transition observed in T .

To understand this dual behavior of the number of triads,
we identify five classes of topologically different triads in G f .
Denoting with i0 the center node of the triad (i1, i0, i2), with
the help of Fig. 5 we can classify triads as follows.

(I) Triads in which both i1 and i2 were i′0s neighbors in G0,
such as (1,0,2) in Fig. 5. By construction, a fraction f of these
triads is closed on average.

(II) Triads in which i1 and i2 were i′0s first and second
neighbors, respectively, but i1 and i2 were not neighbors in
G0, e.g., (2,0,3) in Fig. 5. These triads are always open in G f .

(III) Triads in which both i1 and i2 were i′0s second neigh-
bors in G0, but i1 and i2 did not have a common neighbor, such
as (3,0,6) in Fig. 5. These triads are always open in G f .

(IV) Triads in which i1 was i′0s neighbor and i2 was i′1s
neighbor in G0, e.g., (1,0,3) in Fig. 5. Note that these triads
are always closed.

(V) Triads in which both i1 and i2 were i′0s second neigh-
bors in G0, and i1 and i2 had a common neighbor, such as

FIG. 5. The five classes of topologically different triads. On the
left, a pictorial visualization of an STC process; solid red lines
represent the edges in G0, and dashed black lines represent the edges
created by the STC procedure. On the right, five topologically differ-
ent intrabranch and interbranch triads centered on node 0.

(5,0,6) in Fig. 5. A fraction f of these triads is closed on
average.

We refer to triads in classes (I, II, III) as interbranch triads,
since they all involve nodes within different branches in G0.
Conversely, triads in classes (IV, V) involve nodes within
the same branch in G0, therefore we call them intrabranch
triads. It is worth noting that terms corresponding explicitly
to these five cases appear in Eq. (5) after expanding the term
(1 + f μ2/μ1)2. For 2 < γ � 3, the leading contributions are
both of order O( f 2) and come from triads in classes III and V.
Indeed, triads from class III contribute to the denominator of
T with the term

N (III)
∧
N

= μ2

2
( f μ2/μ1)2 ∼ 〈k2〉3 ∼ k3(3−γ )

c ,

where the first μ2 is the average number of ways of choosing
two distinct branches emanating from a random node i, and
the factor (μ2/μ1)2 is the average number of i′s second neigh-
bors in each of such branches. Triads from class V contribute
to the denominator of T with

N (V)
∧
N

= f 2 μ3

2
= f 2

2
μ1(μ3/μ1) ∼ 〈k3〉 ∼ k4−γ

c ,

where the factor μ1 is the average number of branches emanat-
ing from a random node i, and μ3/μ1 is the average number
of pairs of i′s second neighbors along each branch. Note
that while triads in class V are closed with probability f —
indeed they also appear in the numerator of Eq. (7)—triads
in class III are always open. Hence if N (III)

∧ � N (V)
∧ , that is,

for γ > 5/2, the dominant term N (V)
∧ appears in both the nu-

merator and the denominator of Eq. (7), yielding T = f . For
γ < 5/2 instead, the dominant contribution comes from open
triads N (III)

∧ , and this gives T = 0. Then the abrupt change
in T occurs when N (III)

∧ scales as N (V)
∧ , that is, at γ = 5/2.

For 3 < γ � 4, N (III)
∧ is finite and the dominant contribution

coming from N (V)
∧ appears both at the numerator and at the

denominator of Eq. (7), yielding T = f . In other words, while
for 5/2 < γ � 4 the STC mechanism creates (almost) only
closed intrabranch triads, for γ < 5/2 it produces infinitely
many more open interbranch triads than closed triads.

In finite systems, one observes a slow convergence to the
asymptotic results as the system size increases, as illustrated
in Fig. 4.
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FIG. 6. Transitivity T and mean local clustering coeffi-
cient C as a function of γ for PL backbones, for differ-
ent values of kc, with f = 1 and kmin = 3. Values of kc:
100, 300, 1000, 30 00, 10 000, 30 000, 100 000. Darker colors corre-
spond to bigger values of kc. The solid red lines are the exact
transitivity values, obtained by numerically evaluating Eq. (7). Mark-
ers correspond to simulation results. In order to correctly sample a PL
degree distribution, for a given kc, the number of nodes in the sample
must fulfill N > kγ−1

c . This criterion makes simulations involving
high kc and γ values computationally infeasible. For γ → ∞ the
PL backbone network converges to a random regular network of
degree kmin. In this limit, since all degrees are the same, both T and C
are easily evaluated when f = 1: limγ→∞ T = limγ→∞ C = 1/kmin.
This limit is already clearly observed for γ ≈ 5.

B. Local clustering coefficient

The local clustering coefficient Ci = n�
i /n∧

i is the ratio
between the number of triangles connected to and the number
of triads centered on node i. The mean local clustering C =
1/N

∑
i Ci is another global measure of the network structure.

While in general T and C do not coincide, they both tend to
zero with the system size in locally treelike random network
models [40,41]. We measure numerically C in STC networks
obtained from ER backbones, and we compare it with transi-
tivity in Fig. 3. Despite some quantitative difference, the two
quantities exhibit the same qualitative behavior in this case. A
different scenario occurs in STC networks obtained from PL
backbones. We measure numerically C for various values of γ

and report the results in Fig. 6. It turns out that the mean clus-
tering coefficient does not exhibit the transitions occurring for
transitivity in the large-N limit. Instead C changes smoothly
with γ and also displays much smaller finite size effects. We
can get some physical intuition of this qualitative difference
between C and T by expressing T as a weighted average of
the local clustering coefficient Ci [38]

T = 3 × 1
3

∑
i n�

i∑
i n∧

i

=
∑

i n∧
i Ci∑

i n∧
i

. (10)

For PL backbones with γ < 4 both the numerator and the
denominator in Eq. (10) diverge, as we already observed in
Eq. (9). For γ < 5/2, however, the divergence of the numer-
ator is tamed by the factor Ci, and the result is a vanishing
transitivity.

V. HIGHER-ORDER MOTIFS

The complex structure of G f is not limited to a large
number of triangles. Higher-order motifs, such as overlapping
triangles, loops, and cliques, are also naturally created by the
STC mechanism. In this section, by exploiting the treelike
structure of G0 we derive exact expressions for the number
of some higher-order motifs in G f .

A. Diamonds and 4-loops

A ubiquitous feature of real social networks is not only
their high clustering, but that triangles tend to overlap, sig-
nificantly altering the dynamics in various types of processes
occurring on these networks. The frequency of triangle over-
laps both in the STC model and in real-world networks may
be measured in various ways. Here we focus on diamonds
(two triangles that share a link, that we call the “center” of
the motif) and 4-loops (loops of length 4).

1. Average number of diamonds

The easiest way to compute the expected number of dia-
monds in G f , denoted by N , is to write

N = N (old) + N (new)
,

where N (old) and N (new) are the number of diamonds centered
on old links, i.e., links that are in E0, and on new links, i.e.,
links that are in E f \ E0, respectively. Consider an old edge
[as (1,2) in Fig. 7] with end nodes i and j. Denoting by
ni→∂ j the number of new links created on average by the
STC mechanism between node i and j′s neighbors, we can
distinguish three topologically different diamonds centered on
the old link (i, j) [see Fig. 7(a)]:

(I) The ones in which we take two among j′s neigh-
bors which have become also i′s neighbors. There are
ni→∂ j (ni→∂ j − 1)/2 of them.

(II) The ones in which we take two among i′s neigh-
bors which have become also j′s neighbors. There are
n j→∂i(n j→∂i − 1)/2 of them.

(III) The ones in which we consider one neighbor of node
i and one neighbor of node j. There are ni→∂ jn j→∂i of them.

Summing these contributions and averaging over pk we get

N (old) = N〈k〉
4

〈ηi j (ηi j − 1)〉, (11)

where ηi j = ni→∂ j + n j→∂i. Using the fact that ni→∂ j and
n j→∂i are i.i.d. random variables whose probability generating
function is given by g1(1 − f + f z) (see Sec. III), it follows
that the generating function of the probability distribution of
the variables ηi j is H (z) = [g1(1 − f + f z)]2. Hence we have

N (old) = N〈k〉
4

H ′′(1) = N f 2

2

(
μ3 + μ2

2/μ1
)
. (12)

Now consider a node of degree k in G0, and a new edge
(a, b) created among its neighbors. A diamond centered on
this edge can be formed only because of the creation of new
links among the other (k − 2) neighbors of the node, since
nodes a and b are second neighbors in the original network.
There are on average f k(k − 1)/2 new links such as (a, b).
This link can be the center either of a diamond with two old
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FIG. 7. A pictorial visualization of diamond and 4-loop count-
ing. Solid lines correspond to links in G0, dashed lines are the links
created by the STC mechanism. (a) Diamonds centered on the old
link (1,2) (thicker line in blue) for a specific realization of the STC
process. On the right, we identify the three types of topologically
different motifs. Here there are 3 × 2/2 = 3 motifs of type I, 2/2 = 1
motif of type II and 3 × 2 = 6 motifs of type III. Summing these
three terms and averaging gives Eq. (11). Note that these motifs
always correspond to 4-loops, and no other 4-loops with two old
links on the perimeter are possible, since G0 is locally treelike.
(b) Diamonds centered on new links for a particular realization of
the STC process. We consider the neighborhood of node 0 of de-
gree k0 = 5. Arrows indicate two topologically different diamonds
centered on the new links (2,5) (thicker line in blue). (c) Counting
the 4-loops with no old links on the perimeter. Here we consider the
neighborhood of node 0 with degree k0 = 5, and the 4-loop created
among nodes 1,2,3,4 (shaded in blue). There are four distinct ways of
choosing the starting node, and a factor 1/2 arises by the symmetry
under inversion. Hence taking into account these symmetries we
have 4 × 3 × 2/(4 × 2) = 3 distinct 4-loops (dashed green lines):
{1, 2, 3, 4}, {1, 3, 2, 4}, {1, 3, 4, 2}. Considering that each 4-loops
has a probability f 4 of being created, averaging over the whole
network we get Eq. (15).

links and two new links on the perimeter, or it can be the
center of a diamond with four new links on the perimeter
[see Fig. 7(b)]. First, we consider the diamonds with two old
links on the perimeter. Having fixed the link (a, b), there are
k − 2 ways of choosing the third node, and hence we have
f 3k(k − 1)(k − 2)/2 distinct motifs. In the other case, we can
pick the two other nodes to complete the diamond by choosing
among the remaining (k − 2)(k − 3) nodes, and we can do
this in (k − 2)(k − 3)/2 distinct ways. The total number of
such motifs is f 5k(k − 1)(k − 2)(k − 3)/4. Averaging over
pk we get

N (new) = N
(

f 3 μ3

2
+ f 5 μ4

4

)
. (13)

Summing up we finally have

N = N f 2

4

[
2μ2

2/μ1 + 2(1 + f )μ3 + f 3μ4
]
. (14)

2. Average number of 4-loops

To compute the average number of 4-loops, a simple ob-
servation is crucial: any 4 − loop must contain either zero or
two old links, by construction. The average number of 4-loops
with two old edges, denoted by N (2), is the same as the number
of diamonds centered on old links given in Eq. (12) [see Fig. 7.
The number of 4-loops with zero old links, denoted N (0), is
instead simply given by [see Fig. 7(c)]

N (0) = N f 4μ4

8
, (15)

since we have k(k − 1)(k − 2)(k − 3) ways of picking four
nodes among the neighbors of a random node of original
degree k, and in a loop the order in which we choose the
nodes matters: we have four possible ways of starting the loop,
and two possible choices of orientation, which gives the factor
1/8. Putting these two contributions together we get

N = N f 2

8

(
4μ3 + 4μ2

2/μ1 + f 2μ4
)
. (16)

3. 4-loops made of overlapping triangles

It is useful to define the quantity4

R = N

2N
, (17)

which provides a measure of how likely 4-loops are to
be made of overlapping triangles (diamonds) in G f . In an
arbitrary network, any diamond corresponds to exactly one 4-
loop. Also, any 4-loop corresponds to at most two diamonds.
Therefore, for any network R ∈ [0, 1]. From Eqs. (14) and
(16) we get

R =
[
2μ2

2/μ1 + 2(1 + f )μ3 + f 3μ4
]

(
4μ3 + 4μ2

2/μ1 + f 2μ4
) . (18)

From this expression, it follows that for PL networks
R → f as kc → ∞ for 2 < γ � 5, since the most divergent
term μ4 is the same in the numerator and the denominator,
while for γ > 5, the ratio R is, in the same limit, a nontrivial
function of f always different from 0 and 1. In this case (in
fact, for any backbone where the first four moments of the
degree distribution are finite) we have lim f →0 R = 1/2. This
means that for small but finite f , each 4-loop corresponds to
exactly one diamond.

B. Cliques, stars, and generalized transitivity

In this section we present a generalization of the transitivity
to higher-order motifs. It is defined by

Tn = nNKn

NSn−1

, (19)

where NKn and NSn−1 denote the number of n-cliques—
complete subgraphs with n nodes, Kn—and the number of
(n − 1)-stars—subgraphs made by one node and n − 1 leaves,
Sn−1—in G f , respectively. The multiplicative factor n takes

4Only for f > 0, since for f = 0 both the numerator and the de-
nominator are zero.
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into account the fact that for each complete subgraph Kn there
are n distinct stars Sn−1. Note that for n = 2 Eq. (19) trivially
reduces to T2 = 1, while for n = 3 we recover the standard
transitivity T3 = T as in Eq. (4). It is straightforward to derive
expressions for NKn and NSn−1 for arbitrary n, following the
same line of argument which led us to Eqs. (5) and (6). We
get

NSn−1 = N

〈(
K

n − 1

)〉
= N

(n − 1)!
G(n−1)

0 (1), (20)

where G(n−1)
0 (1) can be computed using Eq. (C3), and (it is

sufficient to generalize Fig. 2 for arbitrary n-cliques)

NKn = N

[
f

(n−1)(n−2)
2

〈(
k

n − 1

)〉
+ f

n(n−1)
2

〈(
k

n

)〉]

= N f (n−1)(n−2)/2

n!
[nμn−1 + f n−1μn]. (21)

Substituting into Eq. (19) we get

Tn = f (n−1)(n−2)/2(nμn−1 + f n−1μn)

Mn−1
, (22)

where we set Mn = 〈K (K − 1) · · · (K − n + 1)〉. The study
of Tn for PL backbones reveals an interesting feature. It is
possible to show that, for kc � kmin (see Appendix C)

Mn−1 ∼

⎧⎪⎨
⎪⎩

kn−γ+(n−1)(3−γ )
c for 2 < γ < γ ∗

(n),

kn+1−γ
c for γ ∗

(n) < γ < n + 1,

1 for n + 1 < γ ,

(23)

where

γ ∗
(n) = 3 − 1

n − 1
. (24)

Hence for γ > n + 1 none of the terms in Tn diverge. For γ �
n + 1, since NKn ∼ Nkn+1−γ

c , we get

Tn 

⎧⎪⎨
⎪⎩

0 for 2 < γ < γ ∗
(n),

f (n−1)(n−2)/2

1+cn (kmin ) for γ = γ ∗
(n),

f (n−1)(n−2)/2 for γ ∗
(n) < γ � n + 1,

(25)

where cn(kmin) is a constant depending only on n and kmin.
Equation (25) shows that the generalized transitivity Tn ex-
hibits a discontinuity at γ ∗

(n), in perfect analogy with the
behavior of T discussed in Sec. IV A 2. Figure 4(b) illustrates
the discontinuous transition of Tn with n = 4. The competition
between two kinds of topologically distinct (n − 1)-stars—
those created between one node and its second neighbors
in a given branch and those created between one node and
the second neighbors reached along n − 1 different branches,
with the former dominating over the latter for γ > γ ∗

(n)—is
responsible for the observed discontinuous behavior of Tn.

VI. MOTIFS IN REAL-WORLD NETWORKS

It is important to compare this model’s predictions with
corresponding quantities measured in real networks. The
structure of the assumed original backbone network of a given
real-world network cannot be easily inferred. Instead we can
derive some approximate relations (given some reasonable

assumptions) between measurable quantities, which are ex-
pected to hold for any network generated via the static triadic
closure process starting from a locally treelike backbone.

Our first assumption involves only the moments of the
“final” network observed degree distribution: 〈Km〉 � 〈Km−1〉
for m � 2. This condition holds in the large size limit for
PL networks with exponent γ ′ < 3, which is where most
observed values in real networks tend to fall. Our second as-
sumption involves the moments of the backbone with those of
the observed network: 〈Km〉 ≈ f m〈km+1〉. This relation holds
exactly in the large size limit when the backbone network is
PL with γ > 3 (see Appendix C). This would correspond to
γ ′ > 2 in the final observed network (see Sec. III), which,
again, is where most real-world networks tend to be.

These assumptions are exact in the large size limit when the
backbone network is PL with γ ∈ [3, 4], which corresponds
to the range γ ′ ∈ [2, 3] in the final observed network. While
real networks have a very complicated structure, are finite,
and are certainly not exactly PL degree-distributed, we believe
that our assumptions may still be expected to be reasonable
in many networks with heavy-tailed degree distribution. Note
that we do not make any assumptions about the particular
shape of the backbone degree distribution, i.e., we do not fit
any parameters, such as the degree distribution exponent γ .

Under the above assumptions, using the results of Secs.
IV and V we can write the following simple approximate
expressions for the densities of the various motifs considered
in Sec. V,

n ≡ N

N
≈ T 〈K3〉

8
, (26)

n ≡ N

N
≈ T 2〈K3〉

4
, (27)

n� ≡ NK4

N
≈ T 3〈K3〉

24
, (28)

that is, the densities of motifs involving four nodes depend
only on the transitivity and the third moment of the degree
distribution. Using Eq. (28) we can write the following simple
approximate expression for the 4-transitivity,

T4 = 4NK4

NS3

≈ T 3. (29)

Note that the approximate forms in Eqs. (26), (27), (28),
and (29) were derived using some simple assumptions related
with the moments of the degree distributions and did not re-
quire any fitting of parameters. Thus they constitute universal
relations. We tested these relations in a data set of 95 real-
world networks of various nature (see Ref. [42]5 for details
on the data set). The results are shown in Fig. 8. Despite the
extremely simple form of the approximate expressions, they
appear to be in reasonable agreement with empirical results
for most networks.

To further assess the validity of the approximate relations
derived from the STC model, a comparison with other models
of clustered networks is worthwhile. As mentioned in Sec. I,

5Some of the largest networks in the original database could not be
considered as they exceeded our computational resources.
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FIG. 8. CBM and STC [Eqs. (26)–(29)] approximations to the
(a) density of 4-loops, (b) density of diamonds, (c) density of 4-
cliques, and (d) 4-transitivity, as a function of the actual observed
values in a varied data set of 95 real-world networks. In each panel
one marker corresponds to one network.

most existing mathematically tractable models of clustered
networks involve a random linking of triangles, complete or
partial cliques, or other higher-order motifs. Unfortunately
most of these models are not easily fitted to real networks,
therefore the range of applicability of relations derived within
them is not easily established. One clique-based model where
this can actually be done in a particularly elegant manner
is due to Gleeson [21]. In this model each node belongs to
exactly one clique and any number of external links. Impor-
tantly, the joint degree and clique size distribution in this
model can be exactly fitted to a given network degree distribu-
tion and clustering spectrum CK . For this reason we chose this
model, as a representative of clique-based models, to compare
our results to, and we will refer to it as clique-based model
(CBM). In the CBM the quantities n , n , n�, and T4 are eas-
ily calculated as functions of the moments of the clique-size
distribution, which we fitted to the clustering spectra of the 95
real networks considered. The resulting values are presented
in Fig. 8. While both the CBM and STC models produce
reasonable approximations,6 there are interesting differences
to be considered.

The differences are due to the fact that the CBM and STC
models realize, in a sense, two opposite extreme approaches
to producing clustered networks. In the CBM, triangles only
exist within complete cliques, and this leads to an overestima-
tion of denser motifs, e.g., 4-cliques and an underestimation of
sparser motifs such as 4-loops. On the other hand, in the STC
model triangles are produced in a more homogeneous, diffuse

6It is important to remark that the relations derived from the STC
model are universal and did not require any parameter fitting, while
the values for the CBM were obtained by fitting the entire degree
distribution and clustering spectrum of a real network.

FIG. 9. STC approximation (≈T ) to the ratio R [see Eq. (17)]
as a function of the actual observed value in a varied data set of 95
real-world networks. One marker corresponds to one network.

manner, resulting in the opposite trend: an underestimation of
4-cliques and an overestimation of 4-loops.7

A quantity that sharply highlights the difference between
the two models is the normalized ratio R of the number of
diamonds to 4-loops [see Eq. (17)]. This quantity always has
the trivial value R(CBM) = 1 in clique-based network models
(made of complete cliques), since one 4-loop corresponds to
exactly two diamond motifs in this case. This property of
clique-based models, demonstrating the extreme concentra-
tion of triangles, is clearly at odds with structures observed
in real-world network data. In the STC model, using the
assumptions outlined at the beginning of this section, this
ratio is simply given by the transitivity, R(STC)≈T . Figure 9
shows that, for the 95 real-world networks considered, the
STC model provides reasonable approximations for R in
some cases, although in general it underestimates the true
values.

These results suggest that more realistic versions of the
STC model may be achieved by adopting a nonhomogeneous
triadic closure mechanism, where the probability of closing
a triad depends on local structural properties. An obvious
candidate for such local properties to consider would be node
degrees: in general one may prescribe an arbitrary function
f (k1, k2, k3) for the probability of closing a triad of degrees
k1, k2, k3. This would allow for substantial control over the
extent to which triangles overlap to form loopy motifs, and
would allow for the modeling of various forms of the cluster-
ing spectrum CK .

VII. DISCUSSION AND CONCLUSIONS

In this paper we studied in detail a static model of random
clustered networks based on the mechanism of triadic closure.
In particular, we start from a “backbone” network of arbitrary
degree distribution, and, with a given probability f , we close
each of the existing triads. In the case where the backbone is
an uncorrelated locally treelike network, due to its simplicity

7Another comparison of real-world clustering statistics with Glee-
son’s model and a different kind of random model, using rewiring
and also matching the clustering spectrum, was made in Ref. [43].
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this model allows for exact analytical results regarding clus-
tering properties of the network.

We found an exact expression for transitivity and we
showed anomalous behavior of this quantity in large PL
degree-distributed networks; transitivity is equal to 0 in the
infinite size limit for degree distribution exponent γ < 5/2
and transitivity is equal to f for 5/2 < γ � 4.

This sharp transition is reminiscent of another transition
occurring for this value of γ . Indeed, the largest eigenvalue
of the adjacency matrix (spectral radius) of PL networks is
〈k2〉/〈k〉 ∼ k3−γ

c for γ < 5/2, while it is k1/2
c for γ > 5/2

[44,45]. In that case, the transition is related to the local-
ization of the principal eigenvector of the adjacency matrix,
either on the K-core of maximum index or on the largest
hub and its nearest neighbors [46]. The identification of the
role of interbranch and intrabranch triads in the behavior of
transitivity provides a complementary and clarifying view. In
networks with γ < 5/2 a large max K-core is present. In such
structures the neighbors of nodes with large degree have many
neighbors in their turn. This is reflected by the dominance
of interbranch processes in the STC model. For γ > 5/2
instead, the spectral radius is determined by the largest hub
and its direct neighbors, which tend to have a small number
of neighbors. Correspondingly the transitivity is dominated
by the formation of connections among the hub’s neighbors
(intrabranch processes).

To quantify the density of higher order cliques we defined
a generalized transitivity Tn as the number of n-cliques in
the network relative to their maximum possible number (in
perfect analogy to standard transitivity). We found an exact
expression for the general Tn and showed that this quantity
undergoes a discontinuous transition—analogous to the stan-
dard case—at γ ∗

(n) = 3 − 1/(n − 1).
Using generating functions and simple combinatorial con-

siderations we found exact expressions for the densities of
various small loopy motifs, as functions of the first few mo-
ments of the backbone degree distribution. Importantly, all
motifs in the STC model are produced by triangles (closed
triads) overlapping in various ways, i.e., all emerging small-
scale structures are purely induced by the random triadic
closure mechanism. This circumstance makes the STC model
a useful tool to evaluate the plausibility of the triadic closure
mechanism in real-world networks. With some reasonable
assumptions about the moments of the degree distribution,
we derived some universal relations between the densities of
small loopy motifs. Specifically, we were able to express the
density of various motifs involving four nodes as a function of
transitivity and of the third moment of the degree distribution.
We showed that these remarkably simple, universal relations,
hold up reasonably well in real-world networks.

Many interesting research avenues, opened by this work,
deserve further investigation. First, while this paper focuses
on global quantities, it would be important to understand in
detail also the behavior of local quantities, such as the de-
gree distribution PK , the local clustering coefficient Ci, and
degree-degree correlations. Second, the generalization of the
approach used in [36] for percolation on the STC model with
f = 1 can provide insight into the behavior of percolation
and other processes on networks with strong clustering and

many short loops. Finally, the STC procedure can be gen-
eralized to build hypergraphs, by considering not only the
edges created by the STC mechanism but also the triangles, as
well as higher-order motifs, as hyperedges. The motif count-
ing analysis developed in this work can be straightforwardly
generalized in this case, providing a nontrivial, yet exactly
solvable, model for triadic interaction.

APPENDIX A: PROBABILITY-GENERATING FUNCTIONS

1. General definitions

Given a discrete probability distribution fk , the associated
generating function is defined as

g(z) = 〈zk〉 =
∑

k

fkzk, (A1)

where the sum is intended over the whole range of k values
for which fk is defined. In the case of a continuous variable
with probability density f (k), we define

g(z) =
∫

dk f (k)zk . (A2)

For our purposes, we consider the degree distribution pk =
Nk/N , where Nk is the number of nodes with degree k, with
k ∈ [kmin, kc(N )], where kc(N ) diverges in the infinite-size
limit. We denote by g0(z) the degree distribution generating
function. Another useful distribution to consider is qr , where
the random variable r is the so-called excess degree, i.e., the
degree of a node at which we arrive following a randomly cho-
sen edge excluding the edge we arrived from. We can express
qr in terms of pk . Indeed, we can compute the probability of
reaching a node of excess degree r, and hence degree r + 1,
following a randomly chosen edge. This is simply given by

qr = (r + 1)Nr+1∑
r (r + 1)Nr+1

= (r + 1)pr+1

〈k〉 . (A3)

This expression allows us to express the generating function
g1(z) = ∑

r qrzr in terms of g0 by

g1(z) = g′
0(z)

g′
0(1)

. (A4)

2. Analytic and asymptotic methods

Given a generating function g0(z) it is possible to obtain
the coefficients pk , i.e., the probability distribution pk , by
differentiation [6]

pk = 1

k!

dk

dzk
g0(z)

∣∣
z=0 = 1

2π i

∮
C

dz
g0(z)

zk+1
, (A5)

where C is an arbitrary path around the origin in the complex
z plane. It is quite rare that this procedure can be carried out
explicitly for any k. Nevertheless, complex analysis developed
many tools to estimate the asymptotics of the coefficients pk

for large k. For instance, if g0(z) is analytic, then g1(z) is also
analytic and the composition of analytic functions is analytic
too. Hence we know for sure that PK cannot exhibit a PL tail
[47]. If instead the generating function g0(z) exhibits a singu-
lar behavior for z → 1−, it is possible to know the asymptotic
behavior of the coefficients of the series expansion around
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z = 0, that is, the asymptotics of pk for large k. In particular,
we recall the following result (Theorem 1 and its corollaries
in [48]): if f (z) = ∑

n fnzn is analytical in the unitary circle
in the complex plane excluding z0 = 1, and as z → 1 in this
domain, f (z) ∼ c(1 − z)α for α real, then for noninteger α we
have

fn ∼ c

	(−α)
n−α−1, n → ∞. (A6)

Hence for a singular g0(z) it is sufficient to expand around
1, using ε = 1 − z as a small parameter, to get the asymptotic
form of pk .

Degree distribution of Gf with PL backbone

Using Eq. (A6) and the expansions for the generating func-
tions of a PL degree distribution

g0(1 − ε)  1 − 〈k〉ε + 1

2
〈k〉Bε2 + C(γ − 1)εγ−1,

g1(1 − ε)  1 − Bε + 1

2
Dε2 + C(γ − 2)εγ−2,

where B, D, and C are constants depending on γ and kmin,8

from Eq. (1) we get

G0(1 − ε)  1 − [〈k〉 + f 〈k〉B]ε + 〈k〉C(γ − 2)( f ε)γ−2.

(A7)

From Eq. (A6) we get for K → ∞

PK ∼ 〈k〉C(γ − 2) f γ−2

	(2 − γ )
K−(γ−1),

from which we conclude that the STC procedure on PL
backbones with exponent γ produces (asymptotically) PL
networks with exponent γ ′ = γ − 1.

3. Computing averages using generating functions

Generating functions are useful tools because they con-
tain information about the whole probability distribution in a
very compact way [47]9. Indeed, taking the derivatives of the
generating functions we can evaluate averages. It is easy to
see that, defining the nth factorial moment [49] μn = 〈k(k −
1) · · · (k − n + 1)〉

μn =
[(

d

dz

)n

g0(z)

]∣∣∣∣
z=1

, (A8)

〈kn〉 =
[(

z
d

dz

)n

g0(z)

]∣∣∣∣
z=1

, (A9)

where we used the fact that g0(z) = 〈zk〉 = 〈ek ln z〉 and
zd/dz = d/d (ln z).

It is possible to express 〈kn〉 as a linear combination of μ j

for j � n using the relation [50](
z

d

dz

)n

f (z) =
n∑

j=1

{
n

j

}
z j

(
d

dz

) j

f (z), (A10)

8See Appendix G in [36] for their explicit values and, in particular,
their signs depending on the value of γ .

9From [47],“A generating function is a clothesline on which we
hang up a sequence of numbers [probabilities] for display.”

where
{n

j

}
denote the Stirling numbers of the second kind,

whose expression is given by [47,50]

{
n

j

}
=

j∑
i=1

(−1) j−iin

i!( j − i)!
.

Evaluating Eq. (A10) for f (z) = g0(z) at z = 1 we get

〈kn〉 =
n∑

j=1

{
n

j

}
μ j . (A11)

Remarkably, Eq. (A11) states for ER networks, for which
μ j = c j , that

〈kn〉 =
n∑

j=1

{
n

j

}
c j,

that is, 〈kn〉 is a power series in c whose coefficients are the
Stirling numbers of the second kind.

On the other hand, it is possible to express μn in terms of
〈kn〉 for j � n using the Stirling numbers of the first kind

[n
j

]
,

which are defined by the relation [51]

n−1∏
j=0

(x − j) =
n∑

j=1

(−1)n− j

[
n

j

]
x j . (A12)

Evaluating Eq. (A12) for x = k and averaging over pk we get

μn =
n∑

j=1

(−1)n− j

[
n

j

]
〈k j〉. (A13)

APPENDIX B: MOMENTS OF POWER-LAW
DISTRIBUTIONS

Given a power-law (PL) probability distribution pk ∼ k−γ

with k ∈ [kmin, kc], we have

pk = k−γ

ζ (γ , kmin) − ζ (γ , kc)
 k−γ

ζ (γ , kmin)
, (B1)

where ζ (γ , x) = ∑
k�x k−γ is the Hurwitz zeta function [52].

The moments of the distribution are given by

〈kn〉 = ζ (γ − n, kmin) − ζ (γ − n, kc)

ζ (γ , kmin) − ζ (γ , kc)
. (B2)

To make computations less cumbersome, we can adopt the
continuous-degree approximation, in which the degree is as-
sumed to be a continuous variable. Note that the larger the
value of kmin, the better this approximation works. We have

pk = (γ − 1)kγ−1
min[

1 − ( kmin
kc

)γ−1]k−γ  (γ − 1)kγ−1
min k−γ , (B3)

〈k〉 = γ − 1

γ − 2
kmin

[
1 −

(
kmin

kc

)γ−2
]

 γ − 1

γ − 2
kmin, (B4)

for γ > 2 and kc � kmin, which is the case we consider in this
paper. For higher-order moments of the distribution, the result
depends on the value of γ , since the nth moment may diverge.

024306-11



LORENZO CIRIGLIANO et al. PHYSICAL REVIEW E 109, 024306 (2024)

We have, for kc � kmin,

〈kn〉 = (γ − 1)kγ−1
min

γ − n + 1

[
kn−(γ−1)

min − kn−(γ−1)
c

]
, (B5)


kc�kmin

{
γ−1

γ−1−n kn
min if n < γ − 1,

γ−1
n+1−γ

kγ−1
min kn−(γ−1)

c if n > γ − 1.
(B6)

Note that μn ∼ 〈kn〉 is finite for n < γ − 1: in such a case, it
is useful to have an explicit expression for μn, at least for n =
1, 2, 3, 4, those encountered in the main text. Using Eq. (A13)
and [51] we get

μ1 = 〈k〉, (B7)

μ2 = 〈k2〉 − 〈k〉, (B8)

μ3 = 〈k3〉 − 3〈k2〉 + 2〈k〉, (B9)

μ4 = 〈k4〉 − 6〈k3〉 + 11〈k2〉 − 6〈k〉. (B10)

For n > γ − 1 instead we have

μn  γ − 1

n + 1 − γ
kγ−1

min kn−(γ−1)
c . (B11)

APPENDIX C: HIGH-ORDER MOMENTS OF PK

From Eq. (1) and Eqs. (A8) and (A9), we can compute, at
least in principle, every average with respect to PK in G f , in
terms of averages with respect to pk . It is possible to obtain an
explicit expression for Mn = 〈K (K − 1) · · · (K − n + 1)〉 =
G(n)

0 (1) for arbitrary n using the Faà di Bruno’s formula for
the nth derivative of a composite function [53]. Denoting with
Dn = (d/dz)n, we have

Dn[ f (u(z))] = n!
n∑

m=1

f (m)(u(z))

m!

∑
i1+···+im=n

m∏
j=1

u(i j )(z)

i j!
. (C1)

Writing G0(z) = g0[ψ (z)], where ψ (z) = zg1(1 − f + f z), it
is easy to prove by induction that

ψ (n)(z) = n f n−1g(n−1)
1 (1 − f + f z) + f nzg(n)

1 (1 − f + f z).
(C2)

From Eq. (C1) with f = g0 and u = ψ evaluated at z = 1 we
finally get, using Eqs. (A4), (A8), and (C2),

Mn = n!
n∑

m=1

μm

m!

∑
s1+···+sm=n

m∏
j=1

(s j f s j−1μs j + f s j μs j+1)

μ1s j!
.

(C3)
Equation (C3) allows us to compute the expected number of
n − 1-stars and the generalized transitivity Tn for arbitrary
n > 1 (see Sec. V B), but the computation soon becomes cum-
bersome. Nevertheless, with Eq. (C3) we can prove Eq. (23).
In the case of PL backbones with 2 < γ < 3, we have μ j ∼
k j+1−γ

c for j > 1, while μ1 ∼ 1, and ψ ( j)(1) ∼ f jk j+2−γ
c for

j � 1. From Eq. (C3) we obtain

Mn  a f nkn+2−γ
c +

n∑
m=2

bm f mkm+1−γ+m(3−γ )
c , (C4)

where a and bm are constants. The exponent α = m + 1 −
γ + m(3 − γ ) is a monotonically increasing function in m,
hence its maximum value is reached for mα = n. Thus we
have

Mn  a f nkn+2−γ
c + bn f nkn+1−γ+n(3−γ )

c . (C5)

The second term on the r.h.s. dominates for 2 < γ < 3 − 1/n,
while the first term dominates for γ > 3 − 1/n. For γ >

n + 2, none of the terms appearing in Eq. (C3) diverge, hence
G(n)

0 (1) ∼ 1. Finally, for 3 − 1/n < γ < n + 2 the leading
term is always given by kn+2−γ

c : some of the terms in the sum
on the r.h.s. of Eq. (C4) are ψ s j ∼ 1, hence the exponent will
be lower than α, and since α < n + 2 − γ we can conclude
that the leading order is given by the first term. With the
substitution n → n − 1 this yields Eq. (23).

Notice that for 3 < γ < 4, since Mn ∼ 〈Kn〉 and 〈kn+1〉 ∼
kn+1−γ

c , Eq. (C5) implies that, for kc � kmin, 〈Kn〉 ∼ f n〈kn〉,
as stated in Sec. VI.
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