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Applications of information geometry to spiking neural network activity
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The space of possible behaviors that complex biological systems may exhibit is unimaginably vast, and
these systems often appear to be stochastic, whether due to variable noisy environmental inputs or intrinsically
generated chaos. The brain is a prominent example of a biological system with complex behaviors. The number
of possible patterns of spikes emitted by a local brain circuit is combinatorially large, although the brain may
not make use of all of them. Understanding which of these possible patterns are actually used by the brain,
and how those sets of patterns change as properties of neural circuitry change is a major goal in neuroscience.
Recently, tools from information geometry have been used to study embeddings of probabilistic models onto a
hierarchy of model manifolds that encode how model outputs change as a function of their parameters, giving
a quantitative notion of “distances” between outputs. We apply this method to a network model of excitatory
and inhibitory neural populations to understand how the competition between membrane and synaptic response
timescales shapes the network’s information geometry. The hyperbolic embedding allows us to identify the
statistical parameters to which the model behavior is most sensitive, and demonstrate how the ranking of these
coordinates changes with the balance of excitation and inhibition in the network.
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I. INTRODUCTION

A major obstacle to understanding the computational un-
derpinnings of the brain is the high dimensionality of its
inputs—environmental stimuli such as light and sound—and
its outputs—the activity of neurons and the organismal be-
haviors they enact [1–8]. The output space of a neural circuit
with N neurons is unmanageably large: the possible spike
train patterns of such a network over a trial of time length T
divided into time bins of size �t forms a data- or output-space
of dimension NT/�t . As �t → 0, this output space becomes
infinite-dimensional. However, the activity of a neural popula-
tion does not occupy this entire space, as activity is correlated
across time and neurons, and the actual output of any given
neural circuit constitutes just a subset of all possible observa-
tions. Perhaps surprisingly, analysis of experimental data has
repeatedly found that under many conditions collective neural
activity is low dimensional, often comprising less than ≈102

dimensions of this infinite space [9–20].
Compounding this challenge is the fact that the neural

properties and architectures that give rise to observed pat-
terns of behavior are not unique: many distinct neural circuits
give rise to essentially identical patterns of activity [21–24].
This multiplicity of possible underlying network properties is
known as “degeneracy.” While degeneracy makes it difficult,
if not impossible, to precisely infer the circuitry underpinning
observed activity patterns, it could prove advantageous for
treating circuitry exhibiting pathological activity. If there are
many possible circuit configurations that produce “normal”
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activity, then it may be possible to tune networks back to nor-
mal operation by targeted yet modest perturbations using, e.g.,
pharmacological manipulations rather than electrophysiologi-
cal inputs, leading to more effective treatments of neurological
disorders.

Understanding how to take advantage of degeneracy in
neural circuitry requires a formalism for quantifying the simi-
larity between network models with different parameters, and
identifying directions in parameter space along which model
output changes dramatically or minimally under coordinated
changes in model parameters. Brute force simulations of net-
work activity is computationally expensive and impractical
for circuits larger than a few neurons. The tools of informa-
tion geometry offer a possible formalism [25–32] that may
be easier to apply to larger networks and begin to under-
stand how to most effectively move a network through its
parameter space to achieve desired outputs, at the cost of
mapping models into abstract “output spaces.” Information
geometry represents the output space of a model as a manifold
parametrized by the parameters of the model, which in our
context will be properties of the neurons and their synaptic
connections (among many other possibilities, such as stimulus
or current inputs). Notably, information geometric analyses
of several kinds of complex systems in biology yield model
manifolds that can be described as a hierarchy of “hyperrib-
bons” [33–40]. Hyperribbons are manifolds with a few long
directions of the manifold, representing “stiff” directions that
separate disparate activity states, and many thin directions,
which represent “sloppy” directions that describe networks
with very similar model outputs. These model manifolds come
equipped with a natural metric that defines a sense of distance
between model behaviors. This makes it possible to determine
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the stiff combinations of parameters that predict the bulk of
the neural response space of the network model. This opens
a path for better understanding of how to manipulate network
properties to tune a circuit between different regimes of ac-
tivity by identifying directions along hyperribbons that induce
the greatest or smallest changes in model output as parameters
are adjusted.

In neuroscience, tools from information theory and infor-
mation geometry have traditionally been used to understand
sensory coding by investigating how neural responses can
optimally encode different distributions of sensory inputs
[41–53]. Notably, the hierarchical nature of biology has been
observed in low-dimensional—i.e., stiff—representations of
biological data. For example, a highly hierarchical geometric
structure underlies the natural correlations of odors from a
variety of natural sources such as fruit [54], the expression of
genes across cell types and stages of differentiation in humans
[55], and spatial representations in the mouse hippocampus
[56].

In contrast, in this work we use information geometry as
a means of understanding the structure of complex models
themselves, and how these models reflect changes in network
activity produced by changing intrinsic or synaptic proper-
ties of neural populations, in line with foundational work
applying ideas from information geometry to study abstracted
representations of spiking networks [25,29], networks of rate
models [28,30–32], or neural field models [26,27]. In this
work we leverage recently developed information geometric
tools [39,40] and path integral representations of spiking neu-
ral population models [4,57] to study a biologically plausible
leaky integrate-and-fire model whose parameters are directly
interpretable in terms of measurably biophysical properties,
such as membrane and synaptic timescales.

While it is experimentally impractical to grow neural net-
works with different properties but the same output patterns,
the cell and synaptic properties of neurons can be tuned
pharmacologically using neuromodulators [58–60]. To this
end, we investigate how the balance of single-neuron prop-
erties and the properties of the synaptic connections between
neurons shape the hierarchy of possible outputs of the net-
works. Our focus on the contrast between single neuron versus
synaptic properties is loosely motivated by experimental work
studying the action of dopamine depletion and synaptic block-
ing on neural firing patterns [59]. We abstract the action of
dopamine depletion in these experiments into changes in the
synaptic and membrane timescales and study how changing
the membrane and synaptic time constants of the networks
shape the manifold hierarchy. We also investigate how these
changes are modified if the balance of excitation and inhi-
bition in the network is disrupted, changing the hierarchical
ordering of the model output space.

We organize the paper as follows: in Sec. II we introduce
the class of stochastic spiking models we will be working with
and the reduction to a population-based formalism. Then, in
Sec. III, we give a self-contained explanation of the “isKL”
embedding method introduced by Ref. [40], and how it applies
to our population model. We detail the results of the appli-
cation of the isKL method in Sec. IV, and finally discuss the
interpretation and significance of our results and methodology
in Sec. V.

II. MODELS

A. Nonlinear Hawkes process

To model the spiking dynamics of individual neurons, we
consider a nonlinear Hawkes process [4,57]

dVi

dt
= −τ−1

m (Vi − εi ) + Ii

+ τ−1
s

⎛
⎝μext − Jself ṅi(t ) +

n∑
j=1

wi j ṅ j (t )

⎞
⎠, (1a)

ṅi(t )dt ∼ Poiss[φ(Vi(t ))dt], (1b)

where Vi is the membrane potential of neuron i, εi is the leak
reversal potential, wi j is the strength of a synaptic connec-
tion from neuron j to neuron i, and −Jself is an inhibitory
self-coupling to implement post-spike refractory dynamics.
The two currents μext and Ii represent an average current
received from an external network and an experimentally in-
jected current that differs by neuron, respectively. The process
ṅi(t ) is the spike train of neuron i, and φ(Vi(t ))dt is the in-
stantaneous firing rate nonlinearity that determines a Poisson
event rate conditioned on the membrane potential of a given
neuron. For the specific models studied here, φ(x) = 1

2 [x +
(x2 + 1/2)1/2], which represents a soft rectified linear acti-
vation function. Finally, τm and τs are modulated parameters
corresponding to membrane and synaptic timescales, respec-
tively. Equation (1a) of this model assigns leaky integration
dynamics to the membrane potential of each individual neu-
ron, while Eq. (1b) assigns conditionally Poisson spiking
dynamics to each neuron. Taken together, this model can be
thought of as a soft-threshold leaky integrate-and-fire system.

Foreshadowing the coming analysis, we note that analyt-
ically calculating the statistical properties of the models in
Eq. (1) is generally intractable, and to make headway we
implement a Gaussian-process approximation of the network
dynamics around the mean-field activity.

We can obtain a mean-field approximation of the steady-
state solution for the membrane potential dynamics in Eq. (1a)
by marginalizing out the spiking dynamics and assuming the
distribution is sharply peaked around the most probable path
of Vi(t ). Assuming the network achieves a steady state at
long times, this procedure gives us a set of transcendental
equations that can be solved numerically:

V mf
i = εI + τmIi

+ τm

τs

⎛
⎝μext − Jselfφ

(
V mf

i

) +
∑

j

wi jφ
(
V mf

j

)⎞⎠, (2)

where the V m f
i , the solutions of these equations, are the

mean-field predictions of the steady-state values of membrane
potentials, with φ(V m f

i ) being the corresponding mean-field
prediction of the firing rates. We find the solutions to these
transcendental equations using a forward-Euler integration
scheme.

Following the prescription of Refs. [61–63], the time-
dependent distribution of model behaviors described in Eq. (1)
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can be written in the form of a path integral,

P[V(t ), ṅ(t )] =
∫

D[Ṽ, ñ]e−S[Ṽ,V,ñ,ṅ], (3)

with an action S given by

S[Ṽ, V, ñ, ṅ] =
∫

dt
n∑

i=1

{
Ṽi

[
V̇i + Vi − εi

τm
− Ii

− τ−1
s

(
μext − Jself ṅi(t ) +

∑
j

wi j ṅ j (t )

)]

+ ñi(t )ṅi(t ) − (eñi (t ) − 1)φ(Vi )

}
. (4)

The Gaussian process approximation of the membrane dy-
namics in Eq. (1a) is obtained by marginalizing out the spiking
dynamics from the action in Eq. (4) and taking a saddle-point
approximation of the action around the mean-field solution in
Eq. (2) (see Appendixes A and B for details). The resulting
action corresponds to the Gaussian stochastic process given
by [4,62]

dV = A(Vm f − V)dt + �dWt , (5a)

Ai j = δi j
(
τ−1

m + τ−1
s Jselfφ

′(V mf
j

)) − τ−1
s wi jφ

′(V mf
j

)
,

(5b)

(��T )i j = τ−2
s

∑
k

[
(−δikJself + wik )

× (−δ jkJself + w jk )φ
(
V mf

k

)]
, (5c)

where dWt is a standard Wiener process and we use the Itô
convention. We note that Eq. (5a) is an Ornstein-Uhlenbeck
(OU) process, albeit one in which the drift and diffusion ma-
trices are dependent on the mean-field values of the membrane
potential.

In principle, the network modeled in Eq. (1) and approx-
imated in Eq. (5) could be of arbitrary size. To make our
information geometric analysis tractable, however, we reduce
the model to a three-population model, comprising excitatory
and inhibitory populations, and a single neuron targeted with
an injected current; this is depicted diagrammatically in Fig. 1.
We start by considering the connectivity matrix to be random
with each entry being a Bernoulli variable with probability
p being scaled by a connection type-dependent value wIJ .
To produce the more tractable reduced model, we take a
population-averaging approach to the approximated process
in Eq. (5). We now use an uppercase subscript to denote a
population-averaged variable. For example,

VI ≡ 1

NI

∑
i∈I

Vi(t ),

where we use uppercase indices I, J, K ∈ {0, 1, 2} to denote
the different populations, with I = 0 the single test neuron,
I = 1 the excitatory population, and I = 2 the inhibitory pop-
ulation. The dynamics of the population-averaged membrane
potentials under the Gaussian approximation now follow a

FIG. 1. Network model. (a) A graphical representation of the net-
work architecture being studied. (b) An example raster plot generated
from an extended network of spiking neurons modeled by Eq. (1).

lower-dimensional version of Eq. (5a) with drift and diffusion
matrices given by

AIJ = δIJ
(
τ−1

m + τ−1
s Jselfφ

′(V mf
I

))
− τ−1

s pwIJNJφ
′(V mf

J

)
, (6a)

(��T )IJ = τ−2
s

∑
K=0,1,2

[(
−δIK

Jself

NK
+ pwIK

)

×
(

−δJK
Jself

NK
+ pwJK

)
NKφ

(
V mf

K

)]

≈ τ−2
s

∑
K=1,2

p2wIKwJK NKφ
(
V mf

K

)
. (6b)

The approximation in the last line above comes from the fact
that N1, N2 � 0. The population-averaged mean-field equa-
tions are now

V mf
I = εI + τmII + τm

τs
μext

+ τm

τs

⎛
⎝−Jselfφ

(
V mf

I

) +
∑

J=0,1,2

pwIJNJφ
(
V mf

J

)⎞⎠.

(6c)

We formally derive the Gaussian-process approximation of
the full-network [Eq. (5)] and the population-averaged ap-
proximation [Eq. (6)] in Appendix A. We also note that the
statistics of the model in Eq. (6) are equivalent to those
derived by first taking a population average of the mem-
brane potential dynamics and then applying the Gaussian
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approximation framework. This second derivation is provided
in Appendix B.

The spiking model we study centers around a balanced
network, specifically a network that is not finely tuned. This
notion of fine-tuning arises from a standard derivation of
balance equations for the model system (see Appendix D).
In short, we can look at the average external input κI into
population I . For our model, we can approximate κI to leading
order as

τ−1
s κI ≈

√
N

(
1√
N

(
II + τ−1

s μext
)

+ τ−1
s

{
pwI1

N1√
N

φ(V1) + pwI2
N2√

N
φ(V2)

})
,

where VI is the population-averaged membrane potential for
population I . For the model to be in a balanced state, the
variance of the synaptic input should be O(N0) which in turn
implies the synaptic weights should scale as wIJ ∼ 1/

√
N .

Additionally, we assume that NI ∝ N and 〈II〉, μext ∝ √
N .

The balanced state of the model also requires that all κI be
O(1). For this to be true as N → ∞, the terms in the paren-
theses must vanish. This gives us a linear system that uniquely
defines (φ(V1), φ(V2)):

−
[

I1 + τ−1
s μext

I2 + τ−1
s μext

]
= 1

τs

[
pw11N1 pw12N2

pw21N1 pw22N2

][
φ(V1)

φ(V2)

]
. (7)

From this set of equations, we derive two cases. First, if
the matrix on the right-hand side of Eq. (7) is singular and
neither of the columns of the matrix are trivially the zero
vector, the columns must be scalar multiples of each other. We
refer to this as a “fine-tuned” spiking model. If the left-hand
side of Eq. (7) is also a multiple of the columns, the system
admits an infinite set of solutions (φ(V1), φ(V2)). Otherwise,
it admits no solution. Such a network is thus finely tuned
to specific inputs. In contrast with this, we have “untuned”
spiking models. In this case, the matrix on the right-hand side
of Eq. (7) is invertible and the system admits a unique solution
(φ(V1), φ(V2)). This in effect applies constraints on the values
of {wIJ}, which we refer to as the balance equations (D1) and
(D2) (see Appendix D for a derivation). Moving forward, we
consider only spiking models derived from a balanced, un-
tuned network. We also introduce a linear nonspiking model
that will serve as a baseline comparison.

B. Linear nonspiking model

Although the Gaussian process approximation of the spik-
ing network will have a Gaussian steady-state distribution of
the membrane potentials, the parameters of this distribution
vary nonlinearly with the self-consistent mean-field solutions.
To demonstrate that the results we observe are consequences
of the mean-field treatment of the spiking network, and not
just the behavior of Gaussian processes more generally, we
also construct a simpler model of networked, linear nonspik-
ing (or “graded potential”) neurons. We assume the neurons
are injected with large numbers of synaptic input that sum
together to be approximately Gaussian, with nonzero mean

μext, creating a stochastic system with dynamics described by

dVi

dt
= − τ−1

m (Vi − εI ) + Ii + τ−1
s μext − τ−1

s Jselfφ(Vi )

+ τ−1
s

∑
j

wi jφ(Vj ) + ξi(t ). (8)

We choose the transfer function φ(·) to be the identity
function [i.e., φ(x) = x], which could be viewed as an approx-
imation of a nonlinear activation function around the setpoint
xi = 0, but allows for exact results. The processes ξi(t ) are
zero-mean Gaussian noise synaptic input from neurons exter-
nal to the network being examined, and thus they scale with
τ−1

s . We define the covariance of the noise processes {ξi(t )} as
follows:

〈ξi(t )ξ j (t
′)〉 = τ−2

s δi jμextδ(t − t ′).

After population-averaging, the nonspiking model be-
comes another OU process:

dV = A
[
A−1

(
τ−1

s μext + τ−1
m εI + I

) − V
]
dt + �dWt

= A(μ − V)dt + �dWt . (9)

The drift and diffusion matrices are defined as follows:

AIJ = δIJτ
−1
m + τ−1

s w∗
IJ ,

w∗
IJ = −δIJJself + pwmod

IJ NJ ,

(		T )IJ = τ−2
s δIJ

μext

NI
.

Here and in the following sections, w∗ denotes the effec-
tive connectivity matrix for the linear nonspiking models.
The values of wmod are modulated depending on the desired
excitation-inhibition conditions, which will be discussed in
Sec. II D.

The linear form of the population-averaged nonspiking
model permits more analytic study than the corresponding
spiking models. Ornstein-Uhlenbeck processes like those in
Eqs. (6) and (9) admit a Gaussian steady-state distribution if
all eigenvalues of the drift matrix are positive [64]. From the
form of the drift matrix for the linear model [Eq. (9)] there is a
correspondence between eigenvalues of the drift matrix A and
the connectivity matrix w∗:

λi,A = τ−1
m − τ−1

s λi,w∗ .

From the stationarity condition on the eigenvalues of A and
this correspondence between eigenvalues of A and w∗, we
can derive a stability boundary for the (τ−1

m , τ−1
s ) inverse

timescale space:

τ−1
m > τ−1

s λw∗ ∀ λw∗ . (10)

Because we choose φ(·) to be linear in this nonspiking
model [Eq. (9)], the stability condition in Eq. (10) is exact
and predicts when the model admits a stationary statistical
solution. The loss of stability observed in OU processes often
corresponds to a regime in which the random variables may
grow without bound. As the firing rate nonlinearity φ(x) used
in the spiking model [Eq. (1)] is asymptotically linear in the
x > 0 regime, we expect the stability condition (10) to ap-
proximately predict when a similar transition to an explosive
nonstationary state occurs in spiking models that have the
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TABLE I. Model parameters. Descriptions and numerical values for the parameters for the nonspiking and spiking model types.

Parameter Description Value

N Total number of neurons 1000

Ne Number of excitatory neurons 0.8N

Ni Number of inhibitory neurons 0.2N

p Probability of a directional synaptic connection wi j between any two neurons 0.1

−Jself Self connection for a neuron of type E-I designed to capture post-spike refractory dynamics −5

εI Leak reversal potential for neuron i 0

II Injected current impinging on neuron population I

{
0.02 if target

0 otherwise

μext Mean input from network-external neurons 0.1

wee,base Total expected synaptic input weight from exc. neurons to exc. neurons 285

wie,base Total expected synaptic input weight from exc. neurons onto inh. neurons 300

wei,base Total expected synaptic input weight from inh. neurons to exc. neurons −902.5

wii,base Total expected synaptic input weight from inh. neurons to inh. neurons −950

φ(x) Firing rate transfer function

⎧⎨
⎩

x if nonspiking

x+
√

x2+ 1
2

2 if spiking

τm Membrane timescale Variable

τs Synaptic timescale Variable

same connectivity wIJ as the nonspiking models. Nonstation-
arity in the spiking model approximations must be detected
numerically.

C. Stationary distributions

As mentioned above, the stationary distributions admitted
by Ornstein-Uhlenbeck processes are Gaussian when they
exist [64]. Consider a general N-dimensional OU process:

dX = A(μ − X)dt + �dWt .

The stationary distribution, when it exists, is described by the
multivariate normal probability density [64]

p(X) = 1

(2π )N/2√det(C)
e− 1

2 (X−μ)T C−1(X−μ),

where the stationary covariance C is given by the solution to
the matrix equation [64]

��T = AC + CAT .

In practice, the stationary covariance matrix can by found by
linearizing the matrix equation and solving the resulting linear
system numerically.

D. Network architectures

Now, we turn back to our network models. We con-
sider a population of excitatory and inhibitory neurons in
which a single excitatory target neuron is injected with an
external driving current. The full network contains N =
1000 sparsely connected neurons. We reduced the full net-
work model into representative a three-neuron network by
population-averaging, as depicted in Fig. 1(a) and described

in Eq. (6), representing the excitatory target neuron, the ex-
citatory population, and the inhibitory population. Table I
contains descriptions and numerical values for the parameters
used in the present study.

In addition, we would like to adjust the relative recurrent
excitation and inhibition in the networks. To accomplish this,
the base connection weights given in Table I are scaled by a
ratio r > 0 depending on the desired activity regime:

wmod
Xe = re(r)wXe,base =

{
rwXe,base if r � 1

wXe,base otherwise,
(11a)

wmod
Xi = ri(r)wXi,base =

{
wXi,base if r � 1
1
r wXi,base otherwise.

(11b)

The ratio function re(r) boosts the recurrent excitatory
weights when r > 1, but holds the excitatory weights constant
when r < 1. Conversely, ri(r) boosts the recurrent inhibitory
weights when r < 1 and holds them constant when r > 1.
Taken together, these functions lead to a regime of strong
recurrent inhibition (an “inhibitory regime”) when r < 1 and a
regime of strong recurrent excitation (an “excitatory regime”)
when r > 1.

The connection matrices w and w∗ of the population-
averaged spiking and nonspiking models, respectively, are
now constructed from the full-network parameters and scaling
of excitation and inhibition. All matrices w and w∗ use the
same indexing with I = 0 denoting the target neuron “pop-
ulation,” I = 1 denoting the remaining excitatory neurons,
and I = 2 denoting all inhibitory neurons. The connection
strengths used in the linear nonspiking model in Eq. (9) is
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then given by

w∗ = −

⎡
⎢⎢⎣

Jself 0 0

0 Jself 0

0 0 Jself

⎤
⎥⎥⎦ + 1√

pN

⎡
⎢⎢⎣

pwee p(Ne − 1)wee pNiwei

pwee p(Ne − 1)wee pNiwei

pwie p(Ne − 1)wie pNiwii

⎤
⎥⎥⎦

= −

⎡
⎢⎢⎣

Jself 0 0

0 Jself 0

0 0 Jself

⎤
⎥⎥⎦ + 1√

pN

⎡
⎢⎢⎣

pre(r)wee,base pre(r)(Ne − 1)wee,base pri(r)Niwei,base

pre(r)wee,base pre(r)(Ne − 1)wee,base pri(r)Niwei,base

pre(r)wie,base pre(r)(Ne − 1)wie,base pri(r)Niwii,base

⎤
⎥⎥⎦. (12)

The 1/
√

pN scaling of the connection weights arises from
the balance conditions mentioned at the end of Sec. II A and
derived in Appendix D. The connection matrices used by the
spiking models described generally in Eq. (6) is given by

w = 1√
pN

wmod

= 1√
pN

⎡
⎢⎢⎣

re(r)wee,base re(r)wee,base ri(r)wei,base

re(r)wee,base re(r)wee,base ri(r)wei,base

re(r)wie,base re(r)wie,base ri(r)wii,base

⎤
⎥⎥⎦.

(13)

Finally, we would like a measure of the balance of exci-
tation and inhibition (E-I) within a class of models. As each
model type corresponds to many particular models with differ-
ent values of the inverse timescales (τ−1

m , τ−1
s ), we require a

proxy measure for the E-I ratio to describe the whole class.
In line with the method for adjusting the relative strength
of recurrent excitation and inhibition introduced above, we
assign a ratio of connection weights into the bulk excitatory
population for a given model and a given modulation r. For the
nonspiking models, we give the log-ratio R of these weights:

R = log10

∣∣∣∣∣w
∗
2,1 + w∗

2,2

w∗
2,3

∣∣∣∣∣.
To make an accurate comparison with the nonspiking models,
the E-I values for the spiking models are reported using this
same measure (for a given value of modulation parameter r).

We note here that the same balanced-network calculations
(see Appendix D) that gave rise to the definitions of fine-tuned
and untuned formally define a notion of balance. A balanced
spiking network based on the model architecture used here
must satisfy constraints on the weights of w [Eq. (13)], either
Eq. (D1) or Eq. (D2). The base connection weights for the
unadjusted network—i.e., r = 1 in Eq. (11)—were chosen to
meet these balance criteria, and the functions re(r) and ri(r)
serve to tilt the excitation-inhibition balance with respect to
this measure.

E. Timescale sampling

To embed and visualize the model manifolds of interest, we
must sample points on the manifold characterized by different
values of the two modulated parameters. We do this by sam-
pling a portion of the inverse-timescale parameter space that
satisfies the stability condition given by Eq. (10) and where

both inverse-timescales are positive. We apply a curvilinear
grid to this region, uniformly sampling the radial and angular
components. The radial distance components d of the grid
are taken over a fixed range d ∈ [0.0025, 0.03] ms−1. To
apply both the stability boundary and positivity constraints,
the lower bound of the angular component α of the sample
grid is set to a fixed value while the upper bound is set either
by the stability boundary described by Eq. (10) or to a fixed
value, whichever is more stringent:

tan (α) ∈
[

0.1, min

(
1

max {λw∗ } , 500

)]
.

The conditions for this maximal sampling are summarized in
Table II. It is important to note that the stability boundary is
determined by the eigenvalues of the connectivity matrix w∗,
and thus the stability boundary and the sampling region are af-
fected by the induced E-I balance is adjusted through its affect
on w∗. The spiking models use the connection matrix from
the equivalent nonspiking model to set the sampling range.
The maximal sampling scheme is depicted diagrammatically
in Fig. 2.

After the maximal sampling of parameter space for each
model type for each E-I condition, sample points from the
inverse-timescale space are subject to further exclusionary
criteria. For both the spiking- and nonspiking-type models,
sample points are excluded if they cause either the drift ma-
trix A or the covariance matrix C to become singular. The
singularities in these matrices have been observed to occur
numerically near the theoretical stability boundary [Eq. (10)].
In addition, sample points for the spiking models are excluded
if the Euler integration used to find the mean-field solutions to
Eq. (6c) does not converge. The integration is determined to
be numerically nonconvergent if the rate of change of the sys-
tem either exceeds a predetermined value during integration

TABLE II. Maximal sampling parameters. Descriptions and nu-
merical values for the parameters that are constant across the
nonspiking, spiking with fine-tuning, and spiking without fine-tuning
model types.

Radial distance d Angle α

Minimum value 0.0025 ms−1 0.1

Maximum value 0.03 ms−1 min( 1
max{λw∗ } , 500)

Number of samples 301 701
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FIG. 2. Maximal sampling of the inverse timescale plane. We
sample pairs of inverse-timescale values from the depicted region
of the τ−1

m − τ−1
s plane. (a) Sampled points are distributed evenly

on a curvilinear grid between a predefined lower bound and the
stability boundary for the specific connection matrix being used. (b)
If sampling to the stability boundary would produce samples with
negative timescales, the space is instead sampled up to a predefined
value in the angular direction

or does not hit a convergence threshold before reaching the
maximum number of steps.

All model manifolds studied here were generated from
between 210 000 and 211 000 sampled parameter pairs.

III. isKL EMBEDDING

In this section, we recapitulate the methods developed by
Teoh and colleagues [40]. This framework revolves around
using the symmetric Kullback-Liebler divergence DsKL as a
measure of separation for different probabilistic models of the
same form but with different parameters:

DsKL(θ, θ ′) = DKL(θ : θ ′) + DKL(θ ′ : θ )

= Eθ

[
ln

p(x|θ )

p(x|θ ′)

]
− Eθ ′

[
ln

p(x|θ )

p(x|θ ′)

]
, (14)

where x represents the (multidimensional) random variables.
Teoh et al. apply this measure to exponential family models,

which have the general form

p(x|θ ) = exp

[
n∑

i=1

ti(x)ηi(θ ) + k(x) − A(η(θ ))

]
,

where {ηi(θ )} are the n natural parameters of the model and
{ti(x)} are the corresponding sufficient statistics. The DsKL for
exponential family models can be analytically decomposed
into a finite number of component functions

DsKL[θ, θ ′] =
n∑

i=1

{[T +
i (θ ) − T +

i (θ ′)]2−[T −
i (θ )−T −

i (θ ′)]2}.

These component functions form a set of n spacelike (T +
i )

and n timelike (T −
i ) coordinates by which the model man-

ifold may be embedded in a Minkowski-like model output
space that is distinct from a data space used for embedding in
methods like principal component analysis (PCA) [40]. The
coordinate functions of this embedding are given in terms of
the natural parameters and sufficient statistics by

T ±
i = 1

2 [ηi(θ ) ± 〈ti(x)〉θ ],

where 〈·〉θ is an average over the random variables x con-
ditioned on the parameters θ . Alternatively, we may use an
isometric embedding given by shifting and rotating the mani-
fold [40]:

T ±
i (θ ) = 1

2

{
λi[ηi(θ ) − ηi] ± 1

λi
[〈ti〉θ − 〈ti〉]

}
. (15)

We use T ± to distinguish the isometric embedding coordi-
nates from the unscaled coordinates T ±. Here, an over-bar
· · · denotes a mean over sampled parameters θ and λi =
[var(〈ti〉)/var(ηi)]1/4. These coordinates can be understood as
an alternative definition of the exponential family. We can
straightforwardly express the log-likelihood function for an
exponential family in terms of the isKL coordinates:

ln p(x|θ ) = ln k(x) +
∑

i

T +
i (θ )ti(x)

+
∑

i

T −
i (θ )ti(x) − A(θ )

= g(x) +
∑

i

T +
i (θ )ti(x)

+
∑

i

T −
i (θ )ti(x) − A(θ ),

where g(x) = ln k(x) + ∑
i ηiti(x). The authors of Ref. [40]

show that the coordinates {Ti} can also be understood in re-
lation to the data visualization procedure multidimensional
scaling (MDS). In standard MDS the data points are recorded
data, whereas here each “data point” corresponds to the full
distribution of an exponential family evaluated at a specific
set of parameters. The doubly mean-centered matrix of MDS
can be constructed in this context from the pairwise separa-
tion matrix measured by the symmetric KL-divergence Dc =
−PDsKLP with Pi j = 1/n − δi j . In the continuous-sampling
limit, the eigenvalue problem for MDS becomes an integral

024302-7



JACOB T. CROSSER AND BRADEN A. W. BRINKMAN PHYSICAL REVIEW E 109, 024302 (2024)

equation: ∫
Dc(θ̃ , θ )v(θ )dρ(θ ) = �v(θ̃ ), (16)

where dρ(θ ) = ρ(θ )dθ is the measure of the distribution of
parameters θ . Teoh and colleagues show [40] that the co-
ordinates T ±

i are solutions of this eigenvalue problem with
corresponding eigenvalues

�±
i = 1

2
[Cov(ηi, 〈ti〉) ±

√
var(ηi )var(〈ti〉)]. (17)

This procedure produces an embedding with only a finite and
relatively small number of nonzero modes, contrasting sharply
with the infinite or data-proportional embedding produced by
other methods for continuous or discrete parameter sampling,
respectively [40].

We complement this perspective by viewing this embed-
ding procedure as an eigenmode expansion of the conditional
probability p(x|θ ) around the marginalized distribution p(x)
for a given prior on the parameters θ :

p(x|θ ) = p(x) +
∑

i

c+
i (x)T +

i (θ ) +
∑

i

c−
i (x)T −

i (θ ). (18)

By defining the inner product of functions on � as

〈 f (θ ), g(θ )〉 =
∫

dρ(θ ) f (θ )g(θ ),

the modes
√

μ(θ )v(θ ) of Eq. (16) can be shown to be orthog-
onal as long as the corresponding eigenvalues are distinct.
Thus, the coordinate functions T ±

i (θ ) are orthogonal with
respect to the weight ρ(θ ). Taking advantage of this orthogo-
nality of the coordinate functions, it follows that∫

dρ(θ )p(x|θ )T ±
j (θ )

= p(x)
∫

dρ(θ )T ±
j (θ ) +

∑
i,±

∫
dρ(θ )c±

j (x)T ±
j (θ )T ±

i (θ )

= c±
j (x)

∫
dρ(θ )[T ±

j (θ )]2.

The first term on the right-hand side vanishes because the
mean of each coordinate function is zero by construction,
while only the i = j term from the sum survives due to the or-
thogonality. Thus, we may calculate the coefficient functions
c±

i (x) as

c±
i (x) = 〈T ±

i , T ±
i 〉−1

∫
dρ(θ )p(x|θ )T ±

i (θ ).

In this work we focus on applying these embedding methods
to the stationary distributions of the various network models,
both multivariate normal within our mean-field approxima-
tion. For a M-dimensional multivariate normal distribution
with a set of means {μi} and covariance values {Ci j},
the M(M + 3)/2 distinct natural parameters and sufficient

statistics are given by

η =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i C−1

1i μi

...∑
i C−1

Mi μi

− 1
2C−1

11

...

− 1
2C−1

M1

− 1
2C−1

22

...

− 1
2C−1

MM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 〈ti〉θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈x1〉
...

〈xM〉〈
x2

1

〉
...

〈xMx1〉〈
x2

2

〉
...〈

x2
M

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Before we present the embedding and analysis of the models
from Sec. II, we provide two simpler models as illustrative
examples that are related to the Poissonian and Gaussian
characteristics of our model.

A. Example: One-dimensional exponential model

Let X be exponentially distributed with rate υ, i.e., X ∼
Exp(υ ). In the exponential family formalism, we have

η = −υ, 〈ti〉θ = 〈x〉υ = υ−1, k(x) = 1,

A(υ ) = − ln υ.

The isKL embedding coordinates for this model are one-
dimensional functions given by

T ±(υ ) = 1

2

{
λ[υ − υ] ± 1

λ
[υ−1 − υ−1]

}
.

These embedding functions are shown in Fig. 3(a) using a
parameter distribution ρ(υ ) = (8υ ln 10)−1 with support υ ∈
[10−5, 105] for illustration.

We may also explicitly calculate the coefficients c±(x) for
this example,

c±(x) = 〈T ±, T ±〉−1

[(
λ

2
υ ∓ 1

2λ
υ−1

)(
−dZ

dx

)

− λ

2

d2Z

dx2
± 1

2λ
Z

]
,

where Z (x) ≡ ∫
e−vxdρ(υ ) is the moment-generating func-

tion of the distribution ρ(υ ) with source −x. The full model
manifold is depicted in Fig. 3(f), where points are colored by
the logarithm of the rate parameter υ. Here, we see the mani-
fold is neatly broken into two branches corresponding to a low
event-rate (log10 υ < 0) and a high event-rate (log10 υ > 0).
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FIG. 3. Visualizations of the isKL embedding coordinate functions. (a) The two coordinate functions for the one-dimensional exponential
model. (b)–(e) Coordinate functions for the one-dimensional Gaussian model: (b) T +

1 , (c) T −
1 , (d) T +

2 , (e) T −
2 . (f) The model manifold for the

one-dimensional exponential model colored by log10 υ. (g) The model manifold for the one-dimensional Gaussian model projected onto just
T ±

1 , colored by μ

B. Example: One-dimensional Gaussian model

Let X be normally distributed as X ∼ N (μ, σ ). In the
exponential family formalism, we have

η =
[

μ/σ 2

−σ−2

]
, 〈ti〉θ =

[ 〈x〉
〈x2〉

]
=
[

μ

σ 2 + μ2

]
,

k(x) = 1√
2π

, A(μ, σ ) = μ2

2σ 2
+ ln σ.

The isKL embedding coordinates are then two-
dimensional functions:

T ±
1 (μ, σ ) = 1

2

{
λ1

[
μ

σ 2
−
( μ

σ 2

)]
± 1

λ1
[μ − μ]

}
,

T ±
2 (μ, σ ) = 1

2

{
λ2

[
− 1

σ 2
+
(

1

σ 2

)]

± 1

λ2
[σ 2 + μ2 − (σ 2 + μ2)]

}
.

The Gaussian model coordinate functions are depicted in
Figs. 3(b)–3(e) using a parameter distribution

ρ(μ, σ ) =
{

1/800 if − 20 � μ � 20, 0 < σ � 20

0 otherwise.

A projection of the model manifold onto the spacelike and
timelike coordinates corresponding to first moment of the
model is depicted in Fig. 3(g). The points on this projection
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are colored by the mean parameter μ. Here, we see a degree
of rotational symmetry in the manifold projection, separated
into negative mean values on the left and positive mean values
on the right of the T +

1 centerline. Also note that there are
apparent breaks in this manifold projection. These breaks do
not reflect a true discontinuity in the structure of the manifold,
but instead reflect the density with which the (μ, σ ) space
is sampled. We see manifold breaks related to the sampling
density in our results for the network models.

IV. RESULTS

Before proceeding with results, it is helpful to briefly sum-
marize the goal of this paper and the workflow constructed
in prior sections. We wish to study the population-averaged
behavior of stochastic spiking models as we vary synaptic and
membrane timescales, repeating this across a range of relative
excitation and inhibition. To do this, we approximate the full
spiking network dynamics as a population-averaged multivari-
ate Gaussian process [Eq. (6)]. We choose a sample of inverse
timescales as discussed in Sec. II E, and in particular constrain
the sampling based on the stability condition for the corre-
sponding nonspiking model [Eq. (10)]. Within this sampled
regime of timescales, the Gaussian process approximations
should be mean-reverting and thus reach a stationary Gaussian
distribution. We numerically solve for the vector-mean and the
covariance matrix of the stationary Gaussian distribution at
each sampled timescale-point. Finally, we embed this man-
ifold of stationary Gaussian distributions into a behavioral
space using the isKL methods introduced in Sec. III. With the
workflow summarized, we may proceed.

A. Gaussian process approximations are stable

A key step in the analysis workflow is to find the stationary
distribution for the approximated processes at each sampled
timescale point. For the stationary distribution of an Ornstein-
Uhlenbeck process to exist, all of the eigenvalues λA of the
drift matrix A must have a positive real component. Basing the
upper sampling boundary on the theoretical stability boundary
of the related nonspiking linear model, as well as the check for
singularities in the drift matrices A and covariance matrices
C, should ensure this requirement is met. We confirm this by
explicitly examining the eigenvalues of the sampled models.

Each individual model—as specified by the model type,
E-I log10-ratio R, and a pair of inverse timescales (τ−1

m , τ−1
s )—

has three drift-matrix eigenvalues. We pool together the
eigenvalues of all particular models on a given model man-
ifold as specified just by the model type and E-I log-ratio
R. The resulting eigenvalue distributions for a subset of E-I
conditions R are given in Fig. 4. Points in the eigenvalue
distribution are colored by the log-distance of the particu-
lar model [specified by (τ−1

m , τ−1
s )] from the origin in the

inverse-timescale parameter space, shown in the inset. Each
individual eigenvalue distribution is accompanied by marginal
histograms where appropriate.

The subset of manifolds shown in Fig. 4 highlights a por-
tion of the inhibition-dominated regime for which the models
were observed to have complex eigenvalues. These complex
distributions seen in the spiking-type model manifolds have

a relatively small range in the imaginary direction and the
imaginary components tend to pool near the origin in the
along the real axis. Additionally, most of the density for these
complex distributions are along the real axis itself, indicat-
ing that models with complex eigenvalues are relatively rare
within their corresponding manifolds. The manifolds for the
remaining E-I conditions have eigenvalue distributions quali-
tatively very similar to those at the extremes: purely real and
positive eigenvalues spanning roughly the same range and
skewed toward the origin. A key takeaway from Fig. 4 is that
all of the eigenvalues have strictly positive real components,
confirming that the sampled models for each manifold are
stable and therefore appropriate for embedding analysis.

B. Behavior of full spiking network models

As discussed in Sec. III, the isKL embedding methods take
the model manifold from the parameter space and position it
in a hyperbolic space using the symmetric Kullback-Liebler
divergence. The KL-divergence functions similarly to a dis-
tance between models based on their (sufficient) statistics
which determine the statistical behavior of a particular model
from the manifold. The isKL method thus embeds the model
manifold in a behavioral space. This connection to the un-
derlying output of the sampled models can be obscured when
looking only at the results of the embedding analysis. As
such, we take some time here to discuss the behavior of the
full-network model described by Eq. (1).

Full-network spiking models were generated from the
appropriate parameters in Table I with a sparse, random con-
nection matrix as described in Sec. II A. A subset of model
manifolds were chosen from across the range of E-I conditions
R, and individual models from these manifolds were taken
from along an arc of radius ≈0.01 (see, e.g., Fig. 5, left
column). The membrane and spiking dynamics described by
Eq. (1) with a specific choice of timescales were simulated
using a basic forward-Euler integration scheme with a time
step dt = 0.1 ms. Models were simulated for 20 000 ms,
except the models in rightmost column, which were simulated
for an increased duration of 150 000 ms to ensure convergence
to a stationary regime.

The long-term dynamics of the population-averaged mem-
brane potentials and the membrane potentials of six excitatory
and six inhibitory neurons are shown in Fig. 5. The mean-field
values of the membrane potentials predicted by Eq. (6c) are
represented by the red and blue dotted lines. From this figure,
we see that the population-averaged membrane potentials in
the full spiking network do indeed reach stationary values as
predicted by the drift eigenvalues λA for the approximated
spiking models shown in Sec. IV A. Additionally, we see that
the mean-field membrane potential values correspond fairly
well to the stationary population-averaged potentials (Fig. 5,
columns 1 and 2), but this breaks down near the upper bound
of the arc (Fig. 5, column 3). This upper boundary of the
arc corresponds to the stability boundary in first two mani-
folds (Fig. 5, rows 1 and 2) and a bifurcation boundary in
the remaining manifolds. The breakdown of the mean-field
approximations at these limits thus lines up with the colloquial
understanding of their accuracy. Knowing that the population-
averaged potentials of the full spiking networks converge to
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FIG. 4. Eigenvalues of drift matrices. Eigenvalue distributions for the drift matrices A of all sampled network models for the nonspiking
model manifolds (top) and the spiking model (bottom) as the excitation-inhibition ratio R is adjusted. Points are colored by the radial distance
d of model from the origin in inverse-timescale space, as illustrated by the inset. The marginal histograms for the real (RE , top) and imaginary
(IM, right) are given for each distribution. Plots without a histogram in the imaginary dimension indicates a marginal δ distribution.
Emphasis is placed on a portion of the inhibitory regime (−0.19 < R < −0.09, middle columns) in which some eigenvalue distributions
display imaginary components.

a stationary condition, we next look at how these stationary
solutions of these models differ.

The membrane potential dynamics in the stationary regime
of these same models are shown in Fig. 6. Here, we show
data from the last 1000 ms of simulation. We see that the
population-averaged membrane potentials visibly fluctuate
around an average value for most of the simulated models.
These fluctuations in the population averages become less no-
ticeable as the overall magnitude of the averages and standard
deviations increase, e.g., along column 3 of Fig. 6. A similar
trend is seen in the membrane dynamics for individual neu-
rons in the network. Fluctuations in individual potentials are
very large relative to their mean values for the first two models
along the arc (Fig. 6, columns 1 and 2). The population-
variance in membrane potentials for these models is thus
highly dependent on the fluctuations of individual membrane

potentials. Towards the upper end of the arc (Fig. 6, column
3), the magnitude of the membrane potentials increases and
the fluctuations of individual potentials are less pronounced.
For these models, the population-variance of the membrane
potentials is much more dependent on the spread of individu-
als around the population mean as opposed to the fluctuations
of those individuals.

We finish this section by examining the actual spiking dy-
namics for the example models in Fig. 7. Here we show raster
plots for each model during the last 1000 ms of simulation.
First, we see that the target neuron (black spikes) fires more
frequently than other excitatory neurons in the network, which
is to be expected because it receives extra current input. For
each model manifold (different rows in Fig. 7), we observe
an overall increase in the rate of spiking in the network as we
move along the arc from point 1 to point 3. This aligns with
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FIG. 5. Membrane potential dynamics of spiking network models. The dynamic population-averaged membrane potentials (solid lines) are
plotted against the predicted mean-field values (dotted lines) for three different parameter pairs across the examined range of E-I ratios R. The
membrane dynamics of six excitatory and six inhibitory neurons (dashed lines) are also shown for each condition. The shaded bands around
the population-averaged potentials are the standard deviation of the membrane potentials within the corresponding population at each time
point. The sampled parameter distribution from the embedding calculations, along with the chosen points for spiking simulation, are given in
the rightmost column. Full-network spiking simulations were run until a stationary state was reached.

the change in overall magnitude of the membrane potentials
seen in Figs. 5 and 6. This observation also accords with an
intuitive understanding of the timescales: along this arc, the
relative rate of synaptic input becomes much faster than the
relaxation dynamics. This trend is taken to the extreme in
the models at the top of the arc for each manifold (Fig. 7,
column 3) where we see unrealistically high spiking rates in
the last three rows. Finally, the overall spike rate of neurons
decreases as the strength of the recurrent inhibition increases
from the top row to the bottom row of Fig. 7, being most
pronounced in the models with the most extreme behavior

in the rightmost column. This aligns with intuition about the
role of recurrent inhibition and the shifting of the stationary
membrane potential values across the rows of Fig. 6.

Through the examination of these exemplary models from
across the model manifolds of interest, we have built an intu-
itive understanding of the variation in model behavior. Having
a sense of the interplay between the (inverse) timescales, the
E-I modulation parameter R, and the stationary statistical be-
havior of the models in this way helps to ground the remaining
results in a tangible set of observations. We now move on to
the embedding analysis for these models.
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FIG. 6. Stationary membrane potential dynamics of spiking network models. The dynamic population-averaged membrane potentials (solid
lines) are plotted against the predicted mean-field values (dotted lines) for three different parameter pairs across the examined range of E-I
ratios R. The membrane dynamics of six excitatory and six inhibitory neurons (dashed lines) are also shown for each condition. The shaded
bands around the population-averaged potentials are the standard deviation of the membrane potentials within the corresponding population at
each time point. The sampled parameter distribution from the embedding calculations, along with the chosen points for spiking simulation, are
given in the rightmost column. Full-network spiking simulations were run until a stationary state was reached, and the membrane dynamics
for the last 1000 ms of simulation time are plotted.

C. Network embedding is hierarchical

It has been previously reported that biological models
exhibit a hierarchy of sensitivities to different parameter
combinations relative to some cost function on model behav-
ior [38]. A similar hierarchical structure has been observed
in the widths of model manifolds, which correlate strongly
with the corresponding eigenvalues induced by a particular
embedding [34,39]. The current modeling and embedding
differs from these prior cases in that we are embedding

probabilistic models in behavioral space. Considering also the
limited dimensionality of the current embedding, it is unclear
if this hierarchical property should manifest in the current
system. We show below that the manifolds for models of
the types in Eqs. (6) and (9) are indeed hierarchical under
the isKL embedding framework, with coordinate eigenvalues
spanning several orders of magnitude for each E-I condition.

We used the isKL methods (Sec. III) to embed the station-
ary distributions for both the spiking and nonspiking model
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FIG. 7. Stationary spiking behavior of full network models. Example raster plots for individual timescale pairs for spiking models across
the sampled range of E-I ratios R. The sampled parameter distribution from the embedding calculations, along with the chosen points for spiking
simulation, are given in the rightmost column. Full-network spiking simulations were run until an apparent stationary state was reached, and
the spikes from the last 1000 ms are plotted. In each model, neuron index 350 was designated as the target neuron and its spikes are shown in
black.

types across 25 E-I conditions ranging from the excitation-
dominated to the inhibition-dominated, and approximately
centered at R = 0. The root absolute eigenvalues for the em-
bedding coordinates {�±

i } are plotted against the observed
manifold width along the same coordinate for the nonspiking
models [Fig. 8(a)] and the spiking models [Fig. 8(c)]. Here,
the manifold width is taken to be the simple range across
a given coordinate. We see that the widths and eigenvalues
are indeed correlated across E-I conditions for both model
types, following with previous observations [34,39].This sug-
gests these two measures may be used interchangeably in
further analysis. The coordinate eigenvalues of the nonspiking

model [Fig. 8(b)] span at least three orders of magnitude
for any given E-I condition tested, and up to nearly fifteen
orders of magnitude at the most extreme. The coordinate
eigenvalues for the spiking models [Fig. 8(d)] span roughly
two to three orders of magnitude on the extreme ends of the
E-I spectrum and upwards of four in at some points in the
center, with eigenvalues peaking towards the center as you
approach from either extreme. Taken together, both model
types studied here exhibit a hierarchical structure in line
with prior observations of other systems, albeit with a more
limited degree of separation in the case of the spiking-type
models.
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FIG. 8. Hierarchies of manifold widths. (top row) The correlation between the coordinate eigenvalues �±
i and the width W across the

manifold in that coordinate direction as the E-I ratio is varied for the (a) nonspiking models and (c) spiking models. A simple linear regression
is applied to the log10-widths and log10-absolute eigenvalues for visualization. The distribution of the scale of coordinate eigenvalues as the
E-I ratio is varied for the (b) nonspiking models and (d) spiking models.

Before proceeding, we make some comparative observa-
tions between the two model categories. The scale and range
of eigenvalues for the nonspiking model significantly larger
than those for the spiking model type when in the excitation-
dominated regime. Additionally, the nonspiking models show
a sharp jump in eigenvalues when moving from the inhibition-
dominated regime to the excitation-dominated one. This jump
in eigenvalues may indicate a sort of bifurcation in the overall
manifold. The eigenvalues {�±

i } directly reflect the covari-
ance and—anecdotally more importantly—the variance in the
corresponding sufficient statistics and natural parameters. A
jump in the magnitude of the eigenvalues thus indicates a
sudden increase in the variability of model activity, and this
could correspond to sampling near the stability boundary
[Eq. (10)] in the case of the transition seen the nonspiking
models. A similar transition may be happening at the peaks in
the eigenvalue distributions of the spiking-type models, how-
ever, these are much less pronounced than the one seen in the
nonspiking models and the increase does not persist through
the excitation-dominated regime as in the nonspiking models.
We note that the firing rate nonlinearity for the spiking model-
type (Table I) is asymptotically linear when x � 1. A naïve
prediction would be a qualitatively similar eigenvalue distri-
bution between model types when the membrane potentials
become more positive as in the excitation-dominated regime.

However, this is not reflected in the observed distributions of
{�±

i }.

D. Projection hierarchies

Having established that the isKL embedding of the spik-
ing models and the nonspiking models exhibit a hierarchical
structure, we next want to interrogate this structure across our
model manifolds. We do this by examining projections of the
manifolds onto lower-dimensional spaces along the largest
widths and smallest widths. We focus on two-dimensional
projections.

Figure 9 shows the largest manifold projections in behav-
ioral space for the nonspiking models and spiking models
across a subset of E-I conditions. Points on these manifolds
are colored by the mean value of the membrane potential
for the test neuron 〈V0〉. It is visually clear that the manifold
projections are shrinking from top left to bottom right for each
condition, reflecting the hierarchical structure of the manifold.
A large fraction of projections—for example, Fig. 9 column
3, row 2—have apparent gaps in their structure. These are
similar to the gaps seen in the projection of the example
Gaussian distribution shown in Fig. 3(g) and are tied to the
sampling density used across the inverse-timescale space near
key boundaries (data not shown).
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FIG. 9. Largest manifold projections. Projections of the manifolds for the two model types onto the largest four coordinates as determined
by the observed manifold width. The hierarchy of projections is shown as the excitation-inhibition ratio is changed from excitation dominant
regime (top) to an inhibition-dominant regime (bottom). Manifolds are colored by 〈V0〉—the mean membrane potential of the test neuron—and
each projection is scaled by the largest observed width. These projections are the stiffest, contributing the most to the behavior of the distribution
of activities.

Many of the projections across model types and E-I con-
ditions appear very linear or piece-wise linear, for example,
Fig. 9 column 2 rows 1–4. This thinness at the largest
scales would suggest a relatively simple relationship between
the largest coordinates and that the model manifold is rela-
tively flat. The difficulty of overcoming under-sampling of
the parameter space complicates this interpretation slightly.
The gaps in the projections seen in the excitation-dominated
regime are clear evidence of some under-sampling, but

interpolating the data across gaps suggests that the projections
in these conditions may still be piecewise- or quasilin-
ear. These stick-like projections both model-types in the
excitation-dominated regime. The projections are also seen to
change shape qualitatively as the E-I conditions change. In the
nonspiking models, we see the appearance of spoon-shaped
projections as we move into the inhibition-dominated regime.
In contrast we see knife-like projections in the spiking models,
albeit only under the most inhibitory of E-I conditions. This
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qualitative change in the manifold projections seen across the
two model types could be caused either by warping of the
manifold along each coordinate as the conditions change or
by changes in ranking of each coordinate. This point will be
revisited in Secs. IV E and IV G.

Additionally, we note that many of the projections separate
points on the manifold according to the value of 〈V0〉, as
was seen in the example embeddings shown in Figs. 3(f) and
3(g). This is particularly clear, for example, in the inhibition-
dominated regime of the two model types (Fig. 9, row 5).
The separation of the manifold into sections based on be-
havioral regimes depends on more than just 〈V0〉, however.
For example, we see no such trend in Fig. 9, column 2,
row 4. In this case the individual models within the mani-
fold are more significantly separated by (a combination of)
statistical parameters that, in a sense, have a dependence
on the timescale parameters that is orthogonal to the way
〈V0〉 depends on the timescales. Exceptions aside, this noted
〈V0〉-aligned separation serves as a clear demonstration of the
behavioral clustering induced by the isKL method.

We can also examine the smallest projections of the model
manifolds for the two model types, which correspond to the
least important modes of the expansion in Eq. (18). Figure 10
shows the smallest projections of the model manifolds for all
three model types across E-I conditions. As was the case for
the largest coordinate projections, there is evidence of under-
sampling in the smallest projections also. This particularly
evident in the nonspiking model manifold in the excitation-
dominated regime (Fig. 10, column 1, rows 1 and 2). In
contrast with the largest projections, the stick-like projections
comprise the minority of the small-projection shapes. The
model manifolds appear instead to be highly curved at the
fine-grained level. Following the observation from the large-
scale projections, we see the smallest manifold projections
separate points in line with 〈V0〉. In particular, the counterex-
ample mentioned before (Fig. 9, column 2, row 4) now also
shows a degree of alignment with changes in 〈V0〉, now in
Fig. 10, column 2, row 4. This highlights the fact that model
separation along different directions on the manifold can be
more or less tied to a particular behavioral or statistical pa-
rameter.

Before moving on, we should highlight the relationship
between the projection coordinates and model behavior. Coor-
dinates with larger eigenvalues contribute more to separation
between p(x|θ ) and p(x|θ ′) as measured by the DsKL. More
specifically, a relatively large absolute-eigenvalue |�±

i | indi-
cates that the corresponding natural parameter is a relatively
better way to separate individual models on the manifold by
their behavioral predictions, or alternatively that a larger part
of the variance of behavioral predictions across the manifold
are explained by the associated natural parameter. Given a
tractable mapping between the underlying model parame-
ters and the natural parameters, the magnitude of coordinate
eigenvalues can also give a sense of the relative importance
of different parameter combinations aligning with a given
coordinate direction. Lastly, the high degree of correlation be-
tween coordinate eigenvalues and the manifold widths along
those coordinates means that the relative size of a particular
projection gives a visual representation of the importance of
the corresponding parameter combination.

E. Coordinate rankings

We saw in Sec. IV D that the projections hierarchies of
the model manifolds changed across the examined range of
E-I conditions R. One possible explanation for this is that
the rankings of coordinates by manifold width change with
R. This potential aspect of the changing projections can be
interrogated by tracking the rank of each coordinate across the
range of R. This will additionally provide insight into what
aspects of the statistical model have the greatest (or least)
impact on the overall model behavior for both model types.
Figure 11 depicts the ranking for each coordinate by both
the length of the manifold along that coordinate (top row)
and eigenvalue-magnitude (middle row) for the spiking and
nonspiking model types for a subset of E-I conditions. As each
coordinate corresponds directly to a single sufficient statistic,
we color code and shape code the rank of each coordinate
according to this correspondence. The bottom row of Fig. 11
reproduces the eigenvalue distributions shown in Fig. 8, ex-
cept each point is now color and shape coded according to the
sufficient statistic instead of the E-I measure R.

We see in Fig. 11 that the ranking of coordinates changes
across E-I conditions for both the nonspiking and the spiking
models. We also note that the rankings by observed width
(top row) and by eigenvalue-magnitude (middle row) agree
fairly well across the range of R. This agreement between the
two sets of rankings makes sense when considering the high
degree of correlation between the coordinate eigenvalues and
manifold widths shown in Fig. 8. It is interesting that the
eigenvalue distributions—particularly those for the spiking
models—seem to separate into clusters of coordinates that
do not intersect for much of the range of R. For example, the
tan-orange-steel blue (eight point star-five point star-hexagon)
cluster at the top of the eigenvalue spectrum corresponds to
the second moments involving the inhibitory and excitatory
populations. This cluster remains consistently above the
gray-magenta (downward triangle-pentagon) and pink-red
(diamond-square) clusters—which correspond to the second
moments involving the target neuron and first moments for
the bulk populations, respectively, across R for the spiking
models.

Knowing that the eigenvalues and thus the eigenvalue-
magnitude rankings form these clusters across the E-I
spectrum, it is natural to examine the sufficient statistics
that correspond to coordinates in these clusters. We focus
on the spiking-type models that exhibit these clusters. The
tan-orange-steel blue (eight point star-five point star-hexagon)
cluster noted before dominates over other clusters in the
spiking models, and these coordinates correspond to the
second-order moments of the membrane potentials of the ex-
citatory and inhibitory populations (Fig. 11, columns 2 and
3). This indicates that they are the most important statistics
for distinguishing models across the manifolds. These sec-
ond moments are also important for the nonspiking model
manifolds, but they only sit at the top of the hierarchy in
the excitation dominated regime R > 0. The gray-magenta
(downward triangle-pentagon) cluster in the spiking models
corresponds to the mixed second moments involving the tar-
get neuron V0 and either V1 or V0. This cluster is above the
green (triangles) cluster in the mid-range of R and just below
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FIG. 10. Smallest manifold projections. Projections of the model manifold for the two model types onto the smallest four coordinates as
determined by the observed manifold width. The hierarchy of projections is shown as the excitation-inhibition ratio is changed from excitation
dominant regime (top) to an inhibition-dominant regime (bottom). Manifolds are colored by 〈V0〉, and each projection is scaled by the observed
width along the coordinate ranked (M − 3) = 15. These projections are the sloppiest, contributing the least to the behavior of the distribution
of activities.

it in the extreme E-I conditions, and this green (triangles)
cluster is the pure second moment 〈V0〉. The green cluster is
generally above the pink-red (diamonds-squares) and the blue
(circles) clusters, except for a brief crossing of the pink-red
and the green clusters around R ≈ −0.18. These last two
clusters correspond to the mean values of all three membrane
potentials. Taken together, these observations say that for the
spiking-type models the fluctuations are more important for
distinguishing between individual models on a given manifold

and—for both the first and second moments—the statistics
that involve the test neuron are generally less important than
those that do not. These observations hold for the nonspiking
model manifolds in the excitation-dominated regime, but not
in the inhibition-dominated regime (Fig. 11, column 1).

Let us discuss the coordinate rankings at a more granu-
lar level of detail. While both model types have the second
moments at the top of their respective hierarchies in the
excitation-dominated regime, it is interesting to note how
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FIG. 11. Coordinate rankings. The ranking of each manifold coordinate T ±
i as the E-I balance is changed in both model types. Coordinates

are ranked from most important (top of each plot) to least important (bottom of each plot) based on the observed width of the manifold along
said coordinate (top row) or the magnitude of the corresponding eigenvalue |�±

i | (middle row). The log10-magnitude of the eigenvalue for each
coordinate is given in the bottom plot as the E-I balance R is changed as in Fig. 8. The legend renames each coordinate T ±

i to the corresponding
sufficient statistic 〈ti〉± for ready interpretation.

they differ here. The spiking-type models have the 〈V 2
2 〉+-

related coordinates at the top while the nonspiking model
is topped by the 〈V 2

1 〉+-related coordinates. This suggests
that the degree of fluctuations in the inhibitory population
are the most varied for the spiking models in this regime,
but the excitatory population fluctuations take that title in
the excitation-dominated nonspiking models. The last fine-
grained detail we highlight here is the increased importance
of the V0 moments in distinguishing the behavior of the
inhibition-dominated nonspiking models relative to their im-
portance in the inhibition-dominated spiking-type models.

In addition to visualizing the relative importance of cer-
tain sufficient statistics for distinguishing between particular

models across a given model manifold, we get another piece
of information visualized for free through the eigenvalue-
magnitude ranking plots (Fig. 11, middle row). Recall from
Eq. (17) that the eigenvalues �±

i are given by the covariance
of the sufficient statistic and natural parameter across the
manifold [Cov(ηi, 〈ti〉θ )] and the geometric means of their
individual variances [

√
var(ηi)var(〈ti〉θ )]. As we know, the

�−
i eigenvalues are negative and of the same order of mag-

nitude as the corresponding �+
i (Fig. 11, row 3), we know

that geometric mean of those variances greatly outweighs
their covariance. Furthermore, the relative ranking of �+

i and
�−

i imply the sign of the covariance Cov(ηi, 〈ti〉): if �+
i >

�−
i then Cov(ηi, 〈ti〉θ ) > 0 and vice versa. For example, by
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looking at the eigenvalue-magnitude ranking of the steel blue
(hexagon) coordinates in the spiking-type models (Fig. 11,
row 2, columns 2 and 3) we see that Cov(− 1

2C−1
12 , 〈V1V2〉) < 0

across all E-I conditions examined here. While this could
very easily be determined by looking at these covariances
themselves—and they must be calculated in order to deter-
mine �±

i —it is convenient to be able to glean this from a plot
already produced for another purpose.

We will briefly summarize. Figure 11 shows that the co-
ordinate rankings do change across the sampled E-I range,
thus explaining the changing projection hierarchies in Figs. 9
and 10 at least in part. We found that the coordinates form
clusters in the eigenvalue distribution that behave in a cor-
related manner across the E-I spectrum and with which
they share relations to similar types sufficient statistics. In
particular, the cluster of coordinates corresponding to the
fluctuations 〈VIVJ〉± for I, J ∈ {1, 2} have the most impact
on the activity of the spiking-type models, as well as in the
excitation-dominated nonspiking models. We made observa-
tions of which types of fluctuations were most important to
model distinction across the manifold for different model-
types and different E-I conditions. Finally, we highlighted a
secondary visual interpretation of the eigenvalue-magnitude
ranking plots relating to the base statistical model.

F. Transforming base parameters

We highlighted in Sec. IV E that the statistical parame-
ters from the stationary Gaussian distribution of membrane
potentials—discussed in terms of the sufficient statistics—
have a hierarchical impact on the possible behaviors of the
spiking model that changes across the E-I spectrum R. Fur-
thermore, we identified clusters of parameters that tend to
change in similar ways with R. In the case of the spiking mod-
els, the fluctuations 〈VIVJ〉± for I, J ∈ {1, 2} were the most
impactful while the mean coordinates 〈V0〉± had a relatively
small impact. While important, these observations do not di-
rectly address the role of the inverse timescales (τ−1

m , τ−1
s )

on model behavior. Unfortunately, the mapping from the
timescale parameters to statistical parameters is intractable,
owing primarily to the transcendental system of mean-field
equations [Eq. (6c)]. Closed forms for the stationary distribu-
tion parameters of the linear nonspiking models can be found,
but these expressions are ratios of high-degree polynomial
functions of the timescales and do not directly reflect the
mapping in the spiking model context. To begin untangling
the impact of the timescale parameters on the range of model
behaviors, we must thus rely on a qualitative understanding of
the relationship between the timescales and, e.g., the sufficient
statistics.

In Fig. 12, we plot the logarithm of several sufficient statis-
tics as a function of position in inverse-timescale space for the
spiking network with R = −6.06 × 10−3. We include 〈V 2

1 〉
[Fig. 12(b)] and 〈V 2

2 〉 [Fig. 12(c)] from the upper cluster as
well 〈V0〉 [Fig. 12(a)] to serve as a representative set from
across the hierarchies in Fig. 11. Note that the second mo-
ments have different units than those of 〈V0〉, which should be
kept in mind when comparing the color scales. That said, the
DsKL between two members of the same exponential family

FIG. 12. Mapping from inverse timescales to statistical parame-
ters. The relationship between the inverse timescales (τ−1

m , τ−1
s ) and a

select set of statistical parameters from the corresponding stationary
Gaussian distribution for the spiking network with R = −6.06 ×
10−3. Inverse timescale spaces are colored by the log10-value of one
of the sufficient statistics: (a) log10〈V0〉, (b) log10〈V 2

1 〉, (c) log10〈V 2
2 〉.

can be rewritten as [40]

DsKL(θ, θ ′) =
∑

i

[ηi(θ ) − ηi(θ
′)][〈ti(θ )〉 − 〈ti(θ ′)〉].

Paired with the sufficient statistics of a multivariate normal
distribution [Eq. (19)], we see that the DsKL is in some sense
weighing the first and second moments directly against each
other. This in mind, the variability in the second moments
is ≈2 orders of magnitude larger than that for the mean of
the test neuron, in line with their relative ranking in Fig. 11.
Furthermore, we note the similar dependence of all three
statistical parameters on the inverse timescales, increasing in
magnitude radially from the τ−1

m axis to the τ−1
s axis as well

as exhibiting a “cold spot” triangle on the rightmost corner
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of the sampled wedge. The trends between the means and
covariances differ most significantly along the τ−1

s bound-
ary. Here, the magnitude of the mean increases towards the
inverse-timescale origin (i.e., very long timescales) while the
second moments increase moving away from the origin (i.e.,
very short timescales).

The presence of the cold spot in the mappings to the
statistical parameters—particularly the sharpness of the tran-
sition seen for 〈V0〉±—reinforce the intuition that translating
changes in the statistical parameters back onto the timescale
parameters is nontrivial. That said, the shared general trend in
the mappings suggest a possible avenue for model reduction
if some loss of expressivity is permitted. Reducing the two-
dimensional sampled space to an arc around the origin and
through the cold spot could be used to capture the concomitant
increases in the magnitude of the first and second moments,
capturing the majority of their respective variability. Alterna-
tively, radial sampling along the τ−1

s boundary could be used
to study the apparent trade-off in magnitude of the means and
covariances. This idea of model reduction is intimately tied
to notions of model dimensionality, which we return to in
Secs. IV H and V.

G. Manifold projections change smoothly with E-I balance

We now return to the question raised at the beginning of
Sec. IV E: What causes the projection hierarchies to change
across E-I conditions? While the changing coordinate ranking
observed across E-I conditions for both models can explain
the changing manifold projections, it does not rule out the
possibility that the projections along a given coordinate are
themselves changing. To address this possibility, we project
the model manifolds for both of the model-types onto the
same pair of coordinates across the E-I spectrum in Fig. 13.
We chose to project the manifold onto the spacelike 〈V 2

0 〉+ and
〈V0〉+ coordinates because the statistical behavior of the test
neuron may be of particular interest in some scenarios. For the
sake of visualization, each projection along the E-I spectrum
is scaled by the larger of the two manifold projections at each
condition. The overall scale of the projection is given by the
axis scale.

We can see in the projections of the nonspiking model
manifolds (Fig. 13, upper diagonal) that there is a squash-
ing and stretching of the manifold relative to the overall
change in scaling as the E-I conditions are changed. Addi-
tionally, these transformations appear to act smoothly on the
manifold projections until the manifold flattens going from
the inhibition-dominated regime to the excitation-dominated
regime in the range −6.06 × 10−3 � R � 0.115. This flat-
tening reflects a radical increase in the manifold scale along
the 〈V 2

0 〉+ coordinate relative to the 〈V0〉+ coordinate because
all of the eigenvalues are seen to jump (Fig. 11, column
1, row 3). This interpretation is corroborated by the change
in overall scale of the axes—from ≈O(103) for R < 0.115
to ≈O(1017) for R � 0.115 (Fig. 13, upper diagonal)—and
the correlation between eigenvalue magnitude and manifold
width discussed in Sec. IV C (Fig. 8). The projections of the
spiking manifolds (Fig. 13, lower diagonal) are also seen to
transform smoothly with R with the fork-shaped projections
(e.g., lower diagonal, R = −0.307) collapsing into the spoon

projections (e.g., lower diagonal, R = −0.103) seen in the
nonspiking model around R ≈ −0.1. The projections for the
spiking-type manifolds do change along R in line with the
changes in their respective eigenvalue distributions (Fig. 11,
columns 2 and 3, row 3), but these changes are more subtle
than in the nonspiking model. The eigenvalue distributions for
the spiking-type models drift downwards as we move from
R < −0.18 to R > 0.10, and this is mirrored in the manifold
projects by a slight decrease in projection scale moving in the
same direction.

We have shown here that the manifold projections for both
model-types do indeed change across the sampled E-I range,
which plays a subsequent role in the changing of projection
hierarchies across E-I conditions noted in Sec. IV D. The
individual projections were shown to undergo potentially sig-
nificant rescaling across values of R that alter it visually, as
noted in the nonspiking manifold. Additionally, the manifold
can exhibit a warping, as in the fork-spoon-fork transition
noted in the spiking-type models.

H. Manifold dimensionality

As mentioned at the outset (Sec. I), a key issue when
analyzing the spike responses of a collection of large spiking
networks is the dimensionality of the behavioral output space.
The true behavioral space of the model—as expressed through
the spiking activity—grows with both an increasing network
size N and a decreasing time bin size �t . A goal of the current
work is to understand the behavioral output of these models
in a lower-dimensional framing. Thus, we briefly interrogate
the dimensionality of our spiking and nonspiking models—as
they are expressed through the various steps of our analysis—
before proceeding with the final discussion.

The dimensionality of model output following Eq. (1)
is 2NT/�t for a discrete-time trial of length T , the com-
bined size of the two matrices containing the membrane and
spiking processes for each neuron at each discrete point in
time. The dimensionality of the output space is reduced to
NT/�t when moving to the Gaussian process approximation
of the model in Eq. (5) because the explicit spiking dynamics
are effectively marginalized away. Population-averaging these
approximated dynamics to Eq. (6) further decreases the di-
mensionality to NpopT/�t , where Npop < N is the number of
populations being considered. By simplifying our analysis to
studying the stationary distribution of population behaviors,
the dimensionality drops to Npop(Npop + 3)/2, corresponding
to the maximal number of independent sufficient statistics (see
Sec. III). Finally, the isKL methods embed this manifold of
population activity into an Npop(Npop + 3)-dimensional space,
which determines the upper limit of dimensionality that may
be measured from embedded data (i.e., sampled models). To
summarize, we have traced the maximal dimensionality of
the model output through the various simplification steps be-
fore talking about the dimensionality of the model manifold,
demonstrating how the dimensionality of the manifold is tied
to the dimensionality of the output space of the model.

Having considered how the dimensionality changes across
the steps for our analysis, two key questions remain: (i) If we
can only see the results of the embedding, how do we gauge
the dimensionality of the manifold being analyzed? (ii) If we
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FIG. 13. Coordinate evolution as E-I balance is tuned. Projections onto the 〈V 2
0 〉+ − 〈V0〉+ plane of the nonspiking model manifolds (top)

and the spiking model manifolds (bottom) as the excitation-inhibition ratio is adjusted. The axes of each two-dimensional projection are scaled
to the larger width for the given model and E-I condition for the convenience of visualization. Note that the projections change in size by an
order of magnitude as the E-I balance is adjusted. The projections are colored by 〈V0〉 as in prior figures.

instead have an understanding of the maximal dimensionality
of the system, is there any effective reduction in dimensional-
ity that we can measure? To address these questions, we start
with a measure of effective manifold dimensionality com-
monly used in principal component analysis (PCA) known as
the participation ratio (PR):

PR =
(∑

i �i
)2∑

i �
2
i

.

As the isKL embedding methods are intimately tied to multi-
dimensional scaling (MDS)—an extension of PCA—the PR
should serve as a useful base for measuring the effective

dimensionality of our embedded model manifolds. This is
complicated slightly by the presence of negative eigenvalues
{�−

i } that arise in MDS, so we use an altered PR as our
measure of effective dimensionality:

PR =
(∑

i,± |�±
i |)2∑

i,±(�±
i )2

. (20)

The effective dimensionality of our two model types across
the examined E-I spectrum is shown in Fig. 14. We see that the
spiking-type models begin with a relatively high PR≈8 in the
inhibition-dominated regime before dropping to PR≈6 in the
middle regime and then rising slightly again in the excitation-
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FIG. 14. Dimensionality of model manifolds. The effective di-
mensionality of nonspiking and spiking models across the spectrum
of E-I conditions is given. Effective dimensionality is given by the
altered participation ratio given by Eq. (20).

dominated regime. By contrast, the nonspiking model has
PR ≈ 3 in the excitation-dominated regime. The PR for the
nonspiking model then peaks at PR ≈ 6 around R ≈ −0.1
before decaying back down further into the inhibition-
dominated regime. The nonspiking models thus have a lower
effective dimensionality than the spiking-type models.

How do we contextualize the measured PR for these
models? First, we note that the maximal possible measured
dimensionality for both the spiking and nonspiking model
types is Npop(Npop + 3) = 18, and the statistical model di-
mensionality is Npop(Npop + 3)/2 = 9. This indicates that the
approximate models show a dimensionality reduction com-
pared with both the model dimensionality and the maximal
embedding dimensionality. This seems trivial until one ex-
amines the PR measure for the example embeddings given in
Sec. III. The simple Poisson example has just one parameter
� and subsequently a maximum embedding dimension of
two. Despite the intrinsic parameter density of one, its isKL
embedding [Fig. 3(f)] gives an effective dimensionality is
much closer to its maximal embedding dimension and gives
PR ≈ 1.982. In a similar vein, the example Gaussian model
has two parameters (μ, σ ), yet it has an embedding dimen-
sion of PR ≈ 3.929 which is nearly its maximum embedding
dimensionality of four [see Fig. 3(g) for one of the manifolds
projections]. The measured PR thus does not seem to reflect
the dimensionality of the intrinsic manifold structure, but in-
stead the number of embedding dimensions within the isKL
framework required to capture most of the variability in model
behaviors. This will be discussed further in Sec. V.

V. DISCUSSION

The central motivation of this paper is to tease apart the
impact of cellular and synaptic model parameters—internal
timescales and relative synaptic strengths, respectively on the
complex and high-dimensional behavioral space of spiking
network models. Taking inspiration from prior applications
of information geometry to neural systems [25–32], we
approached this Herculean task by leveraging recently de-
veloped methods for studying the information geometry of
complex biology models [39,40] and applying them to spiking

network models with more biological features than those con-
sidered previously. We began by defining our spiking model
[4,57] and then simplifying it through population-averaging,
using a path-integral formalism to approximate the membrane
dynamics as a Gaussian process [4,62], and then calculating
the stationary distribution for that approximation [64]. The
stationary distributions for these were then analyzed using
the information geometric framework introduced by Teoh and
colleagues [40]. This workflow is the core of the work pre-
sented.

Before diving into the results of the geometric embedding
analysis, we briefly examined the behaviors of full spiking
networks across various E-I conditions and for a few different
timescale points. We showed that the behavior of the actual
networks change distinctly across the variables at both the
level of spiking and of population-averaged membrane dy-
namics. Importantly, the spiking models reach a stationary
state in the long-time limit. This agreed qualitatively with
the mean-field predictions and supported the analysis of the
stationary distributions from the reduced model.

The information-geometric analysis demonstrated that the
approximated models are hierarchical. Manifold widths and
coordinate eigenvalues spanned several orders of magnitudes,
pointing to a hyperribbon structures with stiff and sloppy co-
ordinate directions. The distribution of these coordinate eigen-
values changed across E-I conditions and with it the hierarchy
of two-dimensional manifold projections. These changes in
the manifold projections arose from a smooth warping of
projections onto specific coordinate pairs as well as a reorder-
ing of the coordinate rankings. Identifying each coordinates
with their corresponding sufficient statistic highlighted a clus-
tered structure in the eigenvalue distribution of the spiking
models across E-I conditions. From this clustered structure,
it is possible to pick out the most and least important suffi-
cient statistics for distinguishing between models on a given
manifold—these are the parameter combinations that underlie
the stiff and sloppy coordinate directions, respectively. In par-
ticular, the stiffest directions on the spiking-model manifolds
corresponded to the second moments of the excitatory and
inhibitory population membrane potentials while the sloppiest
directions were those corresponding to the first moments. This
suggests that bulk fluctuations are key for determining the
behavior of a specific network. It is unfortunately difficult to
tie this understanding of stiff and sloppy statistical parameters
to the timescale parameters in a manner that is satisfactorily
analytical, owing primarily to the transcendental mean-field
equations [Eq. (6c)] that must be solved numerically. That
said, the implication of the sloppy and stiff coordinate obser-
vations is that an adjustment of the membrane and synaptic
timescales tends to have a larger effect on the large-population
fluctuations than it does on the means.

At the end of our isKL analysis, we discussed the dimen-
sionality of the models, their behavior, and their manifolds.
The largest reductions in the size of the model occur when
moving to population-averaged models and when focusing
on the stationary distribution. The combined effect decreases
the dimensionality of the model output space being studied
from NT/�t to Npop(Npop + 3)/2, in which we essentially
shift from a study of particular spike patterns to a study of
probability distributions. From here, the isKL methods em-
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bed the distribution in Npop(Npop + 3) dimensions. This sets
the upper limit of dimensionality at the end of our analy-
sis, being 18 for the particular population-averaged networks
studied here. Using a modified participation ratio to measure
the effective dimensionality of our embedded spiking mod-
els gave us a range of 6 � PR � 8—depending on the E-I
measure R—less than the maximum possible dimension. It
was illustrated elegantly through the example embedding of
the one-dimensional Poisson model that the participation ratio
measures the number of dimensions needed to hold a suf-
ficiently representative version of the model manifold rather
than the intrinsic dimensionality of the manifold. In fact, the
participation ratio for both toy models indicated that they
basically “filled” their respective embedding spaces. Taken
together, these show that approximated spiking models are
definitely undergoing a degree of dimensionality reduction
because they are not filling the embedding space like the toy
models did. The participation ratio can then be interpreted as
giving a sense of how “pointed” a change in parameters is. If a
six-dimensional space is needed to represent most features of
the manifold, this likely implies that the modulated parameters
are mostly affecting three natural parameters. However, this
is a measure of the effect of base parameter (i.e., τm and τs)
on model output and does not necessarily reflect a minimal
structure in the base parameter space needed for nearly full
expressivity of the model.

From the copious stick-like projections seen in the hier-
archies (Figs. 9 and 10), we may intuit that the embedded
manifolds are of an even smaller dimension than is repre-
sented by the participation ratio. We can take this a step
further by understanding the entire embedding process as
a transformation of a manifold originally in the parameter
space, implying that it should intrinsically be, at most, two-
dimensional. We also noted in Sec. IV F that there are ad hoc
ways of reducing the parameter space to a one-dimensional
curve while seemingly preserving much of the variability
in statistical parameters. If the goal is to find a reduced
number of base parameters to approximately cover the man-
ifold in a more principled way, this would likely require
estimating the intrinsic dimensionality of the model mani-
folds with more sophisticated tools than those discussed here.
This would provide a number of parameters—or parameter
combinations—needed to understand and express the model.
Thus, a combination of both an intrinsic measure and the
participation ratio provides a complimentary understanding of
model manifold dimensionality through the lenses of neces-
sary base parameters and range of impact, respectively.

It is important to note that the properties of the spiking
model manifolds are likely to differ depending on inputs
and other contexts, such as networks that perform specific
tasks like encoding sensory input. The models studied here
are functionally in a spontaneous regime with external tonic
drives that maintain the network in a balanced state when
the excitatory and inhibitory synaptic inputs are balanced.
The structure of a given task is known to collapse high-
dimensional spontaneous activity into a lower-dimensional
space [11,17], which might be seen directly in information-
geometric interrogations such as the one performed in this
paper. Furthermore, this may well affect which statistical
parameters are important, in turn changing the coordinate

rankings, projection hierarchies, and potentially even the de-
gree to which the resulting manifolds are hierarchical. It is
certainly possible to study the model manifolds as a function
of external inputs to the network, rather than intrinsic network
properties, using the methods outlined in this work. These
possibilities require their own analysis in follow-up work.

The relationship between the hierarchical structures seen
in these models and the hyperbolic nature of the isKL em-
bedding methods has a deeper connection to prior work than
initially mentioned in Sec. I. It has been shown that an un-
derlying hyperbolic geometry can embed the exponentially
expanding branches of hierarchical tree-like processes nearly
isometrically, and conversely that tree-like processes can be
thought of as a discretization of the hyperbolic space [65];
this has been taken to mean that an underlying hyperbolic
geometry implies a fundamentally hierarchical structure and
vice versa. The initial study of this relationship was meant
to provide a geometric description of complex hierarchical
networks from earlier work [66], but the scope of application
expanded from there. With a combination of topological tools
to match data correlations to an optimal underlying geometry
and hyperbolic embedding methods, the observed hyperbolic-
ity was interpreted as evidence of the existence of hierarchical
tree structures in the correlations of natural odors and their
perceptual organization [54], used to visualize and understand
gene expression patterns across cell types and through the
process of differentiation [55], and provided a mechanistic
understanding of place representation and the influence of
experience on those representations in mouse hippocampal
CA1 spiking patterns [56]. The natural pairing of the hyper-
bolic isKL embedding methods to exponential family models
[40] thus fundamentally implies an underlying hierarchical
structure per these findings [65]. Conversely, this connection
implies the hierarchical structure of many biological models
from the sloppy modeling literature [33–40] may be under-
stood further in terms of an underlying hyperbolic geometry.

A. Limitations

It is important to highlight some limitations of the frame-
work of modeling and analysis in this paper. The primary hur-
dle to using these methods is the fact that the base calculations
required for each step, combined with the number of samples
needed to visually resolve the embedded manifolds, make it
costly to increase the dimensionality of the parameter space
or the number of network elements. The manifolds embedded
here require a large number of sampled parameter points
to resolve adequately, restricting the number of parameters
considered. Similarly, calculating ≈N2 statistical parameters
under the Gaussian process approximation would be compu-
tationally infeasible. The first of these restrictions led to the
choice of only two key parameters—the timescales—in the
current work. The second restriction motivates the reduction
of the model by population-averaging. The embedding of the
inverse timescale plane (see Sec. II E) revealed that much of
the manifold was comprised of points near the boundaries
where the behavior became pathological. This suggests that
a principled or data-informed restriction of parameter space
may lead to a decrease in the necessary per-parameter sam-
pling density and ease the restrictions presented here.
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B. Future directions

There are several avenues along which the next investiga-
tions could follow; in closing we highlight a few of the most
promising directions.

As noted earlier, one could use external current inputs
to the two populations to parametrize the manifolds instead
of the membrane and synaptic timescales used in this work.
This would allow us to compare and contrast, at an idealized
level, differences in efficacy between manipulating network
activity using pharmacological means (e.g., applying differ-
ent neuromodulators to adjust circuit properties) versus direct
stimulation (such as deep brain stimulation).

To build toward making more specific predictions for real
biological networks it would be valuable to apply our anal-
yses to models of specific experimental studies, tailoring
the details of the model to concrete brain areas by incor-
porating known features of the circuitry, such as cell types
beyond an excitatory-inhibitory dichotomy or spatial orga-
nization of the network. Such a model would still need to
be relatively idealized in order for our current methods to
remain tractable, but our general framework—marginalize,
approximate, population-average, and then embed—can apply
to cases beyond the general networks presented here.

Extensions of the isKL method that could enable applica-
tion to more complex models include studying the evolution of
manifolds in time, instead of the stationary scenarios consid-
ered here. A first-attempt way to do this would be to discretize
time, apply the embedding procedure at each time-step, and
trace points through the embedding space. While conceptu-
ally straightforward, this approach would involve significantly
more computational investment and the interpretation of the
results would be more complicated than in the system dis-
cussed in this paper.

One could instead try to extend the iSKL embedding
framework to apply directly to the nonequilibrium path inte-
gral representations of the network statistical dynamics. The
major obstacle to such an extension is that the representation
of the probability of a trajectory involves a functional integral
over auxiliary response fields [like Ṽ and ñ in Eq. (3)] [61],
rendering direct computation of the DsKL intractable for most
models. This will require further approximations using, e.g.,
the replica trick [67] to deal with the logarithms in the defini-
tion of the DsKL [Eq. (14)]. Nevertheless, this is a promising
route for extending the manifold embedding methods used in
this work to time-dependent contexts.
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APPENDIX A: POPULATION AVERAGING OF THE
GAUSSIAN PROCESS APPROXIMATED NETWORK

Here, we derive the reduced model from Eq. (6) by first
making a Gaussian process approximation on the full-network
spiking model and then averaging the resulting dynamics by
population. The stochastically spiking full network, modeled

using a nonlinear Hawkes process, is reproduced here:

dVi

dt
= − τ−1

m (Vi − εI ) + Ii

+ τ−1
s

⎛
⎝μext − Jself ṅi(t ) +

∑
j

wi j ṅ j (t )

⎞
⎠,

ṅi(t )dt ∼ Poiss[φ(Vi(t ))dt].

Recall that the lowercase subscripts (i, j, etc.) denote in-
dividual neurons within the network. Vi is the membrane
potential of neuron i, εi is the leak reversal potential, wi j is
the strength of a synaptic connection from neuron j to neuron
i, and −Jself is an inhibitory self-coupling. The two currents
μext and Ii represent an average current from an external
network and an experimentally injected current, respectively.
The process ṅi(t ) is the spike train of neuron i, and φ(·)dt
is the instantaneous firing rate nonlinearity, here given by
φ(x) = 1

2 [x + (x2 + 1/2)1/2]. Finally, τm and τs are modu-
lated membrane and synaptic timescales, respectively. The
mean-field equations for the steady-state membrane potentials
can be obtained directly from these equations by using the
fact that the approximation neglects fluctuations, and hence
〈ni(t )〉 = 〈φ(Vi(t ))〉 ≈ φ(〈Vi(t )〉), yielding

V mf
i = εI + τmIi

+ τm

τs

⎛
⎝μext − Jselfφ

(
V mf

i

) +
∑

j

wi jφ
(
V mf

j

)⎞⎠. (A1)

To obtain the dynamics of fluctuations around the mean-field
predictions, and to set up for future calculations that go even
beyond the Gaussian approximation, it is useful to introduce
a path integral representation of this stochastic process, using
techniques from statistical physics [61]. In discrete time, we
can write the joint probability for the membrane potential V(t )
and the spike trains ṅ(t ) as follows:

P[V(t ), ṅ(t )] =
∏
t,i

P[Vi(t )|ṅ(t − dt )(t − dt )]

× P[ṅi(t − dt )|V(t − dt )],

where the dynamics of the membrane potential are determin-
istic given a particular history of the spike trains,

P[Vi(t )|ṅ(t − dt )] ∝ δ

⎛
⎝dVi

dt
+ τ−1

m (Vi − εI ) − Ii − τ−1
s

×
⎛
⎝μext − Jself ṅi(t ) +

∑
j

wi j ṅ j (t )

⎞
⎠
⎞
⎠.

Here, the proportionality hides a Jacobian factor that arises
from a change of variables from VI (t ) to V̇I (t ); this factor
is constant for an Itô time discretization, which we assume
here.

Next, we take the spike train process to be condi-
tionally Poisson given the current value of the membrane
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potentials:

P[ṅi(t − dt )|Vi(t − dt )]

= φ(Vi(t − dt ))ṅi (t−dt )dt

[ṅi(t − dt )dt]!
e−φ(Vi (t−dt ))dt ,

giving an overall representation

P[V(t ), ṅ(t )] =
∏
t,i

δ

⎛
⎝dVi

dt
+ τ−1

m (Vi − εI ) − Ii

− τ−1
s

⎛
⎝μext − Jself ṅi(t ) +

∑
j

wi j ṅ j (t )

⎞
⎠
⎞
⎠

×
[

φ(Vi(t − dt ))ṅi (t−dt )dt

[ṅi(t − dt )dt]!
e−φ(Vi (t−dt ))dt

]
.

To cast this in a path integral representation, the standard
approach is to represent the probability distributions in terms
of a Fourier space representation. For the δ distribution we
have

δ(x) =
∫ i∞

−i∞

dx̃

2π
e−x̃x,

and for a Poisson distribution with rate λ we have

p(x) =
∫ i∞

−i∞

dx̃

2π
e−x̃x+W (x̃) =

∫ i∞

−i∞

dx̃

2π
e−x̃x+λ(ex̃−1),

where W (x̃) = λ[exp(x̃) − 1] is the cumulant generating
function for the Poisson process. We have adopted the stan-
dard notation from physics of writing the auxiliary variables
this process introduces with tildes, and absorbing the factor of
the imaginary unit i into the notation (giving imaginary units
of integration). The path integral representation of the spiking
process above is then given by

P[V(t ), ṅ(t )] =
∫

D[Ṽ, ñ]e−S[Ṽ,V,ñ,ṅ],

where S[Ṽ, V, ñ, ṅ] is referred to as the “action” of the
process. We take the continuous-time limit, converting the
product over time into an integral over time in the exponent.
For this particular model, the action is given by

S[Ṽ, V, ñ, ṅ] =
∫

dt
n∑

i=1

⎧⎨
⎩Ṽi

⎡
⎣V̇i + Vi − εi

τm
− Ii

− τ−1
s

⎛
⎝μext − Jself ṅi(t ) +

∑
j

wi j ṅ j (t )

⎞
⎠
⎤
⎦

+ ñi(t )ṅi(t ) − (eñi (t ) − 1)φ(Vi )

⎫⎬
⎭.

For our purposes, it will be convenient to marginalize out
the dynamics of the spiking process ṅ(t ) and its conjugate
variable ñ(t ) to obtain a representation for the stochastic dy-
namics of the membrane potentials [along with their auxiliary

variables Ṽ(t )]. The spike-marginalized action is

S[Ṽ, V] =
∫

dt
n∑

i=1

{
Ṽi

[
V̇i + Vi − εI

τm
− Ii − τ−1

s μext

]

− (
eτ−1

s (−JselfṼi+
∑

j Ṽjw ji ) − 1
)
φ(Vi )

}
.

The Gaussian process approximation is derived by ex-
panding this action around the mean-field solution, retaining
only terms up to quadratic order in V(t ) − Vmf and Ṽ(t ).
The mean-field solution is obtained by the saddle-points of
the action with respect to V(t ) and Ṽ(t ), which reproduce
Eq. (A1) for Vmf and yield Ṽmf = 0. We thus perform a func-
tional Taylor-series expansion of the action around (Ṽ, V) =
(0, Vmf ), keeping only terms to the second order in δV =
V − Vmf and Ṽ. The result is

S[Ṽ, V] = 1

2

∫
dtdt ′ ∑

i j

Ṽi(t )

[
−τ−2

s

∑
k

(−δikJself + wik )

× (−δ jkJself + w jk )φ
(
V mf

k

)⎤⎦Ṽj (t
′)

+
∫

dtdt ′ ∑
i j

Ṽi(t )

[
δi jδ(t − t ′)

d

dt
+ δi j

(
τ−1

m

+ τ−1
s Jselfφ

′(V mf
j

)) − τ−1
s wi jφ

′(V mf
j

)]
δVj (t

′).

The form of the truncated action is the same as the path inte-
gral representation of an Ornstein-Uhlenbeck process derived
explicitly by Chow and Buice [61]. We may therefore match
terms to identify the effective stochastic process described by
this action:

dδVi

dt
= −

n∑
j=1

[
δi j
(
τ−1

m + τ−1
s Jselfφ

′(V mf
j

))−τ−1
s wi jφ

′(V mf
j

)]
× δVj + ξi(t ) for i = 1, 2, . . . , n,

where ξi(t ) is a zero-mean Gaussian noise with covariance

〈ξi(t )ξ j (t
′)〉 = τ−2

s

∑
k

(−δikJself + wik )(−δ jkJself + w jk )

× φ
(
V mf

k

)
δ(t − t ′).

Casting this as a proper Itô stochastic differential equation,
we get

dδV = −AδVdt + �dWt ,

or equivalently

dV = A(Vmf − V)dt + �dWt ,

where

Ai j = δi j
(
τ−1

m + τ−1
s Jselfφ

′(V mf
j

)) − τ−1
s wi jφ

′(V mf
j

)
,

(��T )i j = τ−2
s

∑
k

(−δikJself + wik )(−δ jkJself+w jk )φ
(
V mf

k

)
.
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In deriving the reduced dynamics for the population averages,
we begin with the Langevin dynamics derived for the full
network. We consider the network to have weakly heteroge-
neous populations in which the connections wi j = wIJxi j are
given by Bernoulli variables, i.e., wi j = wIJxi j , where wIJ is
a constant depending on the pre- and postsynaptic population
identities (J and I , respectively). We take each connection
variable xi j to be independent:

xi j ∼ Bernoulli(pIJ ).

We formally define the average of variable Ai across popula-
tion I as

〈〈Ai〉〉I = AI ≡ 1

NI

∑
i∈I

Ai(t ).

At this point, we write the population-averaged connection
weights as follows:

〈〈wi j〉〉I ≈ pIJwIJ .

We derive the effective equations for VI=0 ≡ Vi=0 (the test
neuron) and the population averages:

VI=1 ≡ 1

N1

∑
i∈1

Vi, VI=2 ≡ 1

N2

∑
i∈2

Vi.

We make mean-field-like approximations on the population
average of terms like 〈〈 f (Ai )〉〉I ≈ f (〈〈Ai〉〉i = f (AI ), and we
additionally assume approximate independence between the
distributions of the synaptic connections, the stationary mean-
field potentials V mf

i , and the potentials Vi. We thus have

d

dt

(
1

NI

∑
i∈I

Vi

)
=
〈〈∑

j

[
δi j
(
τ−1

m + τ−1
s Jselfφ

′(V mf
j

)) − τ−1
s wi jφ

′(V mf
j

)](
V mf

j − Vj
) + ξi(t )

〉〉
I

= 〈〈[
τ−1

m + τ−1
s Jselfφ

′(V mf
i

)]
V mf

i

〉〉
I − 〈〈[

τ−1
m + τ−1

s Jselfφ
′(V mf

i

)]
Vi
〉〉

I

− τ−1
s

〈〈∑
j

wi jφ
′(V mf

j

)
V mf

j

〉〉
I

− τ−1
s

〈〈∑
j

wi jφ
′(V mf

j

)
Vj

〉〉
I

+ 〈〈ξi(t )〉〉

≈ [
τ−1

m + τ−1
s Jselfφ

′(〈〈V mf
i

〉〉
I

)]〈〈
V mf

i

〉〉
I − [

τ−1
m + τ−1

s Jselfφ
′(〈〈V mf

i

〉〉
I

)]〈〈Vi〉〉I

− τ−1
s

〈〈∑
J

NJ
〈〈
wi jφ

′(V mf
j

)
V mf

j

〉〉
J

〉〉
I

− τ−1
s

〈〈∑
J

NJ
〈〈
wi jφ

′(V mf
j

)
Vj
〉〉

J

〉〉
I

+ �I (t )

≈ [
τ−1

m + τ−1
s Jselfφ

′(V mf
I

)](
V mf

I − VI
) − τ−1

s

〈〈∑
J

NJ〈〈wi j〉〉Jφ
′(〈〈V mf

j

〉〉
J

)〈〈
V mf

j

〉〉
J

〉〉
I

− τ−1
s

〈〈∑
J

NJ〈〈wi j〉〉Jφ
′(〈〈V mf

j

〉〉
J

)〈〈Vj〉〉J

〉〉
I

+ �I (t )

≈ [
τ−1

m + τ−1
s Jselfφ

′(V mf
I

)](
V mf

I − VI
) − τ−1

s

∑
J

NJ pIJwIJφ
′(V mf

J

)(
V mf

J − VJ
) + �I (t )

⇒ dVI=1

dt
≈
∑

J

[
δIJ

(
τ−1

m + τ−1
s Jselfφ

′(V mf
I

)) − τ−1
s wIJ pIJNJφ

′(V mf
J

)](
V mf

J − VJ
) + �I (t ).

In the last line above, the population-averaged effective noise processes are defined by �I (t ) = 1
NI

∑
i∈I ξi(t ), and the sum over J

is over an arbitrary definition of subpopulations. In our particular case, we have J ∈ {0, 1, 2} as defined in Sec. II D with N0 = 1.
Next, we calculate the covariance of the population-averaged noise processes �I (t ). We make the mean-field-like approxi-

mations as before:

〈�I , �J〉 =
〈

1

NI

∑
i∈I

ξi,
1

NJ

∑
j∈J

ξ j

〉
= 1

NI NJ

∑
i∈I, j∈J

[〈ξiξ j〉 − 〈ξi〉〈ξ j〉]

≈ τ−2
s

NI NJ

∑
i∈I, j∈J

[∑
k

(−δikJself + wik )(−δ jkJself + w jk )φ
(
V mf

k

)]
δ(t − t ′)

= τ−2
s

NI NJ

∑
i∈I, j∈J

[
δi jJ

2
selfφ

(
V mf

i

) − Jselfw jiφ
(
V mf

i

) − wi jJselfφ
(
V mf

j

) +
∑

K

∑
k∈K

wikw jkφ
(
V mf

k

)]
δ(t − t ′)
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= τ−2
s

NI NJ

[
δIJNI

〈〈
J2

selfφ
(
V mf

i

)〉〉
I − NI NJ

〈〈
Jselfw jiφ

(
V mf

i

)〉〉
I,J − NI NJ

〈〈
wi jJselfφ

(
V mf

j

)〉〉
I,J

+ NI NJ

〈〈∑
K

∑
k∈K

〈〈
wikw jkφ

(
V mf

k

)〉〉
K

〉〉
I,J

]
δ(t − t ′)

= τ−2
s

[
δIJ

J2
self

NI
φ
(
V mf

I

) − Jself〈〈w ji〉〉I,Jφ
(
V mf

I

) − 〈〈wIJ〉〉I,JJselfφ
(
V mf

J

) +
∑

K

〈〈w jk〉〉K,I,JNKφ
(
V mf

K

)]
δ(t − t ′)

= τ−2
s

[
δIJ

J2
self

NI
φ
(
V mf

I

) − Jself pJIwJIφ
(
V mf

I

) − pJIwIJJselfφ
(
V mf

j

) +
∑

K

pJKwJK NKφ
(
V mf

K

)]
δ(t − t ′)

= τ−2
s

∑
K

(
−δIK

Jself

NK
+ pIKwIK

)(
−δJK

Jself

NK
+ pJKwJK

)
NKφ(V ∗

K )δ(t − t ′).

Note that in this derivation we are assuming an equivalence between the temporal mean-field membrane potential for each
individual neuron Vi (used in the previous section) with the mean-field value of the population-averaged membrane potential VI .
This amounts to saying the network is sufficiently large and thus the mean of the membrane potential Vi for i ∈ I tends toward
the mean of VI . This yields a stochastic differential equation of the form

dV = A(Vmf − V)dt + �dWt ,

where

Ai j = δi j
(
τ−1

m + τ−1
s Jselfφ

′(V mf
j

)) − τ−1
s wi jφ

′(V mf
j

)
,

(��T )i j = τ−2
s

∑
k

(−δikJself + wik )(−δ jkJself + w jk )φ
(
V mf

k

)
.

APPENDIX B: GAUSSIAN PROCESS APPROXIMATION OF A POPULATION-AVERAGED NETWORK

In this Appendix, we derive the reduced model from Eq. (6) by first averaging the Hawkes process dynamics across
subpopulations and then making a Gaussian approximation, reversing the order of operations in Appendix A. We begin with
the base model:

dVi

dt
= −τ−1

m (Vi − εI ) + Ii + τ−1
s

⎛
⎝μext − Jself ṅi(t ) +

∑
J

∑
j∈J

wi j ṅ j (t )

⎞
⎠,

ṅi(t )dt ∼ Poiss[φ(Vi(t ))dt].

The population-averaged membrane potential dynamics are given by

d

dt
VI = d

dt
〈〈Vi〉〉I = −〈〈Vi〉〉I − εI

τm
+ 〈〈Ii〉〉I + μext

τs
− τ−1

s Jself〈〈ṅi(t )〉〉I + τ−1
s

〈〈∑
J

∑
j∈J

wi j ṅ j (t )

〉〉

= −VI − εI

τm
+ II + μext

τs
− τ−1

s Jself〈〈ṅi(t )〉〉I + τ−1
s

∑
J

∑
j∈J

〈〈wi j〉〉ṅ j (t ).

As before, we take the connections wi j to be scaled Bernoulli variables, i.e., wi j = wIJxi j , where wIJ is a constant depending
on the pre- and postsynaptic population identities (J and I , respectively) and xi j ∼ Bernoulli(pIJ ). The population-averaged
connections are again given by 〈〈wi j〉〉I ≈ pIJwIJ . We next recast the spiking processes into population spiking processes using
the following definition:

ṁI (t ) ≡
∑
i∈I

ṅi(t ) = NI〈〈ṅi〉〉I .
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As each ṁI (t ) is a sum of conditionally Poisson processes, it is also a conditionally Poisson process. Using the same mean-field-
esque approximation as before, we may approximate the conditional rate of each ṁI (t ) as follows:

ṁI =
∑
i∈I

ṅi(t ) ∼ Poiss

(∑
i∈I

φ(Vi(t ))dt

)
= Poiss(NI〈〈φ(Vi(t ))〉〉I dt )

≈ Poiss(NIφ(〈〈Vi(t )〉〉I )dt ) = Poiss(NIφ(VI (t ))dt ).

With this, the population-averaged Hawkes process dynamics become

d

dt
VI = −VI − εI

τm
+ II + μext

τs
− τ−1

s Jself
ṁI (t )

NI
+ τ−1

s

∑
J

pIJwIJ ṁJ (t )

= −VI − εI

τm
+ II + τ−1

s

[
μext +

∑
J

(
−δIJ

Jself

NI
+ pIJwIJ

)
ṁJ (t )

]
,

ṁI (t )dt ∼ Poiss[NIφ(VI (t ))dt].

After deriving the population-averaged dynamics for the nonlinear Hawkes process, we apply the Gaussian-process ap-
proximation scheme to the new dynamics. We begin by applying a mean-field-like approximation to the average of the
population-spiking processes, namely, 〈ṁI (t )〉 ≈ NIφ(〈VI〉). This is used to find the stationary mean-field solution for the
population-averaged membrane potential dynamics, given by a set of transcendental equations:

V mf
I = εI + τmII + τm

τs

[
μext +

∑
J

(
−δIJ

Jself

NI
+ pIJwIJ

)
NJφ

(
V mf

J

)]
.

As in Appendix A, we represent the joint probability distribution P[V(t ), ṁ(t )] as a path integral by discretizing time, making
appropriate Fourier transforms, and taking a continuous-time limit. This yields the expression

P[V(t ), ṁ(t )] =
∫

D[Ṽ, m̃]e−S[Ṽ,V,m̃,ṁ],

with

S[Ṽ, V, m̃, ṁ] =
∫

dt
∑

I=0,1,2

{
ṼI

[
V̇I + VI − εi

τm
− II − τ−1

s

(
μext +

∑
J

(
−δIJ

Jself

NI
+ pIJwIJ

)
ṁJ (t )

)]

+ m̃I (t )ṁI (t ) − (em̃I (t ) − 1)NIφ(VI )

}
.

We marginalize out the explicit spiking dynamics as before by finding the zeros of the derivatives of the action with respect
to ṁ(t ) and its conjugate variables m̃(t ). This yields the following marginalized action:

S[Ṽ, V] =
∫

dt
∑

I=0,1,2

{
ṼI

[
V̇I + VI − εI

τm
− II − τ−1

s μext

]
− (

eτ−1
s (− Jself

NI
ṼI +

∑
J Ṽj pJI wJI ) − 1

)
NIφ(VI )

}
.

We expand this action around the mean-field solution (Ṽ, V) = (0, Vmf ) to quadratic order. Evaluating individual terms and
derivatives at the mean-field solution, we get

S[0, Vmf ] = 0,

SVI [0, Vmf ] = 0,

SṼI
[0, Vmf ] =

∫
dt

[
V̇i + V mf

i − εI

τm
− V mf

i − εI

τm

]
=
∫

dt
[
V̇i − V̇ mf

i

] =
∫

dt ˙δV i,

SṼIṼJ
[0, Vmf ] =

∫
dt

[
−τ−2

s

∑
K

(
−δIK

Jself

NI
+ pIKwIK

)(
−δJK

Jself

NJ
+ pJKwJK

)
NKφ(VK )

]
,

SṼIVJ
[0, Vmf ] =

∫
dt
[
δIJ

(
τ−1

m + τ−1
s Jselfφ

′(V mf
I

)) − τ−1
s pIJwIJNJφ

′(V mf
J

)]
,

024302-29



JACOB T. CROSSER AND BRADEN A. W. BRINKMAN PHYSICAL REVIEW E 109, 024302 (2024)

and

SVIVJ [0, Vmf ] = 0.

Again defining fluctuations in the membrane potential as δVI := VI − V mf
I , the approximated action can be written as

S[Ṽ, V] =
∫

dt
∑

I

{
˙δV I +

∑
J

[
δIJ

(
τ−1

m + τ−1
s Jselfφ

′(V mf
I

)) − τ−1
s pIJwIJNJφ

′(V mf
J

)]
δVJ

}
ṼI (t )

+ 1

2

∫
dtdt ′ ∑

i j

[
−τ−2

s

∑
K

(
−δIK

Jself

NI
+ pIKwIK

)(
−δJK

Jself

NJ
+ pJKwJK

)
NKφ(VK )

]
ṼI (t )ṼJ (t ′).

As before, we can identify the GPA dynamics of the population-averaged Hawkes process as corresponding to an Ornstein-
Uhlenbeck process. We may therefore match terms to identify the effective stochastic process described by this action:

dδVI

dt
= −

∑
J=0,1,2

[
δIJ

(
τ−1

m + τ−1
s Jselfφ

′(V mf
I

)) − τ−1
s pIJwIJNJφ

′(V mf
J

)]
δVJ + ξI (t ) for I = 0, 1, 2,

where ξI (t ) is a zero-mean Gaussian noise with covariance

〈ξI (t )ξJ (t ′)〉 = τ−2
s

∑
K

(
−δIK

Jself

NI
+ pIKwIK

)(
−δJK

Jself

NJ
+ pJKwJK

)
NKφ(VK )δ(t − t ′).

Casting this as a proper Itô stochastic differential equation, we get

dV = A(Vmf − V)dt + �dWt ,

where

Ai j = δIJ
(
τ−1

m + τ−1
s Jselfφ

′(V mf
I

)) − τ−1
s pIJwIJNJφ

′(V mf
J

)
,

(��T )i j = τ−2
s

∑
K

(
−δIK

Jself

NI
+ pIKwIK

)(
−δJK

Jself

NJ
+ pJKwJK

)
NKφ(VK ).

We note that this is consistent with the form derived in Appendix A.

APPENDIX C: POPULATION AVERAGING FOR THE LINEAR NONSPIKING MODEL

We also construct a simpler model of networked, linear nonspiking (or graded potential) neurons. We assume the neurons are
injected with large numbers of synaptic input that sum together to be approximately Gaussian, with nonzero mean μext, creating
a stochastic system with dynamics described by

dVi

dt
= − τ−1

m (Vi − εI ) + Ii + τ−1
s

⎛
⎝μext − Jselfφ(Vi ) +

∑
j

wi jφ
(
Vj
)⎞⎠ + ξi(t ).

We begin this derivation by assuming the connections wi j = wIJxi j are scaled Bernoulli variables as in Appendixes A and B.
Here, the transfer function φ(·) is a simple linear function [i.e., φ(x) = x]. The processes ξi(t ) are zero-mean Gaussian noise
synaptic input from neurons external to the network being examined, and thus they scale with τ−1

s [i.e., ξi(t ) ∼ τ−1
s ]. We define

the covariance of the noise processes ξi(t ) as follows:

〈ξi(t )ξ j (t
′)〉 = τ−2

s μextδ(t − t ′).

Here, kJ is a constant potentially depending on the identity of the receiving population J . We wish to derive a population-averaged
model for the membrane potential dynamics for comparison with the Gaussian-process-approximated spiking models. Again,
we define

〈〈Ai〉〉I ≡ 1

NI

∑
i∈I

Ai(t ).
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We thus derive the population-averaged dynamics for population I:

d

dt

(
1

NI

∑
i∈1

Vi

)
= −

〈〈
Vi − εI

τm

〉〉
I

+ 〈〈Ii〉〉I + τ−1
s

(
μext − 〈〈Jselfφ(Vi )〉〉I +

〈〈∑
J

NJ〈〈wi jφ(Vj )〉〉J

〉〉
I

)
+ 〈〈ξi(t )〉〉I ,

⇒ dVI

dt
≈ −VI − εI

τm
+ II + τ−1

s

(
μext − Jselfφ(VI ) +

∑
J

pIJwIJNJφ(VJ )

)
+ �I (t ),

where we have defined �I (t ) ≡ 1
NI

∑
i∈I ξi(t ) for I = 0, 1, 2. The means and covariances of the population-averaged noise

processes are as follows:

〈�I (t )〉 =
〈

1

NI

∑
i∈I

ξi(t )

〉
= 1

NI

∑
i∈I

〈ξi(t )〉 = 0,

and

〈�I (t ), �J (t )〉 =
〈

1

NI

∑
i∈I

ξi(t ),
1

NJ

∑
j∈J

ξ j (t )

〉
= 1

NI NJ

∑
i∈I, j∈J

〈ξi(t )ξ j (t )〉 − 〈ξi(t )〉〈ξ j (t )〉 = 1

τ 2
s NI NJ

∑
i∈I, j∈J

δi jμextδ(t − t ′)

= δIJ

τ 2
s N2

I

∑
i∈I

μextδ(t − t ′) = δIJ

τ 2
s N2

I

NIμextδ(t − t ′) = δIJ

τ 2
s NI

μextδ(t − t ′).

We can then rewrite the population dynamics as

dVI =
[
−VI − εI

τm
+ II + τ−1

s

(
μext − Jselfφ(VI ) +

∑
J

pIJwIJNJφ(VJ )

)]
dt + �I (t )dt,

→ dV = A
(
A−1

(
τ−1

s μext + II
) − V

)
dt + �dWt = A(μ − V)dt + �dWt ,

where

AIJ = δIJ
(
τ−1

m − τ−1
s Jself

) + τ−1
s pIJwIJNJ

= δIJτ
−1
m + τ−1

s w∗
IJ ,

w∗
IJ = −δIJJself + pIJwIJNJ ,

(		T )IJ = δIJ

τ 2
s NI

μext.

APPENDIX D: BALANCE EQUATIONS

To derive the balanced state conditions for the network,
we begin with the population-averaged spiking network as
derived in Appendix B:

d

dt
VI = − VI − εI

τm
+ II + τ−1

s

×
⎡
⎣μext +

∑
J=0,1,2

(
−δIJ

Jself

NI
+ pIJwIJ

)
ṁJ (t )

⎤
⎦

ṁI (t )dt ∼ Poiss[NIφ(VI (t ))dt],

where pIJwIJ came from the population-averaged synaptic
connection 〈〈wi j〉〉J and the effective spike count processes
are ṁJ (t ) = ∑

j∈J ṅ j (t ). The total external input to “neuron”

I is II + τ−1
s [μext − Jself

NI
ṁI (t ) + ∑

J pIJwIJ ṁJ (t )]. We want to
estimate the mean and variance of this input, taken over the
stochastic process. The mean is straightforward, yielding

τ−1
s κI ≡ II + τ−1

s

(
μext − Jselfφ(VI ) +

∑
J

pIJwIJNJφ(VJ )

)
.

Note that the correction term −Jself ṁI (t ) is always going to be
smaller than the

∑
J pIJwIJ ṁJ term, so for the purposes of the

balanced condition calculation we neglect it. For the current
work, we take the injected currents II to be constants.

Calculating the covariance of the total input at times t and
t ′ yields∑

JK

pIJwIJ pIKwIK [〈ṁJ (t )ṁK (t ′)〉 − 〈ṁJ (t )〉〈ṁK (t ′)〉].

We make a Poisson approximation to replace the covari-
ance of the ṁ with 〈ṁJ (t )〉δJKδ(t − t ′). Hence, the covariance
becomes ∑

J

(pIJwIJ )2NJφ(VJ )δ(t − t ′).

We want the variance of the synaptic input to be O(N0), which
means that to leading order we want∑

J

(pIJwIJ )2NJφ(VJ )

≈ (pI1wI1)2N1φ(V1) + (pI2wI2)2N2φ(V2) ∼ O(N0).
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We neglect the contribution from the test neuron because it
is subleading here, i.e., N0 = 1 � N1, N2. In order for this
expression to be order one, we see that we need wIJ to scale
like 1/

√
N , as implemented in Eqs. (12) and (13).

We return to the mean input to neuron I , which we write as

τ−1
s κI ≈

√
N

(
II + τ−1

s μext√
N

+ τ−1
s

{
pI1wI1

N1√
N

φ(V1) + pI2wI2
N2√

N
φ(V2)

})
.

For a balanced network κI should be O(1) for all I , which
means that the terms in brackets must vanish faster than
1/

√
N . We assume that II , μext ∝ √

N , and because wIJ ∼
1/

√
N and NI ∝ N (for I �= 0), the terms in brackets are O(1).

As N → ∞, the terms in brackets must vanish in order for
κI to be finite. This yields a linear system of equations that
uniquely determines the means μI = φ(VI ) and allows us to
place constraints on the parameters:

−
[

I1 + τ−1
s μext

I2 + τ−1
s μext

]
= 1

τs

[
p11w11N1 p12w12N2

p21w21N1 p22w22N2

][
φ(V1)

φ(V2)

]
.

Solving this system of equations for the spike rates φ(V mf
I ),

we get

φ(V1) = τs

N1

p12w12
(
I2 + τ−1

s μext
) − p22w22

(
I1 + τ−1

s μext
)

p11 p22w11w22 − p12 p21w21w12
,

φ(V2) = τs

N2

p21w21
(
I1 + τ−1

s μext
) − p11w11

(
I2 + τ−1

s μext
)

p11 p22w11w22 − p12 p21w21w12
.

In the case of our particular models, we can further reduce
this expression by noting that II = 0 for I = 1, 2 and pIJ =
p ∀ I, J:

φ(V1) = 1

pN1

w12 − w22

w11w22 − w21w12
μext,

φ(V2) = 1

pN2

w21 − w11

w11w22 − w21w12
μext.

We highlight here that φ(VI ) > 0 by its definition as a fir-
ing rate. Additionally, μext is assumed to by synaptic input
projected into the local network and is thus positive (i.e.,
excitatory) here. Taken together, these two points mean the
synaptic parameters must satisfy one of the two following sets
of inequalities to be in a balanced regime:

w11w22 > w12w21,

w12 > w22,

w21 > w11,

(D1)

or

w11w22 < w12w21,

w12 < w22,

w21 < w11.

(D2)

With this, we have derived the appropriate scaling for the
various parameters in the model and found constraints for the
synaptic strengths in order satisfy the necessary properties of
a balanced network.
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