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Hidden multiscale organization and robustness of real multiplex networks
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Hidden geometry enables the investigation of complex networks at different scales. Extending this framework
to multiplex networks, we uncover a different kind of mesoscopic organization in real multiplex systems, named
clan, a group of nodes that preserve local geometric arrangements across layers. Furthermore, we reveal the
intimate relationship between the unfolding of clan structure and mutual percolation against targeted attacks,
leading to an ambivalent role of clans: making a system fragile yet less prone to complete shattering. Finally,
we confirm the correlation between the multiscale nature of geometric organization and the overall robustness.
Our findings expand the significance of hidden geometry in network function, while also highlighting potential
pitfalls in evaluating and controlling catastrophic failure of multiplex systems.
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I. INTRODUCTION

Complex systems possess an intricate architecture that
spans multiple scales. The network geometry paradigm paves
the way for exploring the multiscale organization of complex
networks [1–4]. In particular, the concept of hidden metric
spaces with hyperbolic geometry gives natural explanations
for the common properties of real networks, such as degree
heterogeneity, strong clustering, and small-world-ness [5–7].
Coarse graining of nodes based on their distances in a hidden
metric space enriches the multiscale unfolding of networks
[2,3]. For example, it allows studying self-similarity of the
human connectome [8]. However, the study of multiscale or-
ganizations has still been limited to single-layer networks.

Indeed, many real networked systems consist of mul-
tiple interdependent systems represented by multilayer or
multiplex networks, which are of theoretical and practical
significance due to intriguing phenomena not seen in single-
layer networks [9,10]. In multiplexes, if a node in one layer is
attacked, its dependent nodes in the other layers break down
as well. This interdependent nature can yield a catastrophic
cascade of failures in mutual connectivity, which makes un-
derstanding the robustness of multiplex systems fascinating
[11–22]. In this context, recent publications have demon-
strated the significance of hidden geometry [23,24]: in real
multiplexes, geometric organization correlated across layers,
which can enhance their robustness against targeted attacks.
Nonetheless, previous studies have only focused on the lack
of interlayer independence based on mutual information [25].
Therefore, essential questions remain: How are the layers
correlated across a range of scales? How do the multiscale
properties affect the robustness?

In this paper, we show that the geometric correlations
(GCs) of real multiplexes manifest across multiple scales
rather than at a macroscopic scale. Notably, in contrast to the
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existing multiplex model for GCs [23,24], real multiplexes ex-
hibit the decrease of GCs as coarse graining. Our model with
the mesoscopic groups of mutually close nodes, named clans
[26], accounts for such nontrivial behaviors. Moreover, clan
structure drastically affects the robustness against targeted at-
tacks in an ambivalent way: the macroscopic organization be-
tween clans makes a system fragile, whereas the mesoscopic
organization within clans constrains complete shattering at the
end. These phenomena are elucidated based on the conceptual
analogy between clan unfolding and mutual percolation in
both real systems and our model. Finally, we confirm that the
GC spectra predict the robustness stemming from intra-clan
organization among diverse real multiplex systems.

II. MULTISCALE UNFOLDING
OF MULTIFLEX NETWORKS

We start by extending the zooming-out technique of single-
layer networks [2] to multiplexes (see Fig. 1). The approach
relies on the assumption that each node in a network has
radial and angular coordinates, ri and θi, in a two-dimensional
hyperbolic space [6]. Since the radial coordinate ri reflects
the expected degree of the node, κi, we only focus on angular
coordinates {θi}. Given a network with the angular coordinates
of nodes and a block size λ, consecutive λ nodes along the
circle are grouped into a supernode whose angular coordinate
φ is defined by

ξeφ = 1

λ

λ∑
j=1

eiθ j , (1)

where θ j is the angular coordinate of node j, and ξ is the
absolute value of the right-hand side [27]. Extending this to
multiplexes, the same mapping should be applied to every
layer. Therefore, one chooses a standard layer to define a
mapping. The iteration of this process yields a sequence of
downscaled versions per multiplex (see Fig. 1).
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FIG. 1. Multiscale unfolding of multiplex networks. The down-
scaled versions of a duplex are schematically illustrated as the
zooming-out level l increases, l = 0, 1, 2 (from left to right). Each
node has two angular coordinates for the upper and lower layers (gray
disks). The colors of the nodes represent their angular coordinates in
the lower layer, and dashed lines correspond to interlayer dependency
links.

Measuring the GC [23,24] of downscaled versions yields a
GC spectrum. For the sake of specificity, GCs were measured
by the normalized mutual information (NMI) [25] between
two sequences of angular coordinates in different layers; thus,
we present the GC spectrum by the NMI as a function of the
zooming-out level l (see Supplemental Material (SM), Sec. I
[28]). Here we investigate the GC spectra of real multiplexes
(see SM, Sec. II and Table S1 [28]). Our aim is to compare
real multiplexes with the existing model for GCs, called the
geometric multiplex model (GMM). In the GMM, node i
at θ1,i in layer 1 is assigned to θ2,i = θ1,i + �θi in layer 2,
where �θi is an independent random variable. Thus, the GC
is constructed at a macroscopic scale. To our aim, for a given
multiplex, we obtain the GMM-like null counterpart, where
the NMI for l = 0 and the topologies of layers are the same,
but dependency links are rearranged by independent local
noise as in the GMM (see SM, Sec. III [28]).

Figure 2(a) shows GC spectra for the arXiv collabora-
tion (arXiv, A48) and the Internet (Internet, I12) multiplexes
as well as the null counterparts with similar NMI values
for l = 0. Strikingly, we observe a significant discrepancy

between the original and the null. In the null, GC spectra tend
to increase monotonically, indicating that independent local
noise is washed out as coarse graining. However, in the orig-
inal, NMI values can decrease by zooming out. This kind of
discrepancy is found in other real systems in our dataset (see
SM, Table S1 [28]), which can be quantified by the maximum
difference as

m = max
l

[NMInull(l ) − NMIorg(l )]. (2)

III. CLAN STRUCTURE

To explain such nontrivial GC spectra in real multi-
plexes, we propose a multiplex model, named the multiscale
geometric multiplex model (MGMM). Note that the NMI
only indicates the lack of independence between two ran-
dom variables, without specifying any particular correlation
form, unlike the linear correlation coefficient, for instance.
Therefore, a locally correlated yet globally uncorrelated con-
figuration can also result in a nonzero NMI value. We
introduce the groups of nodes preserving their local arrange-
ment across layers, named clans, to our model, the MGMM.
Specifically, each group of consecutive � nodes in layer 1 is
defined as a clan; a node i is assigned to an angular coordi-
nate in layer 2, θ2,i = θ1,i + �θclan, where �θclan is the same
for nodes in the same clan. Finally, the angular arrangement
within a clan is preserved, but between clans is totally ran-
domized (see SM, Sec. III [28]).

Figure 2(b) schematically illustrates the MGMM and its
GMM-like null counterpart with their downscaled versions,
and in Fig. 2(c), the MGMM with � = 22 exhibits no macro-
scopic correlations but four nodes in a clan are close to each
other across layers. Such local correlations lead to a nonzero
NMI value at l = 0 in Fig. 2(a) (model, original). When each
clan becomes a supernode at the zooming-out level l = 2,
the totally random organization between clans makes the
downscaled version have no GCs. However, the GMM-like
counterpart constructs a trivial linear correlation at a macro-
scopic scale, which leads to a monotonic increase in its GC

(a) (b)

(c)

FIG. 2. Geometric correlation (GC) spectra of real multiplexes and multiscale geometric multiplex model (MGMM). (a) The normalized
mutual information (NMI) [25] as a function of zooming-out level l (with the coarse-graining block size λ = 2) for two sets of real data, i.e.,
arXiv (A48, orange circles) and Internet (I12, blue circles), and our model (MGMM, gray circles) with the total number of nodes, N = 27,
in the comparison with their null counterparts (crosses with lighter colors). (b) Multiscale unfolding of a synthetic multiplex generated by
the MGMM and its null counterpart. The upper (lower) layer represents θ1 (θ2). In the original, nodes in a planted clan are highlighted (red
dashed lines) for l = 0 (left), which are coarse-grained into a single supernode for l = 2 (right). In the null, the corresponding nodes are also
highlighted. (c) (θ1, θ2) space. Highlighted clans are also marked as bold black edges. The color of each node corresponds to θ2 in (b) and (c).
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FIG. 3. Multiscale organization of Internet. (a) Angular coordi-
nates of nodes in (θ1, θ2) space for the Internet (top) and its null
counterpart (bottom). The color of each node corresponds to θ2.
Identified clans in the original Internet (top) and its null counterpart
(bottom) for (b) z = 1/6 (θw/θc = 5) and (c) z = 2/3 (θw/θc = 0.5).
The presented maps are for layer 1. Clan memberships correspond
to colors, and if the clan size is less than 3, nodes belonging to the
clan are denoted as tiny gray dots. In particular, nodes in the largest
clan are colored white and highlighted by bold black edges. Those in
(b) are also highlighted in (a) in the same way.

spectrum. Consequently, our model with clans accounts for
the nontrivial behavior of the GC spectra, not present in the
existing model. Then a question arises: Does clan structure
appear in real multiplexes?

To answer the question, here we identify clans for a given
multiplex. If the angular distance di j between two nodes i and
j is less than a certain angular window θw, in both layers, they
have the same clan membership. Concretely, a characteristic
scale θc = 2π ln N/N among N points randomly distributed
on a unit circle [29] allows us to define a resolution factor z as

z = 1

1 + θw/θc
. (3)

For θw = ∞, z = 0 and all the nodes belong to a single clan,
and for θw = 0, z = 1 and all the clans correspond to isolated
nodes. Figure 3 shows the identified clan structure of the
Internet and its null counterpart. Although two multiplexes
have the same GC at l = 0 [see Fig. 2(a)], the joint angular
arrangements are clearly distinct from each other [Fig. 3(a)].
As in the comparison of the MGMM with the GMM [see
Fig. 2(c)], in real multiplexes, layers seem uncorrelated at a
macroscopic scale, while its null counterpart exhibits a clear
linear correlation. This difference is reflected in the clan struc-
ture [Figs. 3(b) and 3(c)]. For z = 1/6, in the original, plenty
of mesoscopic clans appear, whereas, in the null, most nodes
belong to a giant clan. For z = 2/3, the null has more clans
than the original, but most clans merely correspond to isolated
nodes or pairs of nodes. Therefore, the nontrivial GC spectrum
in Fig. 2(a) results in the appearance of mesoscopic clans in
real multiplexes.

The qualitative discrepancy of clan structure in Fig. 3
becomes apparent by the number of clans, Nclan, as a func-
tion of z in Fig. 4(a). As expected in Fig. 3, a reversal
occurs between z = 1/6 and z = 2/3, indicating that clan
structure in the original leads to an earlier appearance of

FIG. 4. Clan unfolding and mutual percolation in Internet. The
rescaled number of clusters, N , is plotted (a) for the clan against the
resolution factor, z, and (b) for the mutually connected component
(MCC) against the removal fraction of nodes, f , respectively. We
compare the dynamics in the original multiplex (red solid lines) with
its null counterpart (black dashed lines). The vertical gray dotted
lines in (a) are drawn for z = 1/6 and z = 2/3 to indicate the in-
stances in Fig. 3.

mesoscopic clans that remain longer as z increases. Such
results for various real multiplexes support the presence of the
mesoscopic clan structure in real multiplexes (see SM, Sec. V
and Figs. S3–S6 [28]).

IV. ROLE OF CLANS IN ROBUSTNESS

By definition, clans are simply connected components in
an overlapped proximity network, which allows us to identify
the analogy between clan unfolding and mutual percolation
in multiplexes [11,12]. First, the connection probability p in
the actual network is set as a function of the angular dis-
tance, p ∼ d1/T , where temperature T controls the interaction
range [6]. Although the power-law form implies long-range
connections, the limitation of T → 0 makes the connection
probability similar to that in the proximity network. Second,
mutual percolation concerns mutually connected components
(MCCs), defined by a similar but less stringent constraint
compared to the components derived from overlapped edges.
Third, the targeted attack strategy, i.e., the removal of the
highest-degree nodes, especially resembles the removal of
the longest edges, i.e., the increase of z in clan unfolding.
Specifically, the expected value of the average angular length
of edges incident to a node with the expected degree κ is
given by ∫

d (θ, θ ′)p(θ, κ, θ ′, κ ′)dθdθ ′dκ ′ ∼ ln κ. (4)

As a result, we conjecture that clan structure also plays an
analogous role in mutual percolation against targeted attacks.
Since our analysis controls macroscopic GCs, this notion
alludes to the origins of the robustness of real multiplexes
beyond Ref. [24] (see SM, Table S2 [28] for the summary of
the analogy).

Figure 4(b) shows the number of MCCs as a function
of the removal fraction of nodes f against targeted attacks.
Remarkably, similarly to the results of clan unfolding in
Fig. 4(a), the relative order of NMCC between the origi-
nal and the null is reversed. However, the analogy is not
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FIG. 5. Clan unfolding and mutual percolation in MGMM.
Synthetic multiplexes are generated by the MGMM [30] for the
total number of nodes, N = 212, and the planted clan size � ∈
{23, 25, 27, 29}. The difference of N between the null (black dashed
line) and the original instances (solid lines) are plotted (a) for the clan
against z and (b) for the MCC against f . Insets show the raw values
of N , and the horizontal gray dotted lines in the inset of (a) represent
1/� for each �.

complete, so the apparent reversal in mutual percolation is
not common in real multiplexes. However, they tend to have
the smaller NMCC, implying that clan structure impedes com-
plete breakdown against targeted attacks (see SM, Sec. V and
Figs. S7–S10 [28]).

In order to systematically investigate the role of clans in
mutual percolation, we employ synthetic networks generated
by the MGMM for a variety of the planted clan size �. In
Figs. 5(a) and 5(b), we present N for clan unfolding and mu-
tual percolation in synthetic networks, respectively. Given that
GCs are similar to high NMI values (NMI ≈ 0.9) as � varies,
we take a single null counterpart for them. Notably, the cross-
ing behaviors of the number of clans as � varies [Fig. 5(a)] are
reflected in those of MCCs [Fig. 5(b)], which demonstrates
the ambivalent role of clans in percolation dynamics. In the
MGMM, as � increases, the size of planted clans grows and
their number decreases, exposed as the plateaus in the inset
of Fig. 5(a), so the intra-clan organization becomes dominant
over the inter-clan. Therefore, we find that for larger �, the
crossing becomes less pronounced, but the final-stage robust-
ness increases. Although the incompleteness of the analogy
blurs the plateaus, the planted clan size � plays a qualitatively
similar role in both clan unfolding and mutual percolation (see
SM, Sec. V and Fig. S11 [28]).

Finally, from the implications of model results, we exam-
ine correlations between the nontrivial multiscale nature of
geometric organization and robustness stemming from intra-
clan organization in real systems. The multiscale nature of
a multiplex can be quantified by the discrepancy in the GC
spectrum with its null counterpart m defined in Eq. (2). The
inter-clan robustness R can be defined by the suppression of
complete shattering at the final stage observed in Figs. 4(b)
and 5(b), as follows:

R = max
f

[Nnull − Norg]. (5)

FIG. 6. Correlation between R and m for 22 real multiplexes
(see SM, Table S1 [28] for detailed information). The black dashed
line indicates R = 0. The gray dotted line guides linear regression
results. Square sizes correspond to the logarithm of system sizes, and
colors to R for visual convenience.

In other words, R describes how mesoscopic MCCs remain-
ing after the removal of hubs are durable. In Fig. 6, we find a
strong positive correlation between the multiscale nature in
GCs, m, and the robustness R, (Pearson correlation coeffi-
cient ρ ≈ 0.72 with the p-value ≈ 0.0002). This supports our
conjecture based on model results and emphasizes the signif-
icance of multiscale organization in percolation dynamics of
real multiplexes.

V. CONCLUSION

To sum up, we filled the crucial gap between the exist-
ing multiplex model for geometric correlations (GCs) [23,24]
and real multiplexes by hidden multiscale groups of mutually
close nodes, i.e., clans. Remarkably, clans dictate the break-
down of mutual connectivity against targeted attacks, solely
related to network topology, which highlights the power of the
network geometry paradigm in elucidating network function
through low-dimensional geometric patterns [31]. This also
implies that if clan structure is ignored in a multiplex, its
robustness could be both over- and underestimated. Thus, the
investigation of multiscale organizations has many applica-
tions to real systems [32], from the brain and power grids to
physical materials [33]. The role of multiscale organizations
on cascading failures [22] is also a promising topic.
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