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Estimating stable fixed points and Langevin potentials for financial dynamics
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The geometric Brownian motion (GBM) is a standard model in quantitative finance, but the potential function
of its stochastic differential equation (SDE) cannot include stable nonzero prices. This article generalizes the
GBM to an SDE with polynomial drift of order q and shows via model selection that q = 2 is most frequently
the optimal model to describe the data. Moreover, Markov chain Monte Carlo ensembles of the accompanying
potential functions show a clear and pronounced potential well, indicating the existence of a stable price.
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I. INTRODUCTION

Research on financial data with methods from physics,
summarized as Econophysics, has lead to a better understand-
ing of statistical properties such as financial correlation ma-
trices [1–3], scaling behaviours of empirical distributions [4],
microscopic trader models [5,6], and other phenomena [7,8].
Differential equations such as the Brownian motion and the
geometric Brownian motion (GBM) in the Black-Scholes-
Merton model have been an important tool to analyze financial
data [9–11]. Econophysics contributed to these efforts via
ordinary (ODE), stochastic (SDE), and partial differential
equations (PDE) [12–16] and a recent empirical study mod-
elled price time series with a harmonic oscillator ODE to
reconcile the randomness of financial markets with the idea
of a fair price [17].

The GBM, still widely used as a standard model for price
time series, presents the researchers with a subtle difficulty
with regards to its interpretation: Its deterministic part implies
either an unlimited exponential growth or an exponential de-
cline to a price of 0 as pointed out in Refs. [18–20]. While
traditional finance models have tried to improve the GBM by
changing its stochastic component, the deterministic part has
largely been left unchanged (cf. the discussion in Sec. 1 of
Ref. [20]). While Ref. [20] used a constrained model with
regularization via strong prior information to fit parameters
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to their model, the goal of the present article is to estimate
model parameters and to select the best model without any of
these restrictions, i.e., letting the data speak for itself.

The estimation of Langevin equations from data via the
Kramers-Moyal coefficients [21,22] sparked a family of meth-
ods to estimate nonparametric drift and diffusion coefficients
to model the observed system as a stochastic differential equa-
tion which have also been applied to financial data [23]. A
particularly interesting expansion of this method is given by
the maximum-likelihood-framework (ML) in Ref. [24]: for
each time step ti and observed data xi, the transition likelihood
Li = p(xi+1|xi ) from xi to xi+1 is calculated and the joint like-
lihood L = ∑

i Li is maximized by the estimation algorithm.
This approach takes the inherent stochasticity of stochastic
differential equations into account and can be performed with
a parametric model to recover algebraic equations increase
its interpretability. Similarly, the SINDy algorithm recovers
a sparse functional form of the underlying algebraic equa-
tions by fitting the data to a candidate function library, but
struggles with noisy and stochastic data [25,26].

This article uses a combination of the ML framework of
Ref. [24] with the candidate function library in Ref. [25]
for a robust method to estimate stochastic differential equa-
tions from data similar to Ref. [27]. As an extension, the
presented method can be used to estimate data from time
series with nonconstant time increments dti �= dt j . We use
stock market prices at daily and 30-min intervals as described
in Sec. II to estimate their stochastic differential equations. In
particular, we estimate the potential in which the dynamics
take place to evaluate the stability of the dynamical process
with the overall goal to distinguish between periods with
a stable fixed point and unstable dynamics as explained in
Sec. III. The results for the different polynomial orders of
the model and their implication for the stability are shown in
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TABLE I. The companies whose data has been analysed in our
article.

Company Business sector Ticker

Apple Technology AAPL
Citigroup Banking C
Walt Disney Co. Media DIS
Evergy Inc. Energy EVRG
General Electrics Industry GE
Pfizer Pharmaceutics PFE
Walmart Inc. Retail WMT

Sec. IV and discussed with respect to possible applications for
risk assessment in Sec. V.

II. DATA

We analyze stock market data from the companies listed in
Table I to cover a range of different business sectors. Our anal-
ysis covers two distinct market conditions: (i) a calm period
from early 2019 through early 2020 which was characterized
by low overall volatility and (ii) the Covid selloff beginning
March 2020 which was accompanied by a spike in market
volatility. We analyze two sampling intervals: daily, end-of-
day price changes (for which our data availability covers the
whole of 2019 and 2020) and 30-min intervals (for which our
data is limited to the period between January 2019 up to and
including July 2020).

Note that we are directly analyzing the price time series
Pt instead of the returns r = log(Pt+1/Pt ). Although anal-
ysis of the price data is also an important contribution to
research [28], the returns are often chosen as an observable
because of their stationary distribution which allows the ap-
plication of several time series analysis methods. However,
our focus is explicitly on the nonstationary behavior of stock
prices: We estimate the potential of the differential equation’s
dynamics for different time intervals to differentiate between
those dynamics with and without a stable fixed point (cf.
Sec. III). Similarly, the work in Refs. [18–20] also uses prices
to determine the position of the fixed points (or, equivalently,
the wells of the potential): Although a return of 0 also indi-
cates a fixed point, it is not clear whether the price associated
with it is the same as in the previous time window under obser-
vation. In particular, the research in Refs. [18–20] stresses the
important difference between fixed points at a nonzero price
P > 0 (normal behavior of a stock) and at a price of P = 0
(crash of the stock). Both phenomena correspond to a return
of r = 0, but describe vastly different situations of the stock.

A. TAQ database

We use intraday data from the TAQ (trade and quote)
database. To account for microstructure related issues, such as
the bid-ask-bounce or infrequent trading, we rely upon quoted
prices that we re-sample to a 30-min frequency.1 For that, we

1When we talk about quotes, we refer to the National Best Bid and
Offer (NBBO) where the national best bid (offer) is the best available

first remove all crossed quotes, i.e., all quotes where the bid
price exceeds the ask, require the bid-ask-spread to be below
$5, and finally use the last valid available quote within every
30-min interval.2 We further account for dividend payments
and stock splits, which mechanically influence stock prices,
and create a performance price index using quoted midprices.

B. CRSP

We also consider lower-frequency, daily, data from the
Center of Research in Security Prices (CRSP), which is one
of the most used database in economics and finance. We again
calculate a performance price index for each stock using the
daily holding period return provided by CRSP. Note that,
while we use quoted midprices for the 30-min high-frequency
data, CRSP uses trade prices to calculate the holding period
return. However, as the trading volume has increased consid-
erably over the past decade, this should not be an issue [30].

III. THEORETICAL BACKGROUND AND MODEL

The standard stochastic differential equation to describe a
stock price P is the Geometric Brownian Motion given by

dP

dt
= μP + σPε, (1)

with standard Gaussian noise ε = ε(t )
iid∼ N (0, 1), constant

drift μ (typically μ > 0), and volatility σ . As pointed out in
Ref. [20], the physical interpretation as a particle’s trajectory
P in a potential V (P) transforms Eq. (1) to

dP

dt
= −dV

dP
(P) + σPεt , with V (P) = −μ

2
P2 (2)

and an arbitrary constant C (set to zero for simplicity). How-
ever, analyzing this potential V in terms of its linear stability
(cf., e.g., Ref. [31]) leads to the problematic result that the
only fixed point in the data with dV

dP (P0) = 0, namely P0 = 0,
is an unstable fixed point for μ > 0. Without a stable fixed
point, trajectories are expected to diverge away from P0 = 0
towards infinity. As this is—at least for limited timescales—a
highly unrealistic model, the authors of Refs. [18,20] have
suggested higher order polynomials in the potential V of
Eq. (2). From the assumption that the rate of capital injection
by investors should depend on the current market capitalisa-
tion, they derive a quartic potential

V (P) = −P
(α1

2
P + α2

3
P2 + α3

4
P3

)
, with

−dV

dP
(P) = α1P + α2P2 + α3P3, (3)

i.e., the drift term − dV
dP (P) is a polynomial of order q = 3.

With a suitable choice of parameters α, this potential can
adopt the shape of a double-well potential with stable fixed

quoted bid (offer) price across all U.S. exchanges. See [29] for an
overview.

2We forward fill quotes if there is no valid entry for a given time
interval. However, this does almost never happen for very liquid
stocks such as those chosen in this paper.
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points at P0 = 0 and P1 > 0, thereby predicting both the pres-
ence of a bankruptcy state at the stable fixed point P0 = 0
and an additional stable state with nonzero price P1 > 0. In
Ref. [20], however, major constraints to the parameters during
the estimation process were necessary to achieve this.

A. Numerical implementation

If a time series (sn(tn))n with observations sn at time tn has
been recorded, a maximum likelihood approach can be used
to estimate the most likely parameters σ and αi such that a
stochastic differential equation according to Eqs. (2) and (3)
may have produced the observed time series. For any two
adjacent points sn(tn) and sn+1(tn+1) and any given parameters
φ = (σ 2, αi ), the likelihood L of observing the transition from
sn(tn) to sn+1 at tn+1 can be explicitly calculated as

L(sn+1|tn+1, sn, tn, φ)

= (2π (σ sn
√

tn+1 − tn)2)−
1
2

× exp

(
−

(
sn+1 − (

sn + (− dV
ds (s)

)
(tn+1 − tn)

))2

2(σ sn
√

tn+1 − tn)2

)

(4)

or as the log likelihood

L(sn+1|tn+1, sn, tn, φ)

= log L(sn+1|tn+1, sn, tn, φ)

= −1

2
log(2π (σ sn

√
tn+1 − tn)2)

−
(
sn+1 − (

sn + ( − dV
ds (s)

)
(tn+1 − tn)

))2

2(σ sn
√

tn+1 − tn)2
. (5)

Because we assume Markovian dynamics, the complete log
likelihood for the full observed time series is then simply the
sum over the stepwise log likelihoods

L((sn)n|(tn)n, φ) =
n−1∑
i=0

L(si+1|ti+1, si, ti, φ). (6)

For given observations (si, ti ), the likelihood L can be max-
imized by varying the parameters φ to estimate the optimal
parameters φ∗.

According to Bayes’ theorem and Bayesian statsitics [32],
the likelihood of observing the measured data conditional on
some parameter values L((sn(tn))n|φ) is combined with an a
priori distribution fprior(φ) to calculate a posterior distribution
of the parameters given the observed data:

fpost(φ|(sn(tn))n) ∼ fprior(φ)L((sn(tn))n|φ). (7)

For an uninformed flat prior, this transformation is mathemat-
ically trivial, but allows us to calculate fpost as a probability
density of the parameters φ conditional on the observed data.
Hence, the distribution of the parameters φ can be explored
via Markov chain Monte Carlo (MCMC) methods (e.g.,
Ref. [33]) by drawing samples (φ( j) ) j from the posterior dis-
tribution as implemented in the Python package emcee [34].
MCMC can uncover correlations between different parame-
ters and also explore local maxima of the probability density.
It therefore gives a more complete view of the underlying

distribution than summary statistics like, e.g., the mean or
standard deviation. In particular, we will use the sampled
parameters (φ( j) ) j to construct an ensemble of potentials V (P)
and evaluate whether their shapes are roughly consistent with
each other.

B. Synthetic data

To test our method, synthetic time series (sn)n are simu-
lated via the Euler-Maruyama scheme [35] as

sn+1 = sn +
(

−dV

ds
(s)

)
(tn+1 − tn) + σ sn

√
tn+1 − tnεn, (8)

with εn
iid∼ N (0, 1) for any parameters αi for the potential in

Eq. (3). The following paragraphs discuss how well our model
can then identify the underlying dynamcis and parameters
from the observed data (sn, tn). Note that for the synthetic
data, nonequidistant time steps have been used.

1. Estimating the correct order

Generalizing the potential from Eq. (3) to a potential with
arbitrary polynomial order q leads to

V (P) = −P
q∑

i=1

αi

i + 1
Pi. (9)

For given q, random parameter values αi and a random noise
level σ are sampled and the resulting time series is simu-
lated with these parameters. If the sampled parameters result
in numerical errors (i.e., an infinitely diverging time series),
the time series is discarded from the ensemble. This is done
repeatedly until the ensemble includes 100 time series with a
length of 1000 time steps each. For those synthetic time series,
the best order is estimated via the Akaike information criterion
AIC [36] given by

AIC = −2Lmax + 2(q + 1), (10)

where q + 1 is the total number of model parameters (q mono-
mials’ prefactors αi and σ ). Hence, q is varied, the maximum
likelihood Lmax for the chosen q is estimated and the resulting
AIC is calculated. The model with the lowest AIC is chosen
as the best model. The results shown in Fig. 1 show that
for polynomial orders q = 1 (geometric Brownian motion),
q = 2 and q = 3 [Halperin’s suggestion as in Eq. (3)], the
correct order is usually identified as such. An even higher
order q = 4 shows very unreliable results, but will be included
for completeness for the further data analysis.

2. Estimating the parameters

Instead of sampling repeated trajectories with differ-
ent parameters, now for order q = 3, the parameters φ =
(σ 2, α1, α2, α3) are kept constant as φ = (0.05, 2,−1, 0.01).
One hundred time series with 1000 time steps are sampled and
their parameters are estimated by fitting a model with q = 3.
Despite the constant parameters, the randomness of the εn in
Eq. (8) nevertheless ensures that the time series are different
from each other. The histograms of the estimated parame-
ters, their means and standard deviations are shown together
with the true parameter values in Fig. 2. Note that the true
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FIG. 1. For each true polynomial order q, 100 trajectories are
randomly sampled and then their best order is estimated. The his-
tograms show that the method successfully estimates trajectories
with order q = 1, 2, 3, but struggles with the higher order q = 4.

parameter value is always within the one-standard-deviation-
interval around the mean and that the parameter α3 has a
distribution virtually indistinguishable from that of a parame-
ter with mean zero: The parameter estimation correctly shows
that α3 is so low that it is a superfluous parameter for model
inference. Note that if the same data is estimated by a model
with q = 2, the results are fairly consistent with the depicted
histograms. However, fitting the data to a model with q = 4
results in the one-standard-deviation-interval of α2 also con-
taining the value 0, which is a consequence of overfitting the
model.

IV. RESULTS

While [20] analyses time periods of one year to estimate
parameters, we believe that because of the assumption of
constant volatility in Eq. (4), it is prudent to restrict the date
to shorter intervals of one trading month. Hence, we divide
the given data into nonoverlapping monthly intervals and es-
timate the polynomial order q of the underlying stochastic
differential equation via the AIC. Note that the time difference
between each observation is taken as a constant interval of
1 time step in trading days or 30-min steps, respectively,
including the overnight return.

A. Polynomial orders

The distributions of the estimated polynomial orders q are
shown in Fig. 3: On both timescales and in all market periods,
the order q = 2 is the most frequently estimated order with
the GBM model at q = 1 being the second most frequent
estimation. The suggestion q = 3 from Ref. [20] as well as
the even higher-order q = 4 are only rarely estimated as the
most accurate model. Interestingly, calm and turbulent periods

TABLE II. Comparison of the estimated orders q for the same
company and month with the price time series in daily and 30-min
intervals.

Optimal Order Opt. Order (Daily)

(30 min) 1 2 3 4

1 24 6 3 1
2 6 41 10 3
3 1 10 8 1
4 7 7 3 2

(as defined in Sec. II) show essentially identical distributions,
whereas the order q = 4 seems to be a bit more frequently
estimated for the shorter timescale of 30 min than for the daily
data. Table II shows that there is high consistency between
the estimated orders for both time intervals for orders q = 1
and q = 2, but increasing disagreements for orders q = 3 and
q = 4.

Overall, this suggests that a polynomial order of q = 1 and
q = 2 can be a reasonable modeling assumption for the time
series data and that the identification of these two orders is
consistent for the two sampling intervals under consideration,
whereas the choice of calm or turbulent periods does not seem
to influence our results.

B. Potentials

For the optimal polynomial order q, we then sampled the
parameters φ = (σ 2, α1, . . . , αq) from their posterior proba-
bility distribution to get an ensemble of parameters (φ( j) ) j .
From that, we calculate the corresponding ensemble of poten-
tials V (P) according to Eq. (9) and plot them, their pointwise
centered 68% and 95% credible intervals (CIs) and the poten-
tial corresponding to the maximum likelihood estimation. The
zero horizontal is shown in these plots as the y-axis position
of the potential at P = 0 to indicate where the potential is
above or below the potential energy at the zero price (and if
the price “particle” would therefore prefer or not prefer to be
at the potential level of P = 0). A couple of generic features
can be observed for these potentials and do not depend on the
chosen sampling rate:

1. Order 2

As the order q = 2 is the most frequently identified poly-
nomial order according to the results in Fig. 3, it is quite
insightful to focus on the associated potentials. They virtually
always look like the potential depicted in Fig. 4 and show
a potential well as a pronounced minimum. Close to this
minimum, the 68% CI is usually also below 0 and sometimes
(as depicted in Fig. 4) even the 95% CI. The MCMC-sampled
potential ensembles thus support the existence of a potential
well as they clearly show the potential well for a large majority
of trajectories. Following the interpretation of the potential
wells from Ref. [20], this supports the existence of a locally
stable price within this potential minimum.
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FIG. 2. Parameter estimations for 100 trajectories with the same true parameters φ = (σ 2, αi ) as given by the solid lines. The interval of
mean ± standard deviation of the estimated ensembles always includes the true parameters.

2. Order 1: GBM

The GBM with q = 1 is the second most frequently esti-
mated order. As shown in the Figs. 5(a) and 5(b), the MCMC
samples show two general types of ensembles: in a, the max-
imum likelihood estimation of the potential is always very
close to 0 and the 68% CIs therefore envelope the zero hor-
izontal. This makes it difficult to gauge a clear direction of the
potential and hence of the movement of the price time series.
Contrary to that, potential ensembles like in Fig. 5(b) have
a clear direction. In Fig. 5(b), the potential is increasing for
higher prices (and hence a restoring force pulls the price to
the minimum at 0), but decreasing potential ensembles can
also be found for other time intervals. That means some time
intervals like Fig. 5(b) show a predominant direction of price
movement, whereas others like Fig. 5(a) have no predominant
direction, but rather a random movement.

3. Order 3

The potential with q = 3 is the one suggested in Ref. [20]
and the typical shape of their MCMC samples are shown in
subplot c of Fig. 5. Note that some of these potentials are
also mirrored along the x axis. Similar to the potentials in
Fig. 5(b), they also show a predominant direction, but also
often a bistable saddle point. Notably, they do not show the
pronounced double-well potential predicted in Ref. [20].

4. Order 4

Potentials with q = 4 usually correspond to very wide po-
tential wells as can be seen in Fig. 5(d) (compare, e.g., its

full width at half maximum to that of the potential in Fig. 4).
In the depicted MCMC ensemble, the maximum likelihood
estimation does not lie within the 68% credible interval. This
indicates a multimodal posterior distribution and was found
in surprisingly many time intervals. Similar to the ensemble
shown in Fig. 5(a), these potentials also often envelope the
x axis with their 68% CIs and therefore show no clearly
predominant direction.

V. CONCLUSION

A. Summary

We use a maximum likelihood estimation to analyze price
time series of stocks. Via the AIC model selection, we find
that a second-order polynomial for the drift term often offers
a very suitable description of the data. While the standard
GBM model with a first-order polynomial is not selected as
frequently as the second-order model, it still appears often
enough to be considered a valid candidate model. Higher or-
der polynomials are rarely estimated. Sampling the posterior
density of the parameters via MCMC reveals that the second-
order polynomials’ potentials show very pronounced potential
wells (i.e., stable minima) for nonzero prices which is math-
ematically impossible for the GBM’s potential as pointed out
in Ref. [20].

B. Discussion

Our research question is heavily inspired by Ref. [20],
but differs from it in a key factor: The model presented
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FIG. 3. Estimated polynomial orders q of the monthly real-world
price time series of the companies in Table I for the daily (left)
and 30-min intervals (right). Differences between the calm (up to
February 2020) and turbulent period (starting in March 2020) are
only small.

in Ref. [20] always has a drift polynomial of order q = 3
and uses the credit default swap rates (CDS) to estimate the
probability of a considered company going bankrupt. This
probability is then used as a constraint in the parameter esti-
mation such that the jump from a potential well with nonzero
price to another potential well at price zero (i.e., the stock
collapsing) has a jump probability (Kramers’s escape rate)
which is quantified by the CDS. Thus, the work in Ref. [20]
combines the price dynamics of stochastic differential equa-
tions with the CDS data as additional constraints to estimate a
stochastic differential equation with a probability of the stock
crashing. In contrast to this, our estimation scheme uses no
additional constraints or external data, but purely the price
time series. Our q = 3 estimations [Fig. 5(c)] do not show the
double-well potential postulated by [20]. However, our model
selection via the AIC indicates that q = 2 is instead the most
frequently observed polynomial degree and for q = 2, MCMC

FIG. 4. MCMC-sampled potentials of order q = 2 for 30-min
intervals for Pfizer in September 2019. The maximum likelihood
estimation (Estimation) lies firmly within the ensemble of potentials
and even the 68% credible interval shows a clear potential well.

shows a clear potential well that is consistent for the whole
MCMC ensemble. In short, because we do not use additional
constraints, we cannot reproduce the double well potential
with default probabilities, but instead show via our fully un-
constrained approach that the potential wells arise naturally
just from the price time series alone. Estimating potentials
for stochastic financial dynamics and analyzing the stability
of their fixed points has also been done in Refs. [37,38], but
two key differences exist between them and our approach:
While we estimate explicitly analytical potentials for the time
series of individual stocks, the work in Refs. [37,38] estimates
potentials purely numerically without a closed-form analytical
expression and does so for the collective market movement in-
stead of treating individual assets. Interestingly, Refs. [37,38]
observe transitions between the different minima of the po-
tentials and therefore a nonstationary market behavior, similar
our study, because the AIC selection means that the stocks are
not described by the same polynomial degree q for all time
series. Instead, our model selection implies that the potential
itself is time-dependent.

A possible explanation for this is that due to external ef-
fects, an order parameter such as the capital influx into the
financial markets is changed. Then, the underlying potential
might change due to these effects and, e.g., experience a
bifurcation, resulting in changing price dynamics. Whether
a bifurcation is a suitable description of the dynamics under
such conditions requires further analysis on the transitions
between the different models. One can imagine, e.g., that a
price initially starts as being in a stable fixed point with q = 2
like in Fig. 4, but external news change the potential to that
of Fig. 5(b) with q = 1. Now, the price has a predominant
direction of movement and is no longer experiencing a restor-
ing force back to the price at the previous fixed point and can
therefore explore new areas of the phase space (Fig. 6 illus-
trates the transition between different regimes). The market
finally manages to process the news and their implications and
finally, the price reaches a new fixed point with q = 2. Thus,
the price at the potential minimum can be interpreted as a fair

024226-6



ESTIMATING STABLE FIXED POINTS AND LANGEVIN … PHYSICAL REVIEW E 109, 024226 (2024)

FIG. 5. MCMC-sampled potentials of order q = 2 for 30-min intervals for Pfizer in time intervals with q = 1 (a, b), q = 3 (c), and q = 4
(d). Note that the maximum likelihood estimation lies within the 68% credible interval for all orders q except for q = 4.

price similar to the discussion in Ref. [17]. However, further
research into the transition between the different potentials is
necessary to verify this interpretation. Note that GBMs with
potentials such as Fig. 5(a) have essentially no predominant
direction of movement and show a random walk without a
restoring force. This is a different behavior to q = 2 which
also does not show a predominant direction, but instead has
such a restoring force that restricts the price to the potential
well.

One might have assumed that stable fixed points (q = 2)
should occur significantly less frequently during the turbulent
period because of the overall instability of the market. But
interestingly, our results do not seem to show a difference
between the calm and turbulent market period (cf. Fig. 3),

FIG. 6. Evaluation of the different regimes for the dynamics of
the Pfizer stock for 30-min intervals. the rare orders q = 3 and q = 4
have been summarized under the label “Noise,” the label “Stable FP”
indicates order q = 2 with a potential well and the GBM of order q =
1 is further split up into periods of growth (↑), random stagnation
(–), and decline (↓): according to their MCMC-sampled potentials
[cf. Figs. 5(a) and 5(b)], a growth or decline is only assumed if the
68% CIs do not include the 0 horizontal. The regimes of growth and
decline show a good correspondence with the price time series of the
associated stock.

perhaps indicating that the market can quickly adjust to such
turbulent behavior.

Finally, it is a reassuring result that the AIC selection still
frequently suggests q = 1 (the standard GBM model) as the
best polynomial order. The standard GBM model still appears
rather frequently in our data and therefore nevertheless man-
ages to provide a reasonably accurate model.

C. Further research and applications

As discussed in the previous subsection, our method can
be used to distinguish between different regimes (stable fixed
point or growth and decay) of the dynamics of a stock time
series. One could use our methodology to continuously model
a given time series, update it with new data and pay atten-
tion to when the potential is changing such that the system
is transitioning from a stable (resilient) state to an unstable
one or vice versa. This point of view can be used to judge
the system’s resilience against noise and anticipate critical
transitions to a qualitatively new system behavior [27,39]. In
the nonstationary system of a free market, such monitoring
might support risk management decisions.

While this article focused on the drift term like in Ref. [20],
there are of course possible extensions of the diffusion and
volatility that can be taken into account, too. Stochastic
volatility and local volatility models have been widely ac-
cepted in finance [40,41], but other modeling possibilities
exist, too: While our article used the volatility parametrisation
from the GBM in Eq. (1) via σPεt , one can also imagine, e.g.,
a polynomial model here given by

Diffusion (P) = σ

⎛
⎝∑

j

β jP
j

⎞
⎠εt . (11)
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However, from the author’s experience, the maximum like-
lihood estimation can become troublesome if the diffusion
term has several free parameters as the estimator can then
attempt to essentially attribute the whole observed dynamics
to the diffusion. A strong regularization might be necessary
if one wishes to expand the diffusion model. A multi-stage
estimation procedure might provide another alternative: First
estimate the GBM model with drift parameters φD,1, then keep
these parameters fixed to estimate the parameters φV,1 of a
more complicated volatility model (e.g., Heston’s stochastic
volatility). Then keep the parameters φV,1 of the volatility
model fixed and vary the drift parameters according to the
scheme presented in our article to find the optimal order q and
its associated parameters φD,2. For fixed order q, iteratively
use fixed φD,n to estimate φV,n+1 and fixed φV,n+1 to estimate
φD,n+1 until the parameter values converge. Developing and
fine-tuning this procedure, however, is beyond the scope of the
present work whose main aim was to investigate the existence
of stable fixed points in the drift potential.

Another model extension might be the incorporation of
memory effects. Generalized versions of the Langevin equa-
tion include non-Markovian memory terms by, e.g., an explicit
memory kernel [42] or by assuming the existence of a second
hidden process that has not been observed [43]. Such a hid-
den component might correspond to the traders’ knowledge
or belief which certainly influences the stock prices, but is
not explicitly recorded. Although we believe that there is
some virtue in having a simple model as evidenced by the

widespread use of the GBM, a more complex analytical model
than a polynomial approach can of course be used in the
maximum likelihood framework to expand our rather simple
model. Combining all those extensions and using a strict
regularization procedure to discard superfluous terms might
ultimately help to develop a model that not only differentiates
between the different regimes of stability (as shown in the
present article), but also reproduces the well-known stylized
facts from the empirical literature.

Finally, it is noteworthy to point out that although we
used equidistant time intervals between the observations of
the data, the model has been tested on synthetic data with
nonequidistant time intervals in Sec. III B. Such a situation
arises naturally in the context of tick-by-tick data which is the
highest resolution of trading data. Here, instead of sampling
the price at a high frequency, every single trade is recorded at
the exact time that it occurred. As the time between two sub-
sequent trades can be arbitrarily short or long, the application
of a robust method without the need for equidistant time steps
might prove useful here.
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