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How the mixed eigenstates vary when approaching the semiclassical limit in mixed-type many-body quantum
systems is an interesting but still less known question. Here, we address this question in the Dicke model, a
celebrated many-body model that has a well defined semiclassical limit and undergoes a transition to chaos in
both quantum and classical cases. Using the Husimi function, we show that the eigenstates of the Dicke model
with mixed-type classical phase space can be classified into different types. To quantitatively characterize the
types of eigenstates, we study the phase space overlap index, which is defined in terms of the Husimi function.
We look at the probability distribution of the phase space overlap index and investigate how it changes with
increasing system size, that is, when approaching the semiclassical limit. We show that increasing the system
size gives rise to a power-law decay in the behavior of the relative proportion of mixed eigenstates. Our findings
shed more light on the properties of eigenstates in mixed-type many-body systems and suggest that the principle
of uniform semiclassical condensation of Husimi functions should also be valid for many-body quantum systems.
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I. INTRODUCTION

Characterizing and understanding quantum chaos in many-
body quantum systems through the properties of eigenstates
is a widely studied topic. Even though it has been explored
since the birth of quantum mechanics, the close connection
between chaos and the questions that arise in recent experi-
mental and theoretical studies has led to a revival in studying
various features of chaotic eigenstates, such as their entan-
glement entropy [1–3], delocalization or localization [4–9],
scarring [10–13], and multifractality [14–16] as well. Unlike
the strongly chaotic (ergodic) systems, the properties of eigen-
states in the mixed-type many-body systems having regular
regions coexisting with chaotic regions in the classical phase
space are less commonly explored [17,18], despite the fact
that mixed-type behavior is more generic.

In studying the single-particle systems, it has been demon-
strated that the classical counterparts of the mixed-type
quantum systems are generally associated with mixed-type
phase space with coexistence of regular and chaotic mo-
tions. Based on this fact, Percival was the first to suggest
that the eigenstates in mixed-type quantum systems can be
divided into the chaotic and regular types [19]. After further
developments performed by Berry [20,21], this suggestion
became the principle of uniform semiclassical condensa-
tion of Wigner (or Husimi) functions (PUSC) [22–24]. In
the ultimate semiclassical limit, various characters [25,26],
in particular the spectral statistics [27–32], of mixed-type

single particle systems can be well understood by means of
the PUSC. Moreover, the correctness of the PUSC for the
cases that are not in the asymptotic semiclassical limit is
also verified in recent works [33,34]. The evolution of the
mixed eigenstates overlapping, partially, with both a regular
and a chaotic region, as the semiclassical limit is approached,
has been revealed. However, the situation for the many-body
quantum systems is more complicated and has not yet been
explored so far.

In this work, we will investigate whether and how the
eigenstates of a mixed-type many-body quantum system sep-
arate into the regular and chaotic states with approaching
the semiclassical limit. This requires the considered many
body system to have a well defined semiclassical limit. The
model we focus on is the celebrated Dicke model [35]. An
advantage of the Dicke model is that it attains its semiclassical
limit with increasing the system size N and, thus, allows
us to define an effective Planck constant h̄eff � 1/N . A rich
variety of phases observed in the Dicke model has made it
a very popular model to study different phase transitions,
including thermal phase transition [36–40], nonequilibrium
phase transitions [41], quantum phase transition [42–47], as
well as excited state quantum phase transition [39,48–53]. In
particular, both quantum and classical Dicke models allow
the transition from integrability to chaos by changing certain
control parameters [47,54–56]. As a consequence, it has been
widely employed as a paradigmatic model for studying quan-
tum chaos [54–60] and thermalization [61–66]. It is, therefore,
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a particularly suitable many-body quantum model for our
purpose, as a continuation of our previous works [8,34]. The
Dicke model as a dynamical system is entirely and funda-
mentally different from the previously studied single-particle
systems. Hence, it is far from trivial to explore whether
the properties of the mixed eigenstates that are observed in
the single-particle systems still hold in the Dicke model. The
presence of the interactions in many-body systems indicates
that a direct generalization of the conclusions from singlepar-
ticle systems to many-body cases is not allowed. This means
that scrutinizing the features of the mixed eigenstates in
the Dicke model is required to investigate how the frac-
tion of the mixed eigenstates evolves when approaching the
semiclassical limit.

By carrying out a detailed analysis of the dependence of the
degree of chaos on the control parameters for both classical
and quantum models, we determine our studied parameter
regions. We demonstrate how to identify the types of the
eigenstates by comparing their Husimi functions with the
classical Poincaré section. To quantitatively describe different
types of eigenstates, we utilize the phase space overlap index,
which is defined in terms of eigenstates’ Husimi functions
and has been proved as a valuable tool to quantify eigen-
states properties. We show that the statistics of the phase
space overlap index is approximately captured by double
peak distribution with two peaks close to its extreme val-
ues, corresponding to entirely regular and chaotic eigenstates.
Moreover, we find that the relative proportion of the mixed
eigenstates follows the power-law decay as the semiclassical
limit is approached, by increasing the system size. These
results are consistent with the ones revealed in the single-
particle systems, suggesting the validity of the PUSC for
many-body quantum systems.

The rest of the article is structured as follows. In Sec. II,
we introduce the Dicke model. Section II A is devoted to the
analysis of the semiclassical Dicke model and shows how
chaos develops when varying either the control parameter
or the energy of the system. In Sec. II B, we discuss the
emergence of chaos in the quantum Dicke model by means
of the statistics of level spacing ratio. Section III reports our
main results of this work. In Sec. III A, the Husimi function
of an individual eigenstate is defined and employed to illus-
trate different types of the eigenstates. The definition of the
phase space overlap index and its distribution, as well as the
variation of the relative proportion of mixed eigenstates with
system size, are analyzed in Sec. III B. We finally summarize
our findings and conclude in Sec. IV.

II. DICKE MODEL

In this section, in addition to giving a brief review of the
basic features of the Dicke model, we also discuss how to
characterize the transition to chaos in both parameter and
energy spaces using various chaotic detectors, such as level
spacing ratio statistics, the largest and phase space averaged
Lyapunov exponents. The results obtained through these anal-
yses not only enable us to determine parameter and energy
ranges of interest, but also provide more insights into the
properties of the Dicke model.

As the simplest atom-field system, the Dicke model [35]
consists of an ensemble of N spin-1/2 atoms interacting
with a single electromagnetic mode within a cavity, and its
Hamiltonian reads [47] (setting h̄ ≡ 1)

H = ωa†a + ω0Jz + 2λ√
N

Jx(a† + a), (1)

where ω is the frequency of the cavity mode, ω0 denotes the
energy splitting of atoms, and λ represents the atom-cavity
coupling strength. Here, a (a†) is the usual bosonic annihi-
lation (creation) operator, while J = (Jx, Jy, Jz ) are the collec-
tive pseudospin operators describing N spin-1/2 atoms. These
pseudospin operators fulfill the SU(2) commutation relations.

The Hamiltonian (1) conserves the total spin operator J2,
so that the Hilbert space can be separated into different sub-
spaces according to the eigenvalues of J2. Our study will be
restricted to the subspace with j = N/2 and the Hilbert space
dimension DH = (N + 1)(Ntrc + 1). Here, Ntrc denotes the
truncation number of the bosonic basis. Moreover, since the
parity operator � = eiπ (a†a+Jz+ j) is also a conserved quantity,
[H,�] = 0, one can further divide the Hilbert space into
even- and odd-parity blocks. In this work, we focus on the
even-parity sector with even j. As a result, the dimension of
the Hilbert space is De

H = (N/2 + 1)(Ntrc + 1) − Ntrc/2. To
guarantee the convergence of the numerical results, the value
of Ntrc should be sufficiently large. We have carefully checked
that the results obtained in this work are converged for our
chosen values of Ntrc, whose maximal value was 300.

It was known that the ground state of the model undergoes
a second-order quantum phase transition at the critical point
λc = √

ωω0/2, which separates the normal phase with λ < λc

from the super-radiant phase with λ > λc [47]. Apart from
the ground state quantum phase transition, the excited energy
spectrum of the system also exhibits an excited state quantum
phase transition [67–69] into the super-radiant phase [39,49–
53,70]. In particular, both ground and excited state quantum
phase transitions are associated with the onset of classical and
corresponding quantum chaos [46–50].

A. Chaos in semiclassical system

In the semiclassical limit with N → ∞, the Hamiltonian
(1) turns into its classical counterpart. To obtain the effective
classical Hamiltonian, we utilize the Glauber and Bloch co-
herent states [71,72], which are, respectively, defined as

|α〉 = e|α|2/2eαa† |0〉,

|ξ 〉 = 1

(1 + |ξ |2) j
eξJ+| j,− j〉. (2)

Here, α, ξ are the complex parameters, |0〉 is the bosonic field
vacuum, and | j,− j〉 is the ground state of the atomic sector.
Then, according to the properties of the coherent states, it is
straightforward to find the following relations:

〈α|a†a|α〉 = |α|2,

〈ξ |Jx|ξ 〉 = j

(
ξ + ξ ∗

1 + |ξ |2
)

,

〈ξ |Jz|ξ 〉 = − j

(
1 − |ξ |2
1 + |ξ |2

)
. (3)
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The classical Hamiltonian is the expectation of the quantum
Hamiltonian (1) in the tensor product of the coherent states,
|CS〉 = |α〉 ⊗ |ξ 〉 [56,73,74]. Using above relations, one can
easily find that the classical Hamiltonian can be written as

Hc = 〈CS|H |CS〉
j

= ω
|α|2

j
− ω0

(
1 − |ξ |2
1 + |ξ |2

)
+ 2λ√

N
(α∗ + α)

(
ξ + ξ ∗

1 + |ξ |2
)

.

(4)

To express Hc in terms of the classical canonical variables,
we parametrize α and ξ as follows [10,53,73]:

α =
√

j

2
(q1 + ip1), ξ = q2 + ip2√

4 − p2
2 − q2

2

, (5)

where (p1, q1) ∈ R2 are the canonical variables for the
bosonic sector, while (p2, q2) ∈ R2 and p2

2 + q2
2 � 4 denote

the atomic sector canonical variables [75]. Finally, inserting
the parametrized α and ξ into Eq. (4), after some algebra, the
classical Hamiltonian is given by

Hc = ω

2

(
p2

1 + q2
1

) + ω0

2

(
p2

2 + q2
2

)
+ λq1q2

√
4 − p2

2 − q2
2 − ω0. (6)

The classical system is described by the canonical variables
x = (q1, q2, p1, p2) ∈ R4, meaning that the classical phase
space is four dimensional. From the classical Hamiltonian (6),
the classical equations of motion are given by

q̇1 = ∂Hc

∂ p1
= ωp1, q̇2 = ∂Hc

∂ p2
= ω0 p2 − λq1q2 p2√

4 − p2
2 − q2

2

,

ṗ1 = −∂Hc

∂q1
= −ωq1 − λq2

√
4 − p2

2 − q2
2,

ṗ2 = −∂Hc

∂q2
= −ω0q2 − λq1

√
4 − p2

2 − q2
2 + λq1q2

2√
4 − p2

2−q2
2

,

(7)

associated with the initial condition x0 = (q1,0, q2,0,

p1,0, p2,0).
It is known that the classical Dicke model undergoes a

transition from integrability to chaos when increasing either
the coupling strength with fixed energy or the energy at fixed
λ which satisfies λ > λc. To see this, we exploit the Poincaré
sections to qualitatively demonstrate how chaos emerges as
the coupling strength or energy varies. Here, we define the
Poincaré section for a given energy E as the intersection of
the classical trajectories with the surface that is the plane in
the variables (p2, q2) with p1 = 0 and q1 being determined
by the energy conservation condition Hc = E . By solving the
quadratic equation Hc(q1, q2, p1 = 0, p2) = E , we get two

FIG. 1. Classical Poincaré sections of the system (6) in the
(q2, p2) plane. Panels (a)–(c) show the Poincaré sections for several
coupling strengths with fixed energy E = −0.4, while (d)–(f) are the
Poincaré sections for different energies with λ = 0.8. In all panels,
different colors correspond to different initial conditions. Other pa-
rameters: ω = ω0 = 1. All quantities are dimensionless.

different values of q1:

q1,± = − λ

ω
q2

√
4 − p2

2 − q2
2

±
√

λ2

ω2
q2

2

(
4 − p2

2 − q2
2

) − ω0
(
p2

2 + q2
2

) + 2(ω0 + E ).

(8)

Moreover, we only record the traversals with q1 > 0.
The Poincaré sections for several coupling strengths with

E = −0.4 are plotted in Figs. 1(a)–1(c). At weak coupling
strength, as seen in Fig. 1(a), the Poincaré section exhibits
a regular structure, indicating that the system is governed by
the regular dynamics. The chaotic orbits appear as the cou-
pling strength increases, as exemplified in Fig. 1(b) for λ =
0.5 case, where the Poincaré section has complex structure
with regular islands embedded in the chaotic sea. When the
coupling strength is sufficiently strong, the system becomes
a fully chaotic system whose Poincaré section is erratically
covered by all orbits from a set of disordered points, as illus-
trated in Fig. 1(c). The dependence of the degree of chaos on
the system energy is displayed in Figs. 1(d)–1(f), where we
show the Poincaré sections for different system energies with
λ = 0.8. A transition of the Poincaré section from the regular
pattern to a globally chaotic sea is clearly visible. Hence,
the level of chaos in the Dicke model depends on both the
coupling strength and the system energy.

To quantitatively analyze the development of chaos de-
pending upon the strength of coupling λ and the system
energy E , we consider the maximal Lyapunov exponent,
which measures the rate of exponential separation between
two infinitesimally close orbits. For the Dicke model, it can
be calculated as [56,76]

	m = lim
t→∞ lim

||δx0||→0

1

t
ln

||�(t ) · δx0||
||δx0|| , (9)
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FIG. 2. Maximal Lyapunov exponent, 	m, as a function of q2 and
p2 for (a) λ = 0.5, E = −0.4 and (b) λ = 0.8, E = −1. The maxi-
mal Lyapunov exponent is calculated on a grid of 150 × 150 initial
conditions, and each has evolved up to time t = 1000. (c) Phase
space averaged maximal Lyapunov exponent, 	m, as a function of
λ for different energies. (d) 	m as a function of energy for different
coupling strengths λ. Other parameters: ω = ω0 = 1. All quantities
are dimensionless.

where δx0 = (δq1,0, δq2,0, δp1,0, δp2,0)T is the initial devia-
tion between two given orbits and �(t ) is the fundamental
matrix [76], determined by the equation

�̇(t ) = [J4 · D2Hc(x(t ))] · �(t ). (10)

Here, the initial condition is �(0) = I4 with I4 being the 4 ×
4 identity matrix, while J4 and D2Hc(x(t )) are 4 × 4 matrices
given by

J4 =
(

02 I2

−I2 02

)
,

[D2Hc(x(t ))]i, j = ∂2Hc

∂xi∂x j

∣∣∣∣
x(t )

, i, j = 1, 2, . . . , 4, (11)

with 02 being the 2 × 2 zero matrix and x(t ) being the solution
of the classical equations of motion (7) at time t .

The maximal Lyapunov exponent as a function of p2 and
q2 for two different combinations of energy E and coupling
strength λ are plotted in Figs. 2(a) and 2(b), respectively.
A comparison with the Poincaré sections in Figs. 1(b) and
1(e) unveils that the regular and chaotic regions are clearly
distinguished by 	m ≈ 0 and 	m > 0, as expected. A further
observation of the exhibited behavior of 	m is that it increases
as the energy and coupling strength are increased.

The dependence of the level of chaos on the energy and
coupling strength can be quantitatively captured by the phase
space averaged maximal Lyapunov exponent, which in this
case is also known as the Kolmogorov-Sinai entropy [77] and
is defined as

	m =
∫

dS	m, (12)

where dS = r dr dθ is the phase space area element in polar
coordinates. In Fig. 2(c), the variation of 	m with coupling
strength λ is shown for different energies. For the system with
λ � 0.4, 	m = 0, regardless of the energy, suggesting the
regular dynamics of the system. As soon as λ � 0.5, 	m starts
to increase with increasing λ independently of the energy,
indicating the development of chaos in the system. It is re-
markable that this happens approximately at the critical point,
λc, of the quantum phase transition. Additionally, it is obvious
that the larger the energy is, the faster 	m grows. Besides, with
increased system energy the onset of chaos happens at smaller
value of the coupling strength. These observations indicate
that the system energy strongly affects the degree of chaos.
The impact of energy on the level of chaos is clearly unveiled
in Fig. 2(d), where we plot 	m as a function of energy E for
different values of λ. One can see that 	m exhibits an obvious
transition from very tiny values to large values with increasing
energy. We also note that the transition to chaos shifts to lower
energy with increasing the strength of coupling. It is worth
mentioning that the above features of 	m are consistent with
the Poincaré sections shown in Fig. 1.

B. Chaos in quantum system

Let us now turn to chaotic transition in the quantum model
(1). The presence of quantum chaos can be diagnosed by
numerous indicators, including spectral and eigenstates statis-
tics [78–83], various dynamical probes [83–85], and different
complexities [86–92], to mention a few. Here, we focus on the
distribution of level spacing ratios, defined as [93,94]

rn = min

(
δn,

1

δn

)
, (13)

where δn = sn/sn+1 with sn = En+1 − En being the consecu-
tive level spacing for ordered energy levels En < En+1 of the
Hamiltonian (1). As investigating the spacing ratio distribu-
tion is free from the need to perform the unfolding procedure
for the energy spectrum, it turns out to be the most widely
used chaos indicator for studying quantum many-body chaos
[15,18,95–98]. Another advantage of using rn instead of sn as
chaos indicator is that the support of the distribution of rn is
bounded, that is rn ∈ [0, 1].

The distribution of rn for chaotic systems that belong to the
Gaussian orthogonal ensemble (GOE) is given by [18,94],

PGOE(r) = 2

ZGOE

r + r2

(1 + r + r2)5/2
, (14)

where ZGOE = 8/27 is the normalization constant. For inte-
grable systems, uncorrelated eigenvalues exhibiting Poisson
statistics, we have [94]

PP(r) = 2

(1 + r)2
. (15)

A prominent feature of the chaotic spectra is level repulsion
characterized by PGOE(0) = 0, in contrast to Poisson spectra
with PP(0) = 0.

In Figs. 3(a) and 3(b), we show the ratio distribution P(r)
for two different values of λ with system size N = 60. The
distribution P(r) in Fig. 3(a) for small λ is well captured by the
Poisson case, in agreement with the classical regular dynamics
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FIG. 3. (a)–(b) Level spacing ratio distribution P(r) for (a) λ = 0.1 and (b) λ = 1 with N = 2 j = 60. (c) and (d) P(r) for different energy
intervals: (c) εn ∈ [ε0, ε149] and (d) εn ∈ [ε244, ε393], with N = 2 j = 60 and λ = 1. Here, εn = En/ j is the nth rescaled eigenenergy with n = 0
corresponding to the ground state. The red dashed and blue solid curves in panels (a)–(d) are PGOE and PP(r), respectively. (e) Rescaled average
level spacing ratio, 〈̃r〉, as a function of coupling strength λ for several system sizes. (f) 〈̃r〉 as a function of 〈ε〉 for the system sizes as in panel
(e) with λ = 1. Here, 〈ε〉 = ∑

εn/150 is the averaged energy of each energy interval. Other parameters: ω = ω0 = 1. The bosonic mode has
been truncated at Ntrc = 300. All quantities are dimensionless.

exhibited in Fig. 1(a). The ratio distribution P(r) for λ = 1 in
Fig. 3(b) demonstrates an opposite situation, where the GOE
distribution of r is clearly visible. We see again that the behav-
ior of P(r) at λ = 1 is consistent with the classical Poincaré
section in Fig. 1(c). To reveal the dependence of chaos on
the system energy, we consider the distribution P(r) extracted
from energy levels within a certain energy interval, as was
done in Refs. [15,18]. The energy interval in our study is an
interval between εn and εn+149 with εn = En/ j being the nth
rescaled eigenenergy. We plot P(r) for two representative en-
ergy intervals εn ∈ [ε0, ε149] and εn ∈ [ε244, ε393] in Figs. 3(c)
and 3(d), respectively. Here, ε0 denotes the rescaled ground
state energy. It can be clearly seen that the ratio distribution
P(r) is close to the Poisson distribution PP(r) for the lowest
energy levels, while it turns to follow the GOE distribution
PGOE(r) for the energy levels at high energy. In particular,
P(r = 0) exhibits an obvious transition from P(r = 0) = 0 to
P(r = 0) ≈ 0 as the energy of energy interval is increased.

A more popular quantity that has been employed to detect
the presence of quantum chaos is the mean spacing ratio, de-
fined as 〈r〉 = ∫ 1

0 rP(r)dr. It was known that 〈r〉 interpolates
between two extreme values 〈r〉P = 2 ln 2 − 1 ≈ 0.38629 and
〈r〉GOE = 4 − 2

√
3 ≈ 0.53590, corresponding to Poisson and

GOE distributions, respectively [94]. This leads to the defini-
tion of rescaled mean spacing ratio [97],

〈̃r〉 = |〈r〉 − 〈r〉P|
〈r〉GOE − 〈r〉P

. (16)

It varies in the interval 〈̃r〉 ∈ [0, 1]. For integrable systems
with Poisson distribution, we have 〈̃r〉 = 0, while chaotic
systems with GOE distribution give rise to 〈̃r〉 = 1.

The variation of 〈̃r〉 as a function of coupling strength
λ for several system sizes is plotted in Fig. 3(e). We see
that the overall behavior of 〈̃r〉 as a function of λ is almost
unaffected by varying the system size. Regardless of the
system size, 〈̃r〉 exhibits a rapid growth from small values to
the values around 1 in the region λ ∈ [0.35, 0.55]. Again, it is
remarkable that this is close to the critical coupling strength,
λc, of the quantum phase transition. Thus, the quantum
system undergoes a crossover from integrability to chaos with
increasing the strength of coupling, in agreement with the
behavior of P(r) observed in Figs. 3(a) and 3(b). On the other
hand, the dependence of 〈̃r〉 on the system energy is shown
in Fig. 3(f), where we display how 〈̃r〉 evolves for different
energy intervals and system sizes with fixed λ. The overall
increasing behavior of 〈̃r〉 as the energy interval moves to high
energy levels confirms that the degree of chaos in the Dicke
model can be enhanced by increasing the system energy. As
a final remark of this section, we would like to point out that
the behavior of 〈̃r〉 coincides with 	m, suggesting a good
quantum-classical correspondence.

III. OVERLAP INDEX IN CLASSICAL PHASE SPACE

The aim of this work is to analyze how the mixed eigen-
states in many-body systems evolve as the semiclassical limit
N → ∞ is approached. To this end, we employ the celebrated
Dicke model, which has a well-defined classical limit and has
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been used as a prototypical model in different branches of
physics. In particular, the transition to chaos exhibited by the
Dicke model makes it a suitable model to study the properties
of the mixed eigenstates in many-body quantum systems.

The analysis of the features of the mixed eigenstates re-
quires one to focus on the cases that have mixed-type phase
phase in the semiclassical dynamics. Thus, we restrict our
study in the parameter region λ ∈ [0.45, 0.5] with energy
E ∈ [−0.7,−0.5]. A careful numerical check has verified that
the classical dynamics for our considered parameters and
energy regions is indeed characterized by mixed-type phase
space. Moreover, following our previous works [4,33,34,99],
we identify the types of eigenstates through the phase space
overlap index. To this end, let us first introduce the definition
of the Husimi function for an individual eigenstate.

A. Husimi function

As the Gaussian smoothing of the well-known Wigner
function [100], the Husimi function [101] constitutes the
simplest quasiprobability distribution of a quantum state in
classical phase space and has been widely used as a powerful
tool to explore various properties of quantum eigenstates [8–
11,45,65,102–106]. It is usually defined as the projection of a
quantum state onto the coherent state [107]. Thus, the Husimi
function for the nth eigenstate, |En〉, of the Dicke model is
given by [108,109]

Qn = |〈CS|En〉|2, (17)

where |CS〉 = |α〉 ⊗ |ξ 〉. The normalization condition of the
coherent states implies that the Husimi function can be nor-
malized as

2 j + 1

π2

∫
R4

d2α d2ξ

(1 + |ξ |2)2
Qn = 1, (18)

with j = N/2 and d2w = d Re(w)d Im(w) (w = α, ξ ).
For Hamiltonians with two degrees of freedom, such as the

Dicke model, the Husimi function Qn in (17) has four real
variables. As a consequence, it is difficult to visualize and
display it. A common way to circumvent this difficulty is to
study different projections or sections of the Husimi function
[74,110–112]. For our purpose, we consider the Poincaré-
Husimi function which is evaluated along the Poincaré surface
q1,+ defined in Eq. (8) and calculated as

QP
n (p2, q2) = |〈p1 = 0, q1 = q1,+; p2, q2|En〉|2. (19)

Here, the energies of eigenstates are chosen to satisfy
|En/ j − E | � 0 for a certain value of E , so that they corre-
spond to a well defined classical dynamical regime (phase
portrait). Now, QP

n (p2, q2) is a function of two variables and
its density plot provides a quite illustrative comparison to the
classical Poincaré section [74,112].

The Poincaré-Husimi functions for several eigenstates with
energy close to E = −0.4 are plotted in Fig. 4. Compar-
ing with the classical Poincaré section, which is shown
in Fig. 4(e), we see that the eigenstates can be qualita-
tively divided into three types. The first type corresponds to
the eigenstates whose Poincaré-Husimi functions are mainly
located in the classical regular regions, as is evident in
Figs. 4(b) and 4(f). This type of eigenstates is usually called

regular eigenstates. In contrast to the regular eigenstates, the
Poincaré-Husimi functions in Figs. 4(g)–4(i) are almost fully
distributed over the chaotic sea. This allows us to name this
type of eigenstates the chaotic eigenstates. Apart from these
two extreme cases, we still have some eigenstates, referred to
as the mixed eigenstates, whose Poincaré-Husimi functions
occupy both regular and chaotic regions, as exemplified in
Figs. 4(a), 4(c), and 4(d). The presence of the mixed eigen-
states originates from different tunneling processes between
various structures in classical phase space.

A natural question about the existence of different types
of eigenstates is how to quantitatively characterize them. In
particular, unveiling how the relative proportion of the mixed
eigenstates varies as the system approaches the semiclassical
limit would improve our understanding of generic quantum
systems whose classical counterpart has mixed-type phase
space. For single-particle systems, our previous works [33,34]
have shown that the relative proportion of the mixed eigen-
states undergoes a power-law decay as the semiclassical limit
is approached. But, whether this conclusion still holds in
many-body quantum systems remains unknown. In the fol-
lowing subsection, we address the above mentioned questions
in the Dicke model.

B. Phase space overlap index

As was done in Refs. [4,33,34,99], we distinguish the
types of the eigenstates by means of the phase space overlap
index, M, defined as the overlap of the Poincaré-Husimi
function with different regions of phase space. Specifically,
by employing the polar coordinates (r, θ ) with 0 � r � 2,
we separate the classical phase space (q2, p2) into a grid
with N small cells, which are labeled by (i, j) with
q2(i, j) = ri cos θ j and p2(i, j) = ri sin θ j . Consequently, the
nth eigenstate Poincaré-Husimi function is now discretized as
QP

n (i, j) = QP
n [p2(i, j), q2(i, j)] with normalization condition∑N

i, j QP
n (i, j)/N = 1. Then, we set a quantity Ci, j = +1 to

the cells that belong to the chaotic region and Ci, j = −1
for other cells. Finally, the phase space index for the nth
eigenstate is defined as

Mn = 1

N
∑
i, j

QP
n (i, j)Ci, j . (20)

The definition of Mn implies that it varies in the interval
Mn ∈ [−1, 1] with Mn = +1 and −1 corresponding to
fully chaotic and regular eigenstates, respectively. For the
mixed eigenstates, as their Poincaré-Husimi functions are
distributed in both chaotic and regular regions, we have
−1 < Mn < 1. The values of Mn for the eigenstates in Fig. 4
are given in the figures. One can see that Mn is close to
either +1 or −1 for chaotic and regular eigenstates, while
it takes values between −1 and +1 for mixed eigenstates,
as expected.

More information about the properties of the eigenstates is
revealed by the probability distribution of Mn, defined as

P(M ) =
∫

ρ(M )dMn, (21)

where ρ(M ) = ∑
n δ(M − Mn) is the probability density

function. It was known that P(M ) has two peaks at M =
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FIG. 4. Poincaré-Husimi function, QP
n (p2, q2), for several positive parity eigenstates with energies (a) E327/ j = −0.4391, (b) E340/ j =

−0.4297, (c) E353/ j = −0.414, (d) E360/ j = −0.4067, (f) E374/ j = −0.3955, (g) E384/ j = −0.3856, (h) E394/ j = −0.3754, and (i) E407/ j =
−0.3641. Phase space overlap indices Mn, defined in Eq. (20), corresponding to these eigenstates, are given in the figure. The classical Poincaré
section for E = −0.4 is plotted in the center panel (e). Here, each color marks the points that belong to the same initial condition. Other
parameters: ω = ω0 = 1, N = 2 j = 100. and λ = 0.47. The bosonic mode has been truncated at Ntrc = 170. All quantities are dimensionless.

±1 for single particle systems [33,34], but it is necessary
to perform a detailed investigation in quantum many-body
systems, like the Dicke model, to see whether this property
of P(M ) still holds. It is worth pointing out that the structure
of the classical Poincaré section only depends on the coupling
strength and energy. This allows us to get sufficient data
for the statistics of M by considering eigenstates within an
energy window for an ensemble of different system sizes.
In this work, for a given energy E , we will focus on the
eigenstates whose energies satisfy En/ j ∈ [E − δE , E + 2δE ]
with δE = 0.04. We have checked that the underlying clas-
sical dynamics stays unchanged for our considered energy
interval.

In Fig. 5, the distribution P(M ) for different system ensem-
bles and coupling strengths, as well as energies are depicted.
P(M ) is calculated from a finite number of eigenstates with
energies within a given energy window, and plotted as the
histogram. However, one can expect that it will converge
to a smooth distribution in the classical limit N → ∞. As
seen from the figures, although P(M ) exhibits large fluctu-
ations compared to the cases of single particle systems, it
still behaves as a double peak distribution with two peaks
located at M � ±1, respectively. This is more evident for
the large system sizes, as shown in Figs. 5(c), 5(f), and 5(i).
The large fluctuations observed in the behaviors of P(M )
are due to the relative small system size, which leads to

the wide support of the Poincaré-Husimi function in the
phase space. We further observe that the fluctuations in
P(M ) can be suppressed by increasing either the system
size or the degree of chaos, as revealed in single-particle
systems [33,34].

The above observations of P(M ) suggest that larger system
size N results in a sharper double peak shape of P(M ). Hence,
one can expect that only the regular and chaotic eigenstates
are left in the semiclassical limit N → ∞. To strengthen
this statement, we study how the relative proportion of the
mixed eigenstates changes as the system size is increased.
In our consideration, the mixed eigenstates are identified as
the eigenstates that satisfy −Mc � M � Mc with the cutoff
Mc = 0.8. There is an arbitrariness in the choice of the value
of Mc; however, our main results are unaffected by the exact
cutoff value of Mc.

The relative proportion of the mixed eigenstates is
defined as

Rm = �Nmix

NδE
, (22)

where NδE = ∑
En/ j∈δE denotes the number of eigenstates

in the above mentioned energy window, while �Nmix =∑
Mn∈[−Mc,Mc] represents the number of mixed eigenstates in

the same energy window. In Figs. 6(a) and 6(b), we show
how the ensemble averaged relative proportion of the mixed
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FIG. 5. (a)–(c) Probability distribution of the phase space overlap
index, P(M ), for system size ensembles (a) N ∈ [72, 88], (b) N ∈
[92, 108], and (c) N ∈ [112, 128] with λ = 0.47 and E = −0.5. (d)–
(f) P(M ) for the same system size ensembles and coupling strength
λ as in panels (a)–(c), but for the case of E = −0.4. (g)–(i) P(M ) for
the same system size ensembles as in panels (a)–(c), but with λ = 0.5
and E = −0.4. For each case, the energy of the considered eigen-
states satisfies En/ j ∈ [E − δE , E + 2δE ] with δE = 0.04. Other
parameters: ω = ω0 = 1. The bosonic mode has been truncated at
Ntrc = 170. For each ensemble, the system size N is increased in
steps of 4. All quantities are dimensionless.

FIG. 6. (a) Ensemble averaged Rm [cf. Eq. (22)] as a function of
ensemble averaged system size 〈N〉 for Mc = 0.8 and several com-
binations of coupling strength λ and system energy E . The dashed
lines are the power-law behavior of the form 〈Rm〉 ∝ 〈N〉−γ with
γ = 0.4357, 0.4797, and 0.4779 (from top to bottom). (b) 〈Rm〉 as
a function of 〈N〉 for the same combinations of λ and E as in panel
(a) and Mc = 0.6. Dotted lines denote the power law 〈Rm〉 ∝ 〈N〉−γ

with γ = 0.4941, 0.6944, and 0.7913 (from top to bottom). (c) Ex-
ponents of the power-law decay as a function of Mc for the same
combinations of λ and E as in panels (a) and (b). For each case, the
energy of the considered eigenstates satisfies En/ j ∈ [E − δE , E +
2δE ] with δE = 0.04. Here, the system ensemble for each case is
the same as Fig. 5 and the system size is increased in steps of 4 in
each ensemble. Other parameters: ω = ω0 = 1. The bosonic mode
has been truncated at Ntrc = 170. All quantities are dimensionless.

eigenstates, denoted by 〈Rm〉, varies as a function of ensem-
ble averaged system size 〈N〉 for different values of Mc and
several combinations of λ and E . As we see in the figures,
the relative proportion of the mixed eigenstates decreases
with increasing system size, regardless of the values of λ and
E , as well as Mc. In particular, we find that the functional
relationship between 〈Rm〉 and 〈N〉 is well captured by the
power-law decay of the form 〈Rm〉 ∝ 〈N〉−γ with exponent
γ being a function of the control parameters. Similar power-
law behavior has also been observed in the single particle
systems [33,34], indicating that the power-law decay of the
relative proportion of the mixed eigenstates in approaching
the semiclassical limit should be a universal behavior. More-
over, the decrease of Rm as the system size increases is also
consistent with the PUSC, and, thus, provides the evidence
for the correctness of the PUSC in mixed-type many-body
quantum systems. This means that a mixed-type many-body
system has only fully regular and chaotic eigenstates in the
ultimate semiclassical limit.

We note that the independence of our results upon the
choice of Mc is confirmed by the overall power-law decay
of Rm for different values of Mc, as illustrated in Figs. 6(a)
and 6(b). However, from the same figures, we see that the
power-law exponent γ is strongly dependent on the value
of Mc. This is more evident in Fig. 6(c), where we display
the variation of the exponent as a function of Mc for several
combinations of λ and E . One can clearly see that the exponent
exhibits quite large fluctuations in its behavior. This can be
attributed to the fluctuations in P(M ) that show an obvious
dependence on the choice of Mc for certain control parameters
(cf. Fig. 5). As the P(M ) becomes smoother by increasing
the level of chaos, the fluctuations in the behavior of the
exponent should undergo a significant suppression for high
degree of chaoticity, as exemplified in the case of λ = 0.5 and
E = −0.4.

As a final remark of this section, we would like to point
out that the observed power-law decay is closely connected to
flooding [113,114] and tunneling [115–118] effects in mixed
systems. It is therefore necessary to perform a detailed in-
vestigation of these phenomena to understand the underlying
mechanism of the power-law behavior. We leave this inter-
esting topic for our future study. Moreover, to further verify
the power-law decay as a universal property of the fraction
of the mixed eigenstates, it is also necessary to examine how
the fraction of the mixed eigenstates varies in many-body
quantum systems that have no classical counterpart, such as
different spin models. However, how to identify the types of
eigenstates in such systems remains unknown and is beyond
the scope of the present work; we take it as one of our future
directions.

IV. CONCLUSIONS

A basic and valuable tool for comprehending various char-
acters of general mixed quantum systems is the principle
of uniform semiclassical condensation of Wigner or Husimi
functions (PUSC) [22–24]. Although the validity of the PUSC
in the mixed-type single-particle systems has been verified
by numerous works, its correctness for the mixed-type many-
body quantum systems remains unknown. With the aim to
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address this question, we have delved into a detailed anal-
ysis of the eigenstates and their properties in the celebrated
Dicke model. As a prototypical model in the studies of both
quantum and classical chaos, the Dicke model is a very suit-
able many-body quantum model for our study because it
attains its well defined semiclassical limit as the system size
is increased. Hence, the Dicke model allows us to define an
effective Planck constant, which is essential to explore how
the features of eigenstates change as the semiclassical limit is
approached.

By investigating the development of chaos in both classical
and quantum Dicke models, we have determined the param-
eter and energy regions that exhibit the mixed-type behavior.
By means of Husimi function, we have shown that the eigen-
states can be divided into different types. To quantitatively
characterize different types of eigenstates, we have calculated
the phase space overlap index, which is defined in terms of
the Husimi function and acts as a useful tool for studying the
characters of the eigenstates. For the eigenstates that belong
to a certain classical dynamical regime, the distribution of
their phase space overlap index is well described by double
peak distribution with two peaks at −1 and +1, corresponding
to the fully regular and chaotic eigenstates, respectively. For
finite system size, there are many mixed eigenstates with the
value of phase space overlap index varying between −1 and
+1. However, we have shown that the relative proportion of
the mixed eigenstates vanishes with increasing system size,
i.e., approaching the semiclassical limit. This means that the
eigenstates in the mixed-type many-body quantum systems
belong to either regular or chaotic type as the semiclassical
limit is approached, as we have observed similarly in the

single-particle systems [33,34] and in accord with the PUSC.
In particular, we have demonstrated that the decay of the
relative proportion of the mixed eigenstates with increasing
system size is well captured by a power law, similar to the
results obtained in the single-particle systems. This leads us
to believe that the power-law decay is a universal behav-
ior in the evolution of the relative proportion of the mixed
eigenstates in mixed-type systems as the semiclassical limit is
approached.

An interesting extension of the present work is to explore
the validity of PUSC in many-body quantum systems that
have no classical correspondence, such as various quantum
spin systems. The lack of classical counterpart indicates that
new methods should be found to identify the types of eigen-
states. A possible candidate to fulfill this requirement might
be the entanglement entropy of the eigenstates; however, we
leave this subtle question for our future investigation. In ad-
dition, a theoretical understanding of the properties exhibited
by the mixed eigenstates in many-body quantum systems also
deserves future exploration. Finally, we hope that our work
could motivate more studies of the features of the mixed-type
many-body quantum systems.
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