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Effectiveness of contact tracing on networks with cliques
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Contact tracing, the practice of isolating individuals who have been in contact with infected individuals, is
an effective and practical way of containing disease spread. Here we show that this strategy is particularly
effective in the presence of social groups: Once the disease enters a group, contact tracing not only cuts direct
infection paths but can also pre-emptively quarantine group members such that it will cut indirect spreading
routes. We show these results by using a deliberately stylized model that allows us to isolate the effect of contact
tracing within the clique structure of the network where the contagion is spreading. This will enable us to derive
mean-field approximations and epidemic thresholds to demonstrate the efficiency of contact tracing in social
networks with small groups. This analysis shows that contact tracing in networks with groups is more efficient
the larger the groups are. We show how these results can be understood by approximating the combination of
disease spreading and contact tracing with a complex contagion process where every failed infection attempt
will lead to a lower infection probability in the following attempts. Our results illustrate how contact tracing in
real-world settings can be more efficient than predicted by models that treat the system as fully mixed or the
network structure as locally treelike.
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I. INTRODUCTION

Contact tracing identifies, assesses, and manages people
exposed to the disease through an infected individual [1]. This
approach, inclusive of testing [2,3] and isolating, has been
a cornerstone in controlling disease spread and preventing
outbreaks. The COVID-19 pandemic saw this methodology
employed globally with mixed results [4]. Countries like
China, South Korea, and Singapore have been lauded for their
effective contact-tracing efforts [5], while countries such as
the United Kingdom and the United States faced challenges
in executing successful programs [5–7]. Despite the targeted
nature of contact tracing, which avoids the broad societal
and economic impacts of more blanket measures like school
closures and travel bans, it is not without significant costs [8].
Implementing these programs can be resource-intensive and
may lead to unintended consequences, particularly regarding
privacy when digital tracking systems are involved [5]. Such
concerns emphasize the need for a reasonable evaluation of
the trade-offs associated with contact tracing initiatives.

The effectiveness of any public health intervention cannot
be divorced from the societal context in which it is applied. To
evaluate the success of both pharmaceutical and nonpharma-
ceutical interventions, we must take into account the network
structure of social interactions and health behaviors within the
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population [9–12]. Given the complexity of social structures,
a strategy effective in one setting may fail in another. It is,
therefore, imperative to rigorously evaluate the factors affect-
ing the efficacy of contact tracing and other interventions,
considering the diverse ways social structures can influence
disease transmission.

The effectiveness of contact tracing is typically evaluated
based on the number of infected individuals preemptively
quarantined and its influence on halting transmission chains
[7,13]. This process is often assessed with the assumption that
contact networks are treelike. However, social networks con-
sist of overlapping groups such as families and workplaces.
Within these networks, an infected individual transmits the
infection to specific group members, while contact tracing
preemptively isolates others. Its success is most notable in
the intersection of these groups—those who are both infected
and isolated—as this effectively disrupts direct transmission
chains. However, preemptively isolating uninfected members
of these groups can also be crucial in controlling the spread of
the disease. If contact tracing is not entirely effective, omitting
some infectious individuals, then the isolation of others be-
comes vital in stopping further infections. Accordingly, even
isolations that might seem unnecessary due to contact tracing
can significantly positively impact controlling the disease.

Social networks exhibit diverse and dense substructures
which significantly impact contagion dynamics [14,15]. These
networks often feature clustering, crucial in complex conta-
gion models for behavior spreading, where repeated exposure
increases behavior adoption likelihood [16,17]. This ap-
proach contrasts with traditional disease-spreading models
that treat each infection event as independent. Gatherings can
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be modeled to show a nonlinear relationship between infected
contacts and infection risk [18]. Empirical studies have also
highlighted that the effectiveness of contact tracing varies with
the size of gatherings and can exhibit nonmonotonic patterns
[19]. Theoretical works in this area include the development
of a prompt quarantine model in clique-based networks, where
infected individuals and their contacts are quarantined with a
fixed probability. As detailed in Ref. [20], this model results
in continuous and discontinuous phase transitions and even
backward bifurcations, offering new insights into epidemic
control. It has also been shown that contact tracing is more
effective for large-scale epidemics with low tracing rates in
degree-assortative networks [21]. In contrast, in disassorta-
tive networks, higher contact rates make it more effective.
Disassortative networks are also more conducive to contact
tracing for more minor epidemics due to the robustness of
assortative networks against link removal [21]. This under-
scores the complex interplay between network structures and
epidemic control strategies, highlighting the need for tailored
approaches in different network settings.

In this work, we demonstrate the group dynamics of con-
tact tracing and their effect on outbreak sizes and the epidemic
threshold by developing a stylized contact tracing model and
a random network model with social groups manifested as
cliques. This allows us to build on methods developed for
spreading processes in networks with cliques [22–24]. Our
findings indicate that group structure enhances the effec-
tiveness of contact tracing. Specifically, contact tracing in
a network with cliques has a nonlinear impact on the ef-
ficiency of halting the spread of chains that occur over a
single link. This contrasts with models that assume a locally
treelike contact structure. We show that the combination of
disease spreading and contact tracing can be approximated
as a complex contagion process, where repeated exposures
reduce the probability of infection because they can lead to
isolation and thus can make subsequent infections impossible.
This interpretation of contact tracing as a complex contagion
explains our results on the importance of group structure.

The structure of this paper is organized as follows: In
Sec. II, we introduce (a) the random network models em-
ployed and (b) detail the epidemic model, along with the
contact tracing procedures. Section III is divided into two
main parts: (a) The first part focuses on identifying the
epidemic threshold and observing the phase transition in
epidemic size in networks with cliques. This is achieved us-
ing multitype branching processes, which provide mean-field
solutions for the reproduction number. (b) The second part ex-
amines how the subcritical epidemic size grows with disease
parameters and the sizes of cliques. Section IV discusses how
contact tracing in networks with cliques can be interpreted as
a complex contagion process. Finally, in Sec. V, we highlight
the implications of our findings for understanding and miti-
gating disease spread in social networks.

II. MODEL

We first introduce a random network model featuring
cliques as social groups in Sec. II A. After this, in Sec. II B,
we present the stylized dynamics we use for modeling disease
spreading and contact tracing.

FIG. 1. Illustration of r-regular c-clique network structures. Pan-
els [(a)–(c)] highlight the immediate network vicinity of a focal (red)
node within networks formed by 4-, 3-, and 2-cliques, respectively,
where each node consistently has a degree of 6. These configurations
are representative of the local topology repeated throughout the en-
tire network. Panel (d) provides an example of a 4-regular 3-clique
network, with each node having a degree of 4 and being part of two
3-cliques. Displayed are link stubs indicating connections to other
nodes, demonstrating the typical local structure one would encounter
in an extensive clique-based network. The shaded circular regions
signify the proximity to a central node, which is marked in red.
This shows the connectivity structure we examine using our r-regular
clique-type networks.

A. Random networks with cliques

Social networks, known for their complex, dense local
structures, significantly differ from treelike topologies, espe-
cially in disease-spreading scenarios [25]. This complexity
is due to high clustering in social units like families and
workplaces [14,15,23,26], leading to the need for novel tools
to understand cliques’ effects on spreading processes [16,26].
We aim to investigate the sole effect of social groups on
contact tracing, ignoring other salient social network features
such as degree heterogeneity or homophily [9,10].

In studying epidemic processes on networks, cliques are
idealized representations of social groups within contact net-
works. Each social group is represented as a complete graph,
where every member is connected to every other member, il-
lustrating the all-to-all connection pattern within these groups.
Figures 1(a) and 1(b) depict a focal node that belongs to two
4-cliques and three 3-cliques, respectively. In social networks,
c-cliques are complete subgraphs representing a group of c
people who are all connected and, thus, can potentially infect
each other [22,23].

To investigate the sole impact of group structure, we com-
pare network results in which nodes possess an equal number
of connections but belong to groups of different sizes. In our
model, we analyze homogeneous networks where all nodes
have the same number of links and the same level of net-
work clustering. We then compare different homogeneous
networks, where only the amount of clustering varies between
networks. This will allow us to isolate the impact of contact
tracing on spreading disease in the presence of cliques. In
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practice, this is made possible using clique-based network
generation methods [16,25,27–30].

The algorithm for generating networks with prescribed
clique structures generates an auxiliary bipartite graph with
one part for individuals and the other for groups, where links
are only between individuals and groups. This network is
then projected into a unipartite network of individuals, where
the groups become cliques, i.e., all the individuals in each
group are connected. We construct the bipartite graph by
giving each group c stubs and each individual nc stubs. As
we have a total of N individuals, each with degree nc, the total
number of stubs leading out of individuals should be N × nc.
The total number of stubs leading out of groups must be the
same. Therefore, the bipartite network must have (N × nc)/c
groups. We connect, uniformly at random, stubs leading out
of individuals to stubs leading out of groups. This provides
a bipartite network that defines which individuals belong to
which groups. Finally, we take an unipartite projection of the
bipartite network where individuals are the only nodes we
keep, and we connect two individuals if they belong to the
same group, i.e., if they are connected to the same group in
the bipartite network. The groups become the cliques in the
contact network, connecting individuals who are the nodes.

In the thermodynamic limit, such contact networks have
a vanishingly small number of self-loops or multilinks. See
Refs. [31,32] for further details on these network structures.
In practice, when we build such networks for our simulations,
we remove the few self-loops and multilinks, ending up with a
simple graph. Note that each c-clique contributes c − 1 links
to a node degree. Therefore, the number of cliques that a
node is a part of, nc, satisfies the condition nc(c − 1) = r.
When c = 2, the model generates a random r-regular graph,
see Fig. 1(c). Figure 1(d) illustrates a 4-regular 3-clique net-
work, where each node has a degree of 4 and is part of two
3-cliques.

B. SIRQ dynamics

Both contact tracing and disease transmission are compli-
cated processes in reality and are affected by various details
related to the particular disease, contact tracing procedure,
and the underlying social system. We aim to reduce these
complications into a minimal mathematically tractable model
that captures stylized dynamics of contact tracing and disease
spreading. We employ a discrete-time susceptible-infectious-
recovered (SIR) model to model disease dynamics [33], where
at each time step, each infected (I) individual independently
infects each neighboring susceptible (S) node with transmis-
sion probability p. After this, the infected individuals are
moved to the recovered (R) compartment. Importantly, this
time-discretized model ignores variations in recovery times
and can only implicitly consider complications such as incu-
bation periods [34].

Contact tracing can be implemented in various ways, such
as with phone applications [9], in different manual tracing
settings, or with combinations of these two [35]. The suc-
cess of contact tracing can be affected by the ability of
individuals to recall contacts, the delay times in the tracing
process, mobile phone application adoption, and the extent
to which the individuals follow the isolation or quarantine

FIG. 2. Diagram of the SIRQ model showing the flow between
compartments based on transition probabilities based on the stochas-
tic dynamics introduced in Sec. II B. Susceptible individuals become
infected with probability p and enter quarantine with probability α.
The Q compartment includes people in quarantine, either infected or
susceptible. Those who are both infected and quarantined move to
the QI subcompartment, while those who are only quarantined go to
the QS subcompartment of Q. Figure 3 depicts these two situations.
Infected individuals who are not quarantined go to the I compartment
and will recover deterministically in the subsequent time step.

recommendations [36–38]. We model all these complications
with the probability α of a neighboring node successfully
moving to compartment Q such that all further infections are
avoided. Further, the contact tracing moving nodes to the Q
compartment is done independently using the same contact
network as the infections. In the model, this translates to each
infected node placing each neighboring node into compart-
ment Q with probability α. The nodes in the Q compartment
can be either infected (QI ) or susceptible (QS). It is important
to highlight that the nodes within Q are distinctly separated
from those in set R, as they are housed in separate compart-
ments. Despite this distinction, it should be noted that neither
group of nodes contributes to the propagation dynamics. Fig-
ure 2 depicts the compartmental structure and the associated

FIG. 3. Schematic of contact tracing and spreading without loops
(a) and with local loops (b). Infections that would be successful
are marked with solid red links, and successful contact tracing with
dashed black links. After each exposure, a susceptible node isolates
itself with probability α and becomes infected with probability p
independently. If no loops are considered, then the combination of
infections and contact tracing can be reduced to a single link. There
are four possible scenarios: nothing happens; the infection spreads to
the neighbor, but contact tracing fails; the infection fails to spread,
but contact tracing succeeds; or (a) both infections spread, and the
contact tracing succeeds so that the node will be in subcompartment
QI . The last case is where we can benefit from contact tracing cutting
indirect spreading paths thanks to the presence of clustering. (b) With
local loops, an infection through a common neighbor of both nodes
can be avoided. As the quarantine takes place close to the infection,
it can prevent the infection from arriving at the neighbor through a
local loop as the node is in subcompartment QS .
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transition probabilities, while Fig. 3 demonstrates the benefits
of contact tracing, particularly when loops are present.

Our model treats isolation and quarantine identically, en-
capsulating both by the probability α. Consequently, we will
refer to both terms interchangeably, reflecting their similar
dynamics in our model. In public health, however, isolation
and quarantine are distinct strategies for preventing the spread
of contagious diseases [39]. Isolation separates individuals
who are sick with an infectious disease from those who are
not, and it is applied to confirmed cases to prevent the spread
of the infection to others. Quarantine, in contrast, involves
separating and restricting the movement of people exposed
to a contagious disease to see if they become sick, targeting
those who may have been exposed but are not yet confirmed
to be ill. Thus, in public health literature, while isolation is
for those already sick and contagious, quarantine is for those
who might become sick due to exposure [39]. It is worth
mentioning that our model also captures the impact of ring
vaccination [40], a strategy that involves vaccinating indi-
viduals around an infected person, effectively isolating them
from the disease network [41]. This strategy, which success-
fully eradicated smallpox [42], is paralleled in our model by
transitioning individuals to a quarantined compartment with
probability α.

Our model assumes the infection and contact tracing pro-
cesses are independent (i.e., we treat p and α as independent
probabilities). See Fig. 3 for an illustration of the process. The
order in which they are evaluated in the discrete-time model
does not make a difference for the epidemic threshold. How-
ever, there is a slight variation in the epidemic size depending
on the order, as the number of isolated infected individuals is
affected by the order in which nodes are infected and placed
in the quarantined compartment. For this purpose, we follow
an order where we go through one infected-susceptible link at
a time. First, we evaluate the spread of the epidemic and then
the contact tracing for that link.

We focus on contact tracing when the disease does not
reach a significant part of the population. An upsurge in
the number of infections can strain the contact tracing pro-
cess, leading to increased delay times that potentially weaken
its overall effectiveness [35,43]. In reality, a node may be
reinfected after leaving the compartment Q. However, as
our contact networks are large-enough random graphs with
cliques (see Sec. II A), the infection paths will not form sig-
nificant long loops. This means that for our model, we can
assume that the isolation times are long enough that they will
stop all the incoming infections to a node. We can indefinitely
keep the isolated nodes in the Q compartment. In other words,
with prolonged isolation, which may vary based on clique
size, postquarantine infection becomes negligible. Intuitively,
this modeling choice can be understood as the re-entry of
quarantined individuals into the susceptible (S) or infected
(I) states being unlikely before the infection subsides locally.
The impact of this assumption is explored in more detail in
Appendix E.

III. RESULTS

In this section, we demonstrate the impact of contact trac-
ing in networks with cliques. We begin by analyzing epidemic

thresholds in treelike networks (Sec. III A 1) and then assess
phase transitions in epidemic sizes in networks with cliques
(Sec. III A 2). We employ a multitype branching process to
understand the influence of spreading parameters and clique
sizes on the effective reproduction number (Sec. III A 3). The
effect of contact tracing on these thresholds is examined
(Sec. III A 4), followed by an analysis of outbreak sizes in
subcritical regimes, highlighting the role of quarantine proba-
bility and clique size (Sec. III B).

A. Epidemic threshold and reproduction number

Given a population in a demographic steady state, with no
history of a given infection or introduction of any intervention,
the basic reproduction number R0 determines if the introduc-
tion of the infectious agent causes an outbreak (R0 > 1) or not
(R0 < 1) in the absence of interventions [44]. This is because
R0 yields the expected number of secondary cases produced
by a typical infectious individual throughout their contagious
period in a fully susceptible population. Therefore, R0 as a
threshold for the stability of a disease-free equilibrium in a
compartmental model divides the phase space into super- and
subcritical regions, respectively. When interventions such as
contact tracing are implemented, we use the term effective
reproduction number Re instead of the basic reproduction
number to differentiate between situations with no interven-
tions in this paper. Therefore, to determine if the epidemic dies
out or yields an outbreak in the presence of an intervention,
we need to compute the value of Re [10]. Re as a bifurcation
parameter in our epidemic model depends on the spreading
parameters, p and α, and the network structure, which is
determined by c and r.

1. Random treelike networks

For a large treelike network, like a random r-regular graph
built with blocks the same as the one in Fig. 1(c), we can find
the epidemic threshold in the αp plane using

Re = p(1 − α)d̄, (1)

and setting Re = 1. Here d̄ represents the average excess de-
gree of the network. This is the average count of additional
connections that a node has, apart from the one used to ar-
rive at when it is found by traversing a uniformly randomly
selected link in the network. As our networks have uniform
degree distributions, such that every node has degree r, the ex-
pected excess degree is just the degree minus one, d̄ = r − 1.
It should be noted that even with the most severe disease with
p = 1, it is still possible to avoid an outbreak. By setting
p = 1 in Eq. (1) and solving for α, we can determine that
if the quarantine is carried out in such a way that α > 1 −
1/d̄ , then the effective reproduction number, Re, will remain
below 1.

In general, for a treelike random network with expected
excess degree d̄ , we can rewrite the effective reproduction
number as a product of spreading properties and network
structure as Re = ped̄ where pe is the effective transmission
probability and defined as

pe = p(1 − α). (2)
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So every active node can, on average, infect Re = ped̄ new
people who can propagate the disease, i.e., are not themselves
quarantining. When contact tracing is not in place (α = 0),
the effective reproduction number reduces to the basic re-
production number, R0 = pd̄ . Since we ignore variations in
recovery time, the SIR dynamics can be mapped to a bond
percolation problem, where p represents the link occupation
probability and the size of the giant component corresponds
to the final outbreak size [10,34,45,46]. This mapping results
in the epidemic threshold being equivalent to the percolation
threshold, which occurs at p∗ = 1/d̄ = 1/(r − 1). Thus, a
phase transition is expected from a disease-free equilibrium to
an endemic state. For example, for a 6-regular graph p∗ = 0.2,
and when α = 0.5, the epidemic threshold occurs at p = 0.4,
according to Eq. (1). Our forthcoming explanation of sim-
ulation results of random networks with cliques shows that
this equation aligns exceedingly well with c = 2 (no loops).
When the treelike assumption does not hold, for example,
when c > 2 in our network model, an alternative method is
required to determine Re. This is the focus of the following
sections.

2. Simulating the epidemic

Equation (1) is not applicable for networks with cliques,
as it assumes a locally treelike structure. However, we can
simulate the epidemic dynamics to observe how the outbreak
size varies with changes in disease parameters and network
structure. These simulations reveal a sharp increase in the out-
break size, transitioning from a few individuals to a significant
portion of the network, upon crossing certain thresholds of
p and α. Additionally, at the epidemic threshold, an ensem-
ble of simulations shows considerable variation in outbreak
sizes, reflecting the critical nature of this point as noted in
Refs. [46,47]. In our simulations, we build large networks
(with N ≈ 105 nodes) according to Sec. II A, run the SIRQ
dynamics 104 times, and find the ensemble average of the
number of nodes in the different compartments in each run as
our measure of disease spread from simulations. Using this,
we can calculate other quantities of interest. For example, the
size of the outbreak is then given by the ensemble averages
of the number of people in the R and QI compartments. We
follow an order to go through one infected-susceptible link at
a time for the epidemic size computations. First, we evaluate
the spread of the epidemic and then the contact tracing for
that link. This way, the number of infected people in quaran-
tine can be computed as NQI = pNQ. We find the size of an
epidemic E by summing up the number of infected people in
and out of quarantine, NQI and NR, respectively.

Figures 4(a)–4(c) illustrates the dependence of outbreak
size on the value of p under different scenarios, namely in the
absence of contact tracing (α = 0), and with contact tracing
at α = 0.25 and α = 0.5, for networks consisting of 2-, 3-,
and 4-cliques. As the clique size increases, the outbreak size
decreases for any given transmission probability. Moreover,
this effect is magnified by an increase in the value of α.

Furthermore, we use the fluctuations in the outbreak sizes,
χ , for determining the epidemic thresholds as illustrated in
Fig. 4(d). Fluctuation in outbreak sizes typically displays a
peak even in finite systems. When computed as a function of

(a)

(b)

(c)

(d)

FIG. 4. Phase transitions from a disease-free equilibrium to an
endemic state for 2-, 3-, and 4-clique networks with degree 6 as
introduced in Sec. II A. [(a)–(c)] The outbreak size E , normalized to
the network size, is shown on the vertical axis for when (a) α = 0 (no
contact tracing), (b) α = 0.25, and (c) α = 0.5, from top to bottom
respectively. Note that the transition points are shifted slightly to
the right for larger clique sizes, c, even when there is no contact
tracing (α = 0), but this difference is substantially amplified for
larger α values. (d) The coefficient of variation of outbreak sizes
in an ensemble, χ normalized to unity for α = 0.5. We use χ to
numerically detect the transition point as it peaks at the epidemic
threshold. Results are based on Monte Carlo simulations introduced
in Sec. III A 2.

infection probability p, the peaks in χ indicate the epidemic
thresholds for some value of α. This measure is analogous
to susceptibility in critical phenomena [48], which measures
the response magnitude generated by a small external field
disturbance [49]. In practice, we run a set of simulations and
calculate the coefficient of variation of the outbreak sizes,
which is the ratio of the standard deviation of outbreak sizes to
their ensemble average, χ = σE/〈E〉 [33]. Figure 4(d) shows
that for a fixed r, here r = 6, contact tracing on networks with
cliques is more effective when the contact networks include
larger cliques. So the larger the clique size, the larger the
critical transmission probability.

3. Mean-filed reproduction number

By representing our stylized SIRQ model using a multitype
branching process, we can derive the relationship between p,
α, and clique size, c, on the epidemic threshold. In the mul-
titype branching process representation of our SIRQ model,
we track different clique states, which we refer to as clique
motifs. Each clique motif accounts for the possible number
of susceptible, infected, or recovered nodes that any clique
can inhabit at a given time. Every possible motif is denoted
by Zi (refer to Fig. 5 for listing possible clique motifs for
a 3-node clique). Regardless of the network structure, we
can always average the expected number of new infections
over all possible infected types from our multitype branching
process with the next-generation matrix [44]. To do this, we
track the propagation of clique motifs in a network under the
introduced dynamics and form the next-generation matrix M
for the number of motifs in the network. The matrix M is also
known as the mean matrix or the population projection matrix
[50], and its element mi j gives the expected number of motifs
of type Zi that are created in the next time steps from a motif
of type Zj .

024303-5



ABBAS K. RIZI et al. PHYSICAL REVIEW E 109, 024303 (2024)

FIG. 5. Each 3-clique can have four life stages or diffusion pat-
terns with at least one infected node. Section III A 3 considers both
recovered and quarantined nodes in the R compartment. Using a
6-regular 3-clique network, we observe that a Z1 node can form a Z2

motif with two Z1 nodes and a Z3 motif with four Z1 nodes. A Z2 node
can also create a Z4 motif with two Z1 nodes. Nodes in the Z1, Z2,
and Z4 motifs can transition to an infection-annihilated states such as
{R, S, S} which are not shown here. In Sec. IV, we assume that both
quarantined and susceptible nodes are in the S compartment, while
only recovered individuals are in the R compartment.

Figure 5 shows the motifs corresponding to the four life
stages of a 3-clique. In this representation, we have combined
the isolated and recovered nodes into a single R compart-
ment because these two compartments are equivalent for the
epidemic threshold computations. The next-generation matrix
represents the transitions between these motifs. For example,
the infected node in Z1 can infect one or two neighbors,
corresponding to motifs Z2 and Z3. Further, nc − 1 new Z1

motifs are produced every time such an infection occurs. That
is, when Z1 turns into Z2, there are also nc − 1 new Z1 motifs,
and when it turns into Z2, there are 2(nc − 1) new Z1 motifs
created.

Table I shows the nonzero elements of M. For example,
the transition from Z2 to Z4 occurs when contact tracing fails
(with probability 1 − α). The infection is successful with
probability p, which means that, in expectation, a single Z2

motif produces m42 = p(1 − α) new Z4 motifs. The motif
Z4 can also be made when the infected node in Z1 puts one
neighbor in quarantine (with probability α) and fails to do so
for the neighbor and infects it instead [which happens with
probability p(1 − α)]. As there are two ways of choosing the
infected and isolated neighbor, the expected number of Z4 mo-
tifs produced by the Z1 motif is given by m41 = 2α[(1 − α)p].
The rest of the transitions are produced similarly by comput-
ing the probabilities of going from one motif to another. As
described in Appendix D, we write general formulas for any
transition and use this to automatically generate the desired
mean matrix, M, for cliques of any size.

TABLE I. Nonzero elements of the next-generation matrix M4×4

for a 3-clique network. mi j gives the expected number of Zi cliques
from a Zj clique, as shown in Fig. 5.

i, j mi j

1, 1 4p(1 − α)
1, 2 2p(1 − α)
2, 1 2p(1 − α)2(1 − p)
3, 1 p2(1 − α)2

4, 1 2αp(1 − α)
4, 2 p(1 − α)

(c) (d)

(a) (b)

FIG. 6. The impact of contact tracing in clique networks on
mitigating epidemic spread: This figure illustrates the decline in
the effective reproduction number, Re, with the contact tracing
parameter, α, across networks with various clique configurations.
Specifically, we examine cliques of sizes c = 2, 3, 4 with r = 6
and transmission probability p = 0.5 in panel (a), and cliques of
sizes c = 6, 11, 16 when r = 30 and p = 0.1 in panel (c). Networks
with larger cliques achieve the critical threshold of Re = 1 with less
contact tracing effort. When c = 2, the influence of contact tracing
on Re aligns linearly with α, according to Eq. (1). In scenarios
involving larger cliques, this relationship turns concave and is further
intensified as the clique size increases or the transmission probability
decreases. The dotted lines are from the mean-field calculations
introduced in Sec. III A 3, and the markers are from Monte Carlo
simulations described in Sec. III A 2. Panels (b) and (d) show a rel-
ative difference of Re to the linear case when c = 2 (Rlin

e ). Figure 13
shows similar results to panel (a) for different p values. The larger
the transmission probability, the larger the differences between the
curves of other networks with cliques.

What is significant about the next-generation matrix is that
its spectral radius (Perron root), or the largest modulus of
the eigenvalues [51], yields the effective reproduction number
[52,53] such that

Re = ρ(M), (3)

and epidemic thresholds for any given clique network can be
found for finding p and α such that Re = 1. We give more
detailed arguments about this identity in Appendix C, and
show that this definition aligns with the simulation results of
Fig. 6.

In Fig. 6, we present the effective reproduction number,
Re, across various clique sizes under differing transmission
probabilities, integrating results from both mean-field calcula-
tions and simulations, detailed in Sec. III B. The figure reveals
a nonlinear relationship between Re and the intervention pa-
rameter α, particularly for larger cliques. This observation
is crucial in practical scenarios where the basic or effective
reproduction number is a key metric for monitoring and con-
trolling epidemic situations. Public health officials often rely
on this data, represented on the horizontal axis, to gauge the
extent of interventions required to bring the epidemic under
control, aiming to reduce Re below the critical threshold of 1
by increasing α.
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(a) (b)

FIG. 7. Phase diagram showing that increasing the clique size
increases the epidemic threshold and effectiveness of contact tracing.
(a) The critical curves where Re = 1 in the αp plane for c ∈ {2, 3, 4}.
The lines indicate the results of the mean-field approximations de-
scribed in Sec. III A, and the markers show results for simulations
described in Sec. III A 2. The shaded area is the subcritical region for
c = 2 where the infection eventually dies out after a finite number of
generations for any clique size. (b) The same phase diagram in αpe

plane, where pe = p(1 − α) is the effective transmission probability
defined in Eq. (2). The larger markers in the right end in panel b
indicate extreme points from Eq. (4). The inset in panel b shows the
relative maximum increase in the effective epidemic threshold for
different networks with cliques. Each point in the inset is the ratio of
the pe values at the endpoints of each curve outside the inset, such
that Ic = pe(αmax)/pe(αmin ).

More successful contact tracing leads to a lower effective
reproduction number, and the extent of this reduction in net-
works with cliques is larger than in treelike networks. As
seen from Eq. (1), given the basic reproduction number, R0

(Re without contact tracing), the Re decreases linearly with
α, following Rlin

e = (1 − α)R0. However, as demonstrated in
Figs. 6(a) and 6(c), this reduction is not linear in networks
with cliques. The difference between this simplistic linear
estimation and the more realistic Re [Eq. (3)] yields the error
of assuming contact networks are locally treelike. Figures 6(b)
and 6(d) higlight this discrepancy by showing the relative

error, Re−Rlin
e

Re
, between these two approaches. These errors

become more pronounced in networks with larger groups. It
reaches around 20% for cliques of size 4 and around 50% for
cliques of size 16.

4. Epidemic threshold

Next, we will use the mean-field framework developed
above to investigate the epidemic thresholds. Figure 7(a)
presents the phase diagram of the epidemic for various net-
works with cliques by drawing Re = 1 curves in the αp plane.
These curves divide the plane into sub- and supercritical
regions. In the subcritical region, there is no possibility of
an outbreak that scales with the network size. In contrast,
in the supercritical region, there is a positive probability of
such an outbreak upon infection. For networks with cliques,
increasing the clique size enlarges the subcritical region and
shrinks the supercritical region. Note that even without con-
tact tracing (i.e., when α = 0), including a clique structure in
random graph models raises the epidemic threshold slightly.
However, this effect is amplified by contact tracing, which can

(a) (b)

FIG. 8. Critical curves rescaled as effective branching factors for
treelike networks (r − 1)pe. Panel (a) is the same as panel Fig. 7(b),
but on the vertical axis, the effective transmission probabilities are
multiplied by the excess degree. Further, results are shown for a
larger network where r = 12. The red curves marked with stars are
for the case that there c = 2 and the network is treelike, therefore
Eq. (1) holds such that Re = ped̄ = pe(r − 1) = 1 for any α value.
For c > 2, this equation does not hold. The right end markers on
panel a indicate extreme points from Eq. (5). The inset shows the
relative maximum increase in the effective epidemic threshold for
different networks with cliques. Each point in the inset is the ratio of
the pe values at the endpoints of each curve outside the inset, such
that Ic = pe(αmax)/pe(αmin ). (b) This panel shows how (1 − r)pe

changes when we have networks with different degrees, r = 6 to
r = 18, and maximal connectivity-preserving clique size (i.e., when
nc = 2).

be observed as an increased difference between the critical p
value as α increases.

We illustrate that the combined impact of contact trac-
ing and cliques is larger than one would expect by the
treelike assumption by plotting the critical effective trans-
mission probability pe, defined in Eq. (2), as a function of
α. Figure 7(b) displays this rescaling of the critical values.
For treelike networks, such as 2-clique networks, Re = 1
corresponds to a constant (horizontal line) in the rescaled
representation, while for networks with cliques, this value
increases with α. This indicates that networks with cliques
require much larger effective transmission probabilities to
reach the epidemic threshold compared to what is expected
by the treelike approximation, with the difference growing as
the isolation probability α increases. This shows the moder-
ating effect that clique structures can have on an epidemic
in the presence of contact tracing, as it helps to cut not only
onward infections but also local indirect spreading paths in the
network.

The transition points strongly depend on the node degree,
r, in the class of clique networks we consider here. For most
of the analysis in this paper, we kept the node degree fixed
to r = 6 (Fig. 7); here, we turn our attention to how node
degree can affect disease spreading. We do this by varying
r and holding other network properties constant. This is in-
teresting because the node degree, r, rescales the transition
points between sub- and supercritical regions. More precisely,
if we use the excess degree to scale the critical pe by plotting
(r − 1)pe as a function of α, then the phase diagram returns
to a scale that is independent of r such that the c = 2 line
is precisely at (r − 1)pe = 1. This rescaling is illustrated for
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FIG. 9. Spreading process in a 6-regular 3-clique network under
the extreme case of p = 1, where the infection propagates severely
through the cliques. In this scenario, (a) an active node (infected
but not in quarantine) can transmit the disease to other nodes in its
adjacent cliques, (b) resulting in new infections. The number of new
infections caused by an active node is not equal to the total number of
members in the cliques that the node belongs to, which is nc(c − 1),
but rather the number of members in the cliques attached to that
node, excluding the clique that infection is coming from, which is
(nc − 1)(c − 1) = 2 × 2. For further details on the network structure
and spreading dynamics, refer to Secs. II A and II B.

r = 6 and r = 12 in Fig. 7 and Fig. 8(a) for valid network
configurations, respectively. Recall that the networks we study
still must obey nc(c − 1) = r.

A more systematic exploration can be found in Fig. 8(b),
where each node belongs only to two cliques, nc = 2, rep-
resenting the extreme nontrivial scenario where each clique
is as large as possible without the network consisting solely
of isolated cliques. In this case, the critical curves collapse
in the rescaled plot for a range of r = 6 to r = 18 that we
tested. The collapse approximately follows a straight line from
(r − 1)pe = 1 for α = 0 to (r − 1)pe = 2 for α = 1, with
the approximation getting better for larger values of α. Note
that for α = 0, the critical transmission probability equals
the critical bond percolation probability for the SIR model
[20,24,34,54].

The curve collapse can be understood by examining the
extreme case p = 1 (where the infection always succeeds),
and the critical point for contact tracing probability α∗ (i.e.,
how large does α need to be to prevent an outbreak when
p = 1). In this case, infected nodes always infect all of their
neighbors, and during the early stages of the epidemic, each
clique either has (1) exactly one infected node and c − 1
susceptible nodes, (2) one recovered node and c − 1 infected
nodes (from which a fraction of α are isolated in expectation),
or (3) only susceptible nodes. When an infection arrives at
a clique, the infected node, which is not in quarantine, can
spread the infection to (nc − 1)(c − 1) new nodes (offspring)
in the next time step, as illustrated in Fig. 9. Therefore, α∗
can be obtained by setting the expected number of active (in-
fected but not in quarantine) nodes to one, which occurs when
(1 − α)(nc − 1)(c − 1) = 1. Therefore, the critical value for
α is given by

α∗ = 1 − 1

(nc − 1)(c − 1)
. (4)

Markers in the right end of Fig. 7(b) shows such ex-
treme points (α∗, 1 − α∗). Substituting α∗ into (r − 1)pe =

(r − 1)(1 − α) and recalling that r = nc(c − 1), yields

(r − 1)pe = nc(c − 1) − 1

(nc − 1)(c − 1)
. (5)

Markers in the right end of Fig. 8(a) shows such extreme
points (α∗, (r − 1)(1 − α∗)). When the clique size c grows to
infinity, Eq. (5) leads to

(r − 1)pe
c→∞−−−→ nc

nc − 1
, (6)

which yields the value 2 when nc = 2, for example. This
explains why the rescaled critical infection probability curves
approach 2 when α is sufficiently large, as seen in Fig. 8(b).

Using our multitype branching process description of con-
tact tracking, not only can we unpick the interplay of clique
structure on the criticality of the process, which we have
explored in this section, but we can also estimate the expected
outbreak size. This is the focus of the following section. But
before proceeding, it is worth noting that integrating cliques
into network models increases the clustering coefficient. How-
ever, it is essential to recognize that increasing clustering
in networks can be done in different ways, and it may lead
to changes in other network properties, such as degree het-
erogeneity. Therefore, since clustering alone does not solely
dictate the epidemic threshold [24,26,27,55–63] or the com-
ponent size distribution [64] of network, running our SIRQ
dynamics on any clustered networks may not necessarily lead
to the same results we obtained here.

B. Subcritical outbreak sizes

Characterizing the spreading process described above also
provides access to methods for calculating quantities of in-
terest, such as the epidemic size, via the next-generation
matrix. We are interested in the outbreak size (the expected
total number of infected individuals in an outbreak) for a
given parameter set. We follow closely the method outlined
in Ref. [16], where they derived the expected epidemic size,
E , in the subcritical regime. We consider the contributions
for subtrees seed of each motif type (	z )—as well as the
expected number of offspring of each type from each motif
type, which has already been discussed in Sec. III A 3 via the
next-generation matrix. We also need to consider the number
of infected nodes contributed by each type, which will be
given by the vector 	I . The expected epidemic size, E , can be
found by solving the following two equations:(

I − MT
)
	z = 	I (7)

and

E = 1 + (	z 0) T M T 	z, (8)

where 	z 0 is the initial seeding of each motif type at the start of
the process, and I is the identity matrix. For example, consider
the case where we have each node as being part of three
cliques, where each clique contains three nodes (see Fig. 5),
the elements of 	z 0 are (3, 0, 0, 0)T and 	I are (0, 1, 2, 1)T . The
first element of 	z 0 is 3, as each node is a member of three
cliques, and, as this is the seed configuration, the contagion
has not spread to any other nodes, leaving all the other motif
types zero. We simply count the number of active nodes in
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FIG. 10. Outbreak size in the subcritical regime as a function of p
across the three network structures while considering the influence of
isolation probability, α. Nine curves are grouped into three sets (from
left to right) according to their isolation probabilities, with each set
containing three curves with α = 0.0, α = 0.25, and α = 0.5. These
groupings demonstrate the influence of α on outbreak size in the
subcritical regime. Increasing α or clique size reduces the outbreak
size, as calculated by Eq. (7) and Eq. (8) using the next-generation
matrix from mean-field approximation found in Sec. III B. Markers
represent the results of 50 000 simulations, while dotted lines depict
the results of the mean-field calculations presented in Sec. III A 2.

each motif for the elements of 	I . Referring again to Fig. 5,
types Z2 and Z4 both have one active node, and type Z3 has
two active nodes. We need to be careful not to double-count
nodes, and as such, we set the first element of 	I to zero. For
the full derivation, please refer to Ref. [16]. Using this, we
can now easily sweep through a parameter set to find the
relationship between p, the initial probability of infection, and
α, the probability of quarantine on the expected epidemic size
under our mean-field view of the disease process.

Looking at the qualitative behavior of the curves, we see
from Fig. 10 that as we increase p, naturally, the expected epi-
demic size rises; however, when we increase α, we see that the
average size of the outbreak decreases across all three network
topologies that we consider. Moreover, this effect is most
pronounced for networks with larger cliques, as this network
gives the quarantining behavior more opportunities to remove
possible infection paths via our mean-field approximation.
Note that the outbreak size in the subcritical regime does not
scale with the network size and decreases dramatically by
increasing α.

In the next section, we will present a complex contagion
approximation to contact tracing for calculating the epidemic
thresholds. The results of Fig. 10 also hold for this approx-
imation to the model, which is discussed in the next section.
Please refer to Appendix A for the complex contagion approx-
imation calculation for the expected cascade size.

IV. COMPLEX CONTAGION FORMULATION

Next, we will show that the model described in Sec. III A 2
is closely related to a SIR model, which allows the probability
of infection to change as a function of infection attempts.
In this related complex contagion model, we do not keep
track of isolated node states. Instead, we keep track of failed
infection attempts on the susceptible nodes. Since we know
that a contact tracing attempt preceded each infection attempt,

TABLE II. Nonzero elements of the next-generation matrix M4×4

in the complex contagion approximation for a 3-clique network. mi j

gives the expected number of Zi cliques from a Zj clique. As shown
in Fig. 5.

i, j mi j

1, 1 4p(1 − α)
1, 2 2p(1 − α)2

2, 1 2p(1 − α)[1 − p(1 − α)]
3, 1 p2(1 − α)2

4, 2 p(1 − α)2

we know there has been an equal number of infection and
contact tracing attempts. In this sense, each infection attempt
also carries a risk of isolation, and every attempt becomes
less likely to yield an infected node. This is in contrast to
the typical social complex contagion processes where each
infection attempt makes it more likely for the next one to
succeed.

We borrow the framework of the multitype branching pro-
cesses for complex contagion as introduced in Ref. [16],
where the infection state of the nodes characterizes motifs.
Notably, the model is the same apart from pk as has been pre-
viously defined in Ref. [16], where the probability of adoption
after k attempts is given by

pk = 1 − (1 − p)(1 − α)k−1. (9)

That is, the α parameter works exactly opposite to the contact
tracing here: The larger the α value, the larger the probabil-
ity that infection attempts beyond the first one are likely to
succeed.

In the SIR process with contact tracing each isolation fails
with probability 1 − α and a node is not isolated after k at-
tempts with probability (1 − α)k . If the person is not isolated,
then they have a probability of p being infected by an adja-
cent infected node. In total, the probability that a node gets
infected by a neighbor after k attempts, given that it is not yet
infected, is

p̂k = p(1 − α)k . (10)

This probability describes exactly the opposite behavior to
typical social complex contagion processes, where the prob-
ability of infection increases with the number of attempts.
Suppose we do not track whether the susceptible node is
quarantined or the infection has failed even though the node
was not quarantined. In that case, we can follow the method
and formulas given in Ref. [16] by simply replacing the
probability pk of Eq. (9) with p̂k from Eq. (10). In this pic-
ture, isolated and susceptible nodes are treated the same and
put into the susceptible compartment. We are not explicitly
tracking individuals in the Q compartment. However, we have
made the probability of infection a function of the number of
exposures as given by Eq. (10). In this approximation, we also
retain the infected and quarantined nodes QI in the susceptible
compartment S, which means that a Z1 cannot make a Z4

directly (Fig. 5).
Table II shows the nonzero elements of the next-generation

matrix for a 3-clique network, and Fig. 11 shows the result
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(a) (b)

FIG. 11. Comparison of the mean-field approximation intro-
duced in section Sec. II B with the complex contagion approximation
of Sec. IV. Panels are similar to the panels of Fig. 7. Here, markers
are the results of the simulations described in Sec. III A 2. Our simu-
lation results align with the bold curves, which are the results of the
mean-field approximations of Sec. III A. The thin curves result from
the complex contagion approximation introduced in Sec. IV, which
deviates slightly more from the other mean-field approximation when
α increases. The complex contagion approximation gives the lower
bound of critical transmission probability for all values of α.

of the complex contagion approximation when we set the
spectral radius of the new next-generation matrix to unity.
The results of this approximation are close to the simulations
and the mean-field solution presented in Sec. III A when the
quarantine probability α and clique size c are small. Larger α

and c values will lead to underestimated epidemic threshold
values for the infection probability p. As the critical curves
of the complex contagion are positioned below those of the
full contact tracing (see Fig. 11), it establishes the complex
contagion process as the lower bound (or estimate) for the
entire contact tracing process. With the complex contagion
formulation, the advancement in epidemic thresholds is less
pronounced. This is due to the slower upward trajectory of
the curves with increasing alpha, contrasting with the original
contact tracing formulation. So, the phenomenon of disease
spreading under contact tracing in networks with cliques can
be understood to be analogous to social complex contagion
but with the opposite and more minor effect. Intuitively, anal-
ogously to social complex contagion, this explains why it is
crucial to consider contact tracing in network models that
contain realistic group structures.

V. CONCLUSION AND DISCUSSION

In this work, we incorporate contact tracing into disease-
spread models on social networks, focusing on how local
group structures, modeled with cliques, impact the epidemic
thresholds and sizes. This model, contrasting with traditional
assumptions of fully mixed or treelike networks, demonstrates
greater efficacy of contact tracing in networks with cluster-
ing. Moreover, we show that disregarding group structure in
contact tracing is analogous to ignoring group structure in
complex contagion models where previous exposures increase
the chance of adoption or infection. This illustrates the possi-
ble benefits of contact tracing in real-world settings, especially
in the early stage of disease spread, where quarantining limits
the possible paths of infection that disease can take through a
network.

The dynamical model we used in this paper is an idealized
representation and, therefore, oversimplifies the complexities
of disease transmission and contact tracing. In actual social
situations, the implementation of contact tracing may vary
across different groups within the network, resulting in strong
effects on infection risk and threshold size. Further, our model
integrates factors related to contact tracing and isolation tim-
ing into a single parameter α. Contact tracing is always either
entirely successful or unsuccessful in this simplification. In
reality, contact tracing could be partially successful such that
the isolated individual passes on the infection to part of the
contacts that would have been infected without any inter-
vention. Additionally, there could be additional effects in
networks with cliques that are affected by the timing. Further
research is needed to understand how quarantining measures
impact epidemics on more realistic contact networks with
contact tracing and how outbreak sizes are distributed in such
settings.

The details of the epidemic model itself could also im-
pact the effectiveness of contact tracing in networks with
cliques. For example, asymptomatic individuals can be cru-
cial in disease spread as they can unknowingly transmit
the infection and therefore do not lead those people being
contact traced. However, in the presence of social groups,
both the asymptomatic individuals and the people infected
by them can be isolated through indirect connections, po-
tentially alleviating the problems caused by asymptomatic
individuals. Similarly, one could incorporate a noncontagious
exposed phase using the SEIR model [34,46] or various
other complications that would make the models more re-
alistic, such as temporal inhomogeneities of the contact
networks [65–67].

Our model’s strength lies in its simplicity and general
modeling practicality. It encapsulates identifying infected
individuals, alerting their contacts, and isolating those po-
tentially exposed within a single parameter, denoted α. This
versatile model can be applied to various interventions akin
to contact tracing. For instance, social distancing could theo-
retically fit into this model if we consider exposed individuals
maintaining a large-enough physical distance with probability
α from all their peers, thus mirroring the concept of self-
quarantine. While social distancing may be regarded as a
form of partial or complete self-isolation, the essence of both
practices—and of quarantining—is fundamentally similar. Al-
though these public health terms are often finely distinguished
in specific contexts, the underlying principles governing these
interventions are consistent.

In summary, our results highlight the importance of con-
sidering realistic social network structures when modeling
epidemics and interventions. Our model is deliberately sim-
plistic and is used to isolate key insights. The key conclusions
we draw are as follows: (1) contact tracing is more efficient in
social networks with groups than one would expect based on
the treelike models, (2) the effect of groups is more prominent
if the groups are larger, and if the contact tracing is more effi-
cient, and, finally, (3) SIR spreading under contact tracing can
be approximately understood as a complex contagion process
where multiple exposures reduce the infection probabilities.

This study’s simulations and numerical computations are
publicly available [68].
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FIG. 12. Outbreak size in the subcritical regime as a function of
p across the three network structures while considering the influence
of isolation probability α. Nine curves are grouped into three sets
(from left to right) according to their isolation probabilities, with
each set containing α = 0, α = 0.25, and α = 0.5. These groupings
demonstrate the influence of α on outbreak size in the subcritical
regime. Increasing α or clique size reduces the outbreak size, as
calculated by Eq. (7) and Eq. (8) using the next-generation matrix
from mean-field approximation found in Sec. IV. Markers represent
the results of 50 000 simulations, while dotted lines depict the results
of the mean-field calculations presented in Sec. III B.
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APPENDIX A: EXPECTED EPIDEMIC SIZE
FOR THE COMPLEX-CONTAGION PROCESS

We can calculate the expected epidemic size for a multitype
branching process in the subcritical regime, as explained in
Sec. III B. Here, we examine the expected epidemic sizes for
the complex contagion process. To do this, we need only to
replace the next-generation matrix from the mean-field de-
scription in Sec. III A 3 with that of the complex-contagion
described by Eqs. (7) and (8). As with the results from
Sec. III B, we find good agreement when comparing the re-
sulting curves for the expected epidemic (cascade) size, E , to
simulation results in Fig. 12. When examining the qualitative
behavior of the curves for expected epidemic size, we see
from Fig. 12 that as we increase p, as expected, the aver-
age epidemic size increases. However, increasing α decreases
each network’s average outbreak size. Moreover, this effect

is most pronounced for networks with larger cliques, as this
network gives the quarantining behavior more opportunities
to remove possible infection paths via the complex-contagion
approximation to the process.

APPENDIX B: EFFECTIVE REPRODUCTION NUMBER

We investigate the role of contact tracing in networks with
cliques and its effect on the effective reproduction number, Re.
Our analysis reveals that Re reduces in response to increases
in the tracing probability, α, and variations in the transmission
probability, p. To find Re in our simulations, we run our
discrete-time dynamics and count, on average, how many peo-
ple have been infected in each time step by a typical infected
node. In different trials, we start with a single infected node,
chosen uniformly randomly in the network. We follow how
many susceptible nodes it infects, even counting the isolated
ones, such as the case in Fig. 3(a). For finite networks, this
means that we need to run the simulation long enough for
the process to stabilize but short enough that the ratio of the
infected nodes to the network size remains close to zero. If
no new infection happens in a generation, then the disease
has died out. The total number of new infections caused by
the seed node would be the individual reproduction number
of that node, and we report it as the effective reproduction
number of generation t = 1. In the next step, we do the same
for the resultant active (infected but not in quarantine) nodes
generated by the seed node, one-after-another. Notice that
from this step on, a neighbor of an active node may be in
quarantine because of its interaction with other neighbors, not
with the one it is receiving the infection from, such as the
case shown in Fig. 3(b). In these cases, the active node cannot
infect the node that has been in quarantine via other nodes.
When we are done with all the active nodes of this generation,
we report the average number of individual reproduction num-
bers of these nodes as the effective reproduction at generation
t = 2. The process can be continued for more generations,
depending on the network size. For large-enough networks,
the ensemble average of effective reproduction number over
different trials starts to stabilize from generation t = 3 in the
parameter ranges we have explored, indicating that its value
remains constant for some time, depending on the network’s
size. Hence, we consider this stabilized value at t = 3 as the
effective reproduction number Re.

We observe that in networks with cliques of size r = 6 and
c = 2, 3, 4, and transmission probabilities of p = 1, 0.75, 0.5,
larger cliques correspond to a reduced need for quarantine
measures to bring Re down to 1. This relationship between
clique size and the required intensity of quarantine efforts
to control the spread is illustrated in Fig. 13, which aligns
with our theoretical predictions of Sec. III A and simulations
described in Sec. III A 2.

APPENDIX C: REPRODUCTION NUMBER
AND THE NEXT-GENERATION MATRIX

We will next give additional details on using the leading
eigenvalue of the M matrix as the reproduction number Re.
Two specific issues were only briefly discussed in the main
text: why does the leading eigenvalue of the reducible matrix
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(a) (b) (c)

FIG. 13. How contact tracing on clique network reduces the
effective reproduction number Re by increasing α. Effective repro-
duction number for different networks with cliques with r = 6 for
transmission probabilities (a) p = 1.0, (b) p = 0.75, and (c) p = 0.5.
The dotted lines are from the mean-filed calculations introduced
in Sec. III A, and the markers are from Monte Carlo simulations
described in Sec. III A 2. The yellow dashed lines, which overlap
with the red curves with stars, represent Eq. (1), which match the
cases where c = 2 (treelike networks). The larger the transmission
probability, the larger the differences between the curves of different
networks with cliques. The larger the clique size, the less effort we
need to quarantine people since networks with larger cliques reach
Re = 1 for lower values of α.

M tell us about the critical behavior, and why can the leading
eigenvalue be interpreted as Re?

The argument for the leading eigenvalue of the reducible
matrix M determining the criticality is very similar to the one
made in Sec. IV A 2 of Ref. [16]. We can divide the transi-
tions between Z states into two categories: ones that describe
changes within a clique and ones that describe the infection
arriving in a clique that previously only had susceptible nodes.
The transitions within cliques form a directed acyclic graph
(DAG), because the SIRQ process always moves in one di-
rection, i.e., from susceptible to infected or removed or from
infected to removed. DAGs can always be put into upper (or
lower) triangular form. Every motif that has at least one sus-
ceptible and one infected node will have a transition to the Z1

state, which has one infected node in an otherwise susceptible
clique. We can permute the matrix M by collecting these
motifs to a block B1. These motifs form a strongly connected
block because Z1 is the root of the DAG, and the block is thus
irreducible. The remaining states are still triangular, where
each motif forms its own block Bi, so in total, we have the
matrix in a normal form. Further, the motifs that do not belong
to the block B1 are dead ends as they cannot produce any
offspring with infected nodes.

The method described above can always be used to write
the reducible matrix M in its normal form such that blocks
Bi fill the upper triangle part of it. Since M is non-negative,
the spectrum of M is the union of the spectra of the Bi [51].
Here the Bi has zero eigenvalues for i 
= 1, and the largest
eigenvalue of M, i.e., the Perron root, is the same as the largest
eigenvalue of B1 which is an irreducible matrix. Given that we
initialize our spreading process sparsely such that there are
only Z1 motifs in the network in the beginning (in addition
to the fully susceptible ones we do not track), the long-term
dynamics will always be governed by the leading eigenvalue
of B1 (and therefore M) which [16].

The Re correspondence to the leading eigenvalue might
initially seem nonintuitive, considering that some transitions

FIG. 14. Number of motifs and the number of nonzero elements
of M for given clique size c.

create multiple infected nodes at one step. This indicates that
one needs to multiply the effects of transitions by the number
of newly infected nodes in them to compute the expected
number of newly infected nodes a typical infected node pro-
duces. However, this is not necessary. A key observation here
is that the number of Z1 motifs is directly proportional to the
number of infected nodes in the network. Every time a node is
infected, it will create nc − 1 of new Z1 motifs, where nc is the
number of cliques each node belongs to. In the next time step,
those motifs transition into one of the other motif types, and
the infected individuals become removed, so the number of
Z1 motifs is always updated to be nc − 1 times the number of
infected nodes. That is, at time step t , the number of infected
nodes is It = zt

1/(nc − 1), where zt
1 is the number of motifs

z1 at time t . Given that we are at the steady state, zt is the
leading eigenvector, i.e., zt+1 = Mzt = λzt , and zt+1

1 = λzt
1,

which means that It+1 = λIt .

APPENDIX D: AUTOMATIC GENERATION
OF THE NEXT-GENERATION MATRICES

We show how the next-generation matrix can be con-
structed for any clique size c by an algorithm described here.

FIG. 15. Schematic of the impact of the short-time quarantine.
We track the number of susceptible, infected, and recovered nodes
for the three main cliques we consider. we can note that the first
instance where a previously quarantined susceptible node can meet
an infected node appears in the 4-clique.
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FIG. 16. Differences in the critical regions obtained from the
largest eigenvalues of the mean matrix for the original quarantine
time (labeled Q) and the short quarantine time (labeled SQ). Inset
shows a subset of parameter values from which the difference be-
tween the two quarantine times is more apparent.

The construction is done by going through every motif and
considering the transitions and expected values leading out
of that motif. That is, we go one motif at a time, starting
from the one with only a single infected node and the rest
of the nodes susceptible, constructing the motifs one time and
stepping away from that motif and the expected number of
new motifs produced.

(a)

(b)

(c)

FIG. 17. Phase transitions from a disease-free equilibrium to an
endemic state for 2-, 3-, and 4-clique networks with degree 6 as intro-
duced in Sec. II A. Nodes in quarantine can leave the Q compartment
at every time step with probability α′ = 0.4. [(a)–(c)] The outbreak
size E , normalized to the network size, is shown on the vertical
axis for when (a) α = 0 (no contact tracing), (b) α = 0.25, and (c)
α = 0.5, from top to bottom respectively. Note that the transition
points are shifted slightly to the right for larger clique sizes, c,
even when there is no contact tracing (α = 0), but this difference
is substantially amplified for larger α values. Results are based on
Monte Carlo simulations introduced in Sec. III A 2 and Appendix E.

FIG. 18. Life stages or diffusion patterns of a 4-clique. Similar
to Fig. 5 for a 3-clique. We can generate the next-generation matrix
for any clique size with our code introduced in Appendix D.

We can note that each clique motif is uniquely defined by
the number of nodes in each compartment; that is, we define
each unique clique motif by Zi = (nS, nI , nR) as one that has
nS susceptible nodes, nI infected nodes, and nR removed (ei-
ther recovered or quarantined) nodes. Referring back to Fig. 5,
where a 3-node clique has four possible clique motifs and, for
example, Z1 = (2, 1, 0) represents two susceptible nodes, one
infected, and none recovered. Initially, a general clique with
c nodes will start with the clique motif Z1 = (c − 1, 1, 0).
Given the probability of the susceptible nodes becoming in-
fected, we can calculate the transition probability from Z1 to
either Z2, Z3, or inactive cliques with no new infected nodes.
We can calculate the possible transition probability between
all clique motifs in this fashion. Once we have the transition
probabilities, it is easy to calculate the expected number of
newly infected nodes from each clique motif transition and,
therefore, calculate the mean matrix.

All this translates into the following general pipeline for
processing any clique size we might wish, where we pro-

TABLE III. Nonzero elements of the next-generation matrix M
for a 4-clique network as explained in Sec. III A 3. mi j gives the
expected number of Zi cliques from a Zj clique, as shown in Fig. 18.
nc is the number of cliques of size c = 4 which for an r-regular
c-clique satisfies the identity nc(c − 1) = r.

i, j mi j

1, 1 3p(−αnc + α + nc − 1)

1, 2 2p(−αnc + α + nc − 1)

1, 3 p(1 − α)(nc − 1)[(α − 1)(p − 1) + 1]

1, 5 −p(α − 1)(nc − 1)

2, 1 −3p(α − 1)3(p − 1)2

3, 1 3p2(α − 1)3(p − 1)

4, 1 −p3(α − 1)3

5, 1 −6αp(α − 1)2(p − 1)

5, 2 −2p(α − 1)2(p − 1)

6, 1 3αp2(α − 1)2

6, 2 p2(α − 1)2

7, 1 3α2 p(1 − α)

7, 2 2αp(1 − α)

7, 3 p(1 − α)[(α − 1)(p − 1) + 1]

7, 5 p(1 − α)
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cess the clique motifs one at a time with the following
rules:

(a) If the motif Zi has no infected nodes, then we do
nothing.

(b) If it has one or more infected nodes, then we then cre-
ate transitions to new motifs Zj = (nS + δnS, nI + δnI , nR +
δnR), for all δnI ∈ {1, . . . , nS}, δnR ∈ {0, . . . , nS − δnI}, and
δnS = −δnI − δnR.

(c) If those new motifs have not been processed before,
then they are added to a queue for being processed.

The transition probabilities mji can then be computed for
j 
= 1 by(

nS

δnI

)(
nS − δnI

δnR

)
p(nI )δnI [1 − p(nI )]nS+δnS

· αδnR (1 − α)nS−δnR , (D1)

where the probability of nI nodes causing a node to get in-
fected is

p(nI ) =
nI −1∑
k=0

(α − 1)k (1 − p)k p. (D2)

The element m1i can be computed by

m1i = (nc − 1)
∑
j 
=1

δnI ( j, i)mji, (D3)

where the value δnI ( j, i) is the value of δnI in the transition
from Zi to Zj .

This procedure will yield a sparse matrix, M, where the
size of the matrix and the number of nonzero elements grow
as shown in Fig. 14. This process allows us to automatically
generate the mean matrices for any clique size we wish to ex-
amine efficiently. See Ref. [68] for the Python implementation
of this process.

APPENDIX E: IMPACT OF SHORTENED
QUARANTINE TIME

In the main text, we assumed that quarantine was forever,
or effectively longer than the length of time a clique could
have at least one infected node to propagate the infection.
Here we can consider this assumption’s effect on the main
three network topologies that we consider, where c = 2, 3,

and 4, where a node is only quarantined for a single time
step. This means a susceptible node placed in the quarantine
compartment is returned to the susceptible compartment after
one time step.

For the 2-clique case, see Fig. 15(a). This will not have any
effect, as the clique only represents links, and any susceptible
quarantined node will not have any infected neighbors in the
following time step. For the 3-clique case, see Fig. 15(b).
We have the same situation as the 2-clique case. In any case,
where the node is infected, and a susceptible node is in the
quarantine compartment, in the following step, there will not

TABLE IV. Nonzero elements of the next-generation matrix M
in the complex contagion approximation for a 4-clique network. mi j

gives the expected number of Zi cliques from a Zj clique.

i, j mi j

1, 1 3p(nc − 1)

1, 2 −2(nc − 1)[(α − 1)(p − 1) − 1]

1, 3 (nc − 1)[(α − 1)3(p − 1)2 + 1]

1, 5) (nc − 1)[(α − 1)2(p − 1) + 1]

2, 1 3p(p − 1)2

3, 1 3p2(1 − p)

4, 1 p3

5, 2 2(1 − α)(p − 1)[(α − 1)(p − 1) − 1]

6, 2 (αp − α − p)2

7, 3 (α − 1)3(p − 1)2 + 1

7, 5 (α − 1)2(p − 1) + 1

be any active infected node to infect the returned susceptible
node. The 4-clique is the only case where the shortened
quarantine comes into play. This clique size has one possible
infection path, illustrated in Fig. 15(c), that can result in an
additional infection for this short quarantine time. If we were
to readjust the mean matrix to account for this and recalculate
the critical regions, see Fig. 16, then we can see that it is hard
to discern any difference in the overall behavior. If we concern
ourselves with the inset of Fig. 16, which concentrates on a
smaller parameter region, then we can see that there is indeed
a thin band of parameters for which the new quarantining
behavior is super critical, but the original system is not. This
difference is so small due to the presence of only a single set
of low-probability events in which a returned susceptible node
plays any role, and as such, our overall results are valid.

To demonstrate that the exit of nodes from the quarantine
Q compartment does not significantly alter the key epidemic
outcomes we focus on, we have adjusted the model described
in Sec. III A 2. In this modified model, at each time step, nodes
in quarantine have a probability α′ of leaving the Q compart-
ment. Consequently, nodes from the QS and QI compartments
transition to the S and R compartments, respectively, with
probability α′. This adjustment was made to reaffirm the re-
sults previously presented in Fig. 4(a), specifically to show
that these changes do not affect the epidemic thresholds of
interest. Figure 17 illustrates this scenario with α′ = 0.4.

Next-generation Matrices for 4-cliques

Figure 18 shows the life stages of a 4-clique. For this case,
the next-generation matrix according to the mean-filed and
complex contagion approximations are given by Table III and
Table IV, respectively.
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