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In this article we contemplate the dynamics of an additional food-provided prey-predator system. We assume
that the behavior of cooperative predators induces fear in prey, which radically affects the prey’s birth and
death rates. We observe that the structural instability imposed by strong cooperative hunting among predators
goes away with higher intensities of fear levels affecting the prey’s reproductive output and mortality. High
levels of prey refuge are not conducive to the survival of predators. In such a situation, adequate supply of
high-quality additional food is favorable regarding the persistence and stability of the system. Interestingly, the
system potentially exhibits two stable configurations under identical ecological conditions by allowing different
bifurcation scenarios, including saddle-node and backward bifurcations, and associated hysteresis effects with
prey refuge along with additional food quantity and quality. In the stochastic environment, the system experiences
critical transitions through bifurcation-induced tipping events with time-varying additional food for predators.
Enhanced disturbance events promote noise-induced switching and tipping events. Finally, our investigation
explores whether impending population crashes resulting from the variability of additional food quantity and
quality can reliably be predicted using early warning signals in the context of redshifted noise. Overall, our
results may provide insights for finding control strategies in the context of community ecology.
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I. INTRODUCTION

Predator-prey interplay has been a predominant and active
research area for both mathematicians and ecologists for the
past few decades. Mathematical models provide researchers
with a means to consolidate knowledge, test hypotheses, and
employ nonlinear differential equations for qualitative and
quantitative modeling of terrestrial ecosystems [1]. Addition-
ally, numerical simulations utilizing differential equations can
effectively encompass the impact of physical, chemical, and
biological processes associated with population dynamics,
either individually or in combination. This approach helps
simplify the complexity of diverse ecological configura-
tions [2].

To achieve collective success in hunting, predators are
expected to embrace cooperative behavior. Such ubiquitous
social interactions help the predator population raise their
effective consumption to the optimal level. The likelihood
of successful shared hunting increases with an expanding
adult pack [3]. However, there may be differences among
individuals in the degree to which communal hunting is ben-
eficial or harmful. In ecology, species interactions are not
always governed through direct predation; sometimes the non-
consumptive fear effect due to perceived threat of predation
can be more influential in shaping the overall ecosystem
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functioning by altering the behavioral and physiological as-
pects of prey species. To cope with predation risk, prey
evolves to adopt different survival strategies such as alter-
ations in foraging behavior, patterns of aggregation, habitat
selection, reproductive tactics, vigilance periods, etc., all
of which undeniably impact their physiological condition.
These effects can manifest as increased blood sugar levels,
heightened emotional arousal, activation of stress hormone
secretion, and other related physiological responses. In the
high-risk zone, restricted foraging activities compel the scared
prey to feed on a low-quantity diet. For example, fearful
mule deer adopt minimal foraging to circumvent the risk of
predation of the mountain lion [4]. The inevitable stress of
prolonged starvation leads to reduced prey reproduction and
lessens the adult survivability. To avoid the predation risk,
prey often find their way out by moving from their optimal ter-
ritory to new habitats with lower quality, incurring an energy
loss in the process [5]. Hua et al. [6] found that perception of
predation risk negatively impact the blue bird’s reproductive
physiology by broadcasting the vocal cues of their consumers.

The pioneering work by Wang et al. [7], demonstrating
the fear phenomenon in mathematical perspective, estab-
lished that strong fear possesses a stabilizing role by ruling
out periodic oscillations, whereas relatively weak fear may
produce multistability in a bitrophic model. Recently, em-
pirical investigations have been undertaken to explore the
infection dynamics in ecological systems incorporating the
impact of fear [8,9]. Duarte et al. [10] studied a three-tier
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food chain with hunting cooperation among predators. Alves
and Hilker [11] discussed a Lotka-Volterra model with co-
operative predators and demonstrated how cooperation can
alter prey-predator dynamics. Recently, Pal et al. [12] stud-
ied the simultaneous impacts of cooperative hunting and the
fear phenomenon in a classical prey-predator system and
concluded that foraging facilitation in the form of hunting
cooperation has the potential to induce a strong demo-
graphic Allee effect in predators. Liu et al. [13] proposed
and analyzed a fear-induced eco-epidemiological model with
cooperative predators. Their findings suggested that low lev-
els of hunting cooperation and fear factor can stabilize the
disease-dominated system, whereas relatively high levels of
these model parameters can induce a periodic phenomenon.

In response to the evading risk of predation, prey species
actively embrace a defense against the predators by taking
refuge. This hiding behavior provides them with some de-
gree of protection from potential predators and reasonably
promotes the chance of prey survivability. Prey refuge has
various potential impacts on the dynamics of prey-predator in-
teractions, including promoting stability, generating dynamic
fluctuations, or inducing instability in an ecosystem function-
ing [14]. For example, zooplankton frequently try to escape
from pelagic consumers using macrophytes as daytime refuge
sites [15]. The foraging behaviors of zooplankton vary based
on the states and compositions of the resources that are ac-
cessible to them [16–18]. It is observed that prey refuge is
capable of diluting the oscillatory tendency of predator-prey
interactions and fosters the stabilization of community equi-
libria. Sharma et al. [19] studied the effects of prey refuge
in a prey-predator Leslie-Gower model with prey infection
and showed that prey refuge is responsible for the emer-
gence and termination of population outbreaks. McNair [20]
documented that a variety of refuges could impose a locally
destabilizing role and generate stable large-amplitude periodic
solutions, which would wipe out the population in the absence
of refuge. Kar [21] suggested that a high level of refuge can
increase prey population densities, which serve as a key factor
for the emergence of population outbreaks.

The inclusion of supplementary food has emerged as a
highly effective approach in the realm of biological conser-
vation and pest management [22–24]. Adequate provision of
additional food plays a crucial role in enhancing the lifespan,
reproductive capacity, and overall ability of predator popula-
tions to regulate the proliferation of pests [25,26]. Predators
possess an inherent propensity towards alternative diets when
the primary prey becomes scarce in numbers. This preference
for alternative food sources aids in the prolonged survival of
predators. A notable example occurred in the mid 1990s when
the populations of three subspecies of Channel Island foxes
were on the verge of extinction due to excessive predation by
golden eagles. In this scenario, the presence of plentiful alter-
native resources played a crucial role in the revitalization of
fox populations [27]. Srinivasu et al. [28] reported the crucial
impacts of both quantity and quality of available additional
food items on the dynamics of the predator-prey system. Man-
dal et al. [29] documented the effects of phytoplankton refuge
on the dynamical complexities of an additional food-provided
phytoplankton-zooplankton system with seasonality. Sahoo
and Poria [30] revealed that a suitable quantity of higher-

quality additional food for the top predator can eliminate the
chaotic disorder in a tritrophic ecological food chain model.
Mandal et al. [31] investigated an additional food-provided
phytoplankton-zooplankton system in the presence of anthro-
pogenic toxicants.

The functionality of additional food within predator-prey
ecosystems can be analogized to various mechanisms at play
in climate, healthcare, and social systems. To illustrate, we
consider geoengineering, which entails deliberate interven-
tions in the earth’s climate system to mitigate the effects
of climate change. The process of injecting aerosols into
the stratosphere to reflect sunlight and lower the tempera-
ture, thereby offsetting the impact of greenhouse gases [32],
bears resemblance to the introduction of additional food in
predator-prey ecosystems. In the realm of healthcare systems,
vaccination campaigns can be likened to the introduction
of additional immunity into a population to curtail the dis-
ease burden [33]. In this scenario, vaccinations bolster the
“immunity” of the host population against the “predator”
pathogen. A comparable analogy can be drawn in the af-
termath of natural disasters or crises. The provision of
aid, resources, and support can function as a buffer [34],
akin to the introduction of additional food in predator-
prey systems, facilitating communities’ recovery and the
restoration of steady states. Recognizing these parallels al-
lows us to draw lessons on societal resilience in the face
of disruptions, broadening the discourse beyond ecological
contexts.

Here we provide an illustration of a real-world situation
that unfolds different layers of predator-prey interactions. In
the Elysian Forest, interplay between two groups of ani-
mals, the shadow-stalker predators (panthers, wolves, owls,
etc.) and the watchful prey (deer, rabbits, squirrels, etc.), is
commonly evidenced. The shadow stalkers have mastered
their hunting skills and developed a remarkable form of co-
operation using body language and soft vocalizations. This
coordination instills fear in the prey, who seek refuge in
temporary shelters until they perceive the danger has passed.
When prey is scarce, the shadow stalkers adapt by scav-
enging and hunting smaller creatures, ensuring they have
a food source even when their focal prey is in hiding. In
this ecosystem, predator and prey coexist, adapting to na-
ture’s rhythms and maintaining a delicate balance in the
forest.

Motivated by this, we explore the notion that predators
engage in cooperative hunting to enhance their hunting ac-
curacy. This substantially impacts the behavior and physical
characteristics of prey species as the fear of predation pressure
comes into play. The prey species use refuge as a defensive
strategy to suppress the exogenous impact of fear of predation.
In such a situation, limited availability of the focal prey influ-
ences the predator population’s switching behavior to other
resources as a survival hack.

Random environmental fluctuations play a pivotal role
in understanding ecological systems and can have signifi-
cant implications for the persistence and and stability of the
community. The interplay between nonlinearity and stochas-
ticity in a system adds complexity, particularly in cases
of bistability, making it an intriguing area of investiga-
tion [35,36]. This motivates us to investigate the stochastic
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counterpart of the proposed ecological model. Additionally,
we explore the potential of generic early warning signals to
predict impending state transitions in an environment with
variations in both quantity and quality of additional food
resources.

II. MATHEMATICAL MODEL

At any time t > 0, let N (t ) and P(t ) be the densities of
basal prey and predator populations, respectively. Now we
present the ecological model, taking into account specific
assumptions.

(i) In the absence of a predator, the focal prey follows a
logistic growth pattern.

(ii) To account for the interaction between the focal prey
and predator, we introduce a generalized type II interaction
that incorporates an additional food supplement. We also as-
sume that the predator’s encounter rate with a basal resource
increases with predator density, capturing the idea of coop-
erative hunting. This is achieved by modeling the effectual
encounter rate as q(P) = q + αP, where α quantifies the de-
gree of cooperation among predators [11].

(iii) Predator cooperative hunting leads to a neuropsycho-
logical stress response in fearful prey, which is ecologically
manifested as a reduction in their birth rate. We express
the effective birth rate employing a decreasing function
a(k1, α, P) = a

1+k1αP [7]. However, the prey’s death rate in-
creases in the presence of chronic stress induced by the fear
of predation. Mathematically, we capture this phenomenon by
multiplying the death rate c of prey with an increasing func-
tion of predator population size φ(k2, α, P) = 1 + k2αP [37].
The parameters k1 and k2 signify the costs of fear of predation.

(iv) A constant proportion m ∈ [0, 1) of prey individuals
temporarily hide themselves in a less accessible zone to lower
the chance of being attacked. This leaves (1 − m)N unpro-
tected basal resources available for predator consumption.

(v) The additional food is assumed to be nondynamic
in nature. The number of encounters per predator with
available additional food is directly proportional to the
food biomass [28]. If hA(hN ) and eA(eN ) encapsulate the

handling time of the predator per unit quantity of addi-
tional food (basal prey) and searching efficiency of the
predator for the additional food (basal prey), respectively,
then q = 1/hN , 1/δ = 1/eN hN , β1 = hA/hN , and μ = eA/eN .
The parameter β1 measures the quality of the additional
food available for the predator population while μ repre-
sents the efficacious capability of the predator to detect the
additional food resources relative to the focal prey. If the
inequality hA < hN holds, we can infer that the additional
food item is of higher quality. Therefore, for higher-quality
additional food, β1 should be less than unity. The uni-
form distribution of constant additional food biomass is
sustained either by some external resources or by nature
itself.

Based on the aforementioned assumptions, we propose the
following nonlinear ecological system (see also Table I):

dN

dt
= aN

1 + k1αP
− c(1 + k2αP)N − d1N2

− (1 − m)(q + αP)NP

1 + δ(1 − m)(q + αP)N + β1μA
,

dP

dt
= λ[(1 − m)(q + αP)N + μA]P

1 + δ(1 − m)(q + αP)N + β1μA
− eP − d2P2. (1)

III. MATHEMATICAL ANALYSIS

Now we analyze several fundamental dynamical character-
istics of the system (1), including positivity and boundedness
of solutions, as well as local stability of the system’s
equilibria.

A. Positivity and boundedness of solutions

Lemma. The system (1) is positively invariant and bounded
in R2

+ and the solutions eventually enter the attracting set

� = {(N, P) ∈ R2
+ : 0 � N + P � L},

which is positively invariant.
Proof. From the system (1) we have

N (t ) = N (0) exp
∫ t

0

(
a

1 + k1αP(x)
− c[1 + k2αP(x)] − d1N (x) − (1 − m)[q + αP(x)]P(x)

1 + δ(1 − m)[q + αP(x)]N (x) + β1μA

)
dx,

P(t ) = P(0) exp
∫ t

0

(
λ{(1 − m)[q + αP(x)]N (x) + μA}

1 + δ(1 − m)[q + αP(x)]N (x) + β1μA
− e − d2P(x)

)
dx.

Therefore, the solutions of the model (1) are positive for all
t > 0.

Define a function U = N + P. For an arbitrary σ > 0 we
obtain

dU

dt
+ σU � (a − c + σ )N − d1N2 − (e − λμA − σ )P.

Choosing σ � e − λμA, we have, for some M,

dU

dt
+ σU � (a − c + σ )2

4d1
= M.

Using the standard results of differential inequalities, we have,
for some L,

U (t ) � e−σ t

(
U (0) − M

σ

)
+ M

σ
� max

{
M

σ
,U (0)

}
= L.

Hence, the solutions of the system (1) are ultimately bounded
above.

This analytical method ensures that the interacting popula-
tions cannot grow indefinitely. �
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TABLE I. Biological meaning of the model parameters and their
values.

Parameter Description Value

a Birth rate of prey 0.28
c Natural death rate of prey 0.12
k1 Strength of fear due to cooperative hunting

responsible for reduced prey reproduction
0.05

k2 Strength of fear due to cooperative hunting
responsible for elevated death rate among prey

0.05

d1 Rate of intraspecies competition of prey 0.1
d2 Mortality rate of predators due to crowding 0.05
e Natural death rate of predator 0.1
m Proportion of prey refuge 0.12
q Attack rate of the predator on prey 0.25
α Strength of cooperative hunting 0.65
β1 Ratio between the handling times towards the

additional food resources and the basal prey
0.15

μ Effectual ability of predator to detect the
additional food item relative to the basal prey

0.21

A Quantity of available additional food 0.15
λ Effectual rate of conversion of food to predator

biomass
0.56

δ Half-saturation constant 0.45

B. System’s equilibria

Now we examine the feasible equilibria of the system and
investigate the impact of key parameters on their local stability
properties.

The system (1) possesses the following four ecologically
meaningful equilibria.

(i) The population-free equilibrium E0 = (0, 0), which ex-
ists unconditionally. This is an undesired ecological scenario.

(ii) The predator-free equilibrium E1 = (N1, 0), where
N1 = 1

d1
(a − c). The equilibrium E1 exists, provided a > c.

Ecologically, the prey species survives in the absence of po-
tential predators only if the birth rate of the prey is greater
than its mortality rate. In such a situation, the prey attains its
carrying capacity N1.

(iii) The prey-free equilibrium E2 = (0, P2), where P2 =
1
d2

( λμA
1+β1μA − e). The equilibrium E2 exists if A > Ac =
e

μ(λ−eβ1 ) . Biologically, the predator population can manage to
survive in the absence of focal prey if the accessible stock of
additional food is greater than some level, which depends on
the additional food quality β1. Interestingly, as the food qual-
ity decreases, the minimum required quantity of additional
food for predator survivability increases.

(iv) The coexisting equilibrium E∗ = (N∗, P∗), where N∗
and P∗ are the positive solutions of the nullclines:

f1(N, P) ≡ a

1 + k1αP
− c(1 + k2αP) − d1N

− (1 − m)(q + αP)P

1 + δ(1 − m)(q + αP)N + β1μA
= 0, (2)

f2(N, P) ≡ λ[(1 − m)(q + αP)N + μA]

1 + δ(1 − m)(q + αP)N + β1μA

− e − d2P = 0. (3)

Therefore, the equilibrium densities at the coexisting steady
state correspond to the intersection between the nontriv-
ial prey nullcline f1(N, P) = 0 and the predator nullcline
f2(N, P) = 0 in the first quadrant.

Local stability analysis

Due to nonlinearity of the ecological system, it is quite
impossible to find the exact solution to the system. Instead,
we study the long-term dynamical behaviors of the system.
Generally, a nonlinear system either gravitates towards an
equilibrium point (steady state) or blows up. Here we adopt
the linearization technique to study the local behaviors of the
solution trajectories.

The Jacobian of the system (1) is given by J = (J11 J12
J21 J22

)
,

where

J11 = a

1 + k1αP
− c(1 + k2αP) − 2d1N

− (1 − m)(1 + β1μA)(q + αP)P	2,

J12 = − ak1αN

(1 + k1αP)2
− ck2αN − (1 − m)N{[1 + δ(1 − m)

× (q + αP)N + β1μA](q + αP) + (1 + β1μA)αP}	2,

J21 = λ(1 − m)(q + αP)[1 + (β1 − δ)μA]P	2,

J22 = λ

(
[(1 − m)(q + αP)N + μA]

1

	

+α(1 − m)[1 + (β1 − δ)μA]NP

)
	2 − e − 2d2P,

with 	 = [1 + δ(1 − m)(q + αP)N + β1μA]−1.
The Jacobian JE0 at equilibrium E0 has eigenvalues (a − c)

and λμA
1+β1μA − e. Therefore, for stability, we must have a < c

and A < Ac. Biologically, if the birth rate of the basal prey is
less than their mortality rate, the prey fail to survive. In such
a situation, inadequate supply of additional food drives the
predator to go extinct.

The Jacobian JE1 possesses eigenvalues λ((1−m)qN1+μA)
1+δ(1−m)qN+β1μA −

e and −(a − c). Thus, for stability A <
d1e−q(a−c)(1−m)(λ−eδ)

d1μ(λ−eβ1 ) .
From a biological viewpoint, an ecosystem can reach a state
devoid of predators when the quantity of additional food
supplied falls below a certain threshold. This threshold value
is contingent upon the size of the prey refuge m. When a
larger number of prey seek refuge, the minimum necessary
food quantity increases accordingly, which is evident from
the condition of local asymptotic stability of the predator-free
equilibrium E1.

The Jacobian JE2 has the eigenvalues λμA
1+β1μA − 2d2P2 − e

and a
1+k1αP2

− c(1 + k2αP2) − (1−m)(q+αP2 )P2

1+β1μA . Therefore, the
equilibrium E2 is locally asymptotically stable, provided

m < 1 − 1 + β1μA

(q + αP2)P2

(
a

1 + k1αP2
− c(1 + k2αP2)

)
.

Biologically, cooperative predators can maximize their uti-
lization of the primary resource if the prey population is
unable to seek extensive refuge. Additionally, the refuge
threshold is influenced by the quantity of supplementary
food available. When predators receive a greater supply of
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FIG. 1. Phase portraits of the system (1). The parameters are at default levels except for (b) α = 1.05, (c) α = 1.05 and m = 0.45, and
(d) α = 1.05 and A = 0.85. Cyan and blue dashed curves represent the prey and predator nullclines, respectively.

extra sustenance, their numbers increase, intensifying preda-
tion pressure and ultimately leading to the potential extinction
of prey species. An alternative approach to rectify this detri-
mental scenario is for prey to seek greater refuge.

The Jacobian JE∗ is given by

JE∗ =
(

c11 c12

c21 c22

)
,

where ci j = Ji j at E∗ except c11 = δ(1−m)2 (q+αP)2PN
{1+δ(1−m)(q+αP)N+β1μA}2 −

d1N . The characteristic equation is given by

ξ 2 + C1ξ + C2 = 0, (4)

where C1 = −(c11 + c22 + c33) and C2 = c11c22 − c12c21. By
the Routh-Hurwitz criterion, the roots of Eq. (4) have negative
real components if and only if C1 > 0 and C2 > 0.

IV. SIMULATION RESULTS

In this section we provide some numerical results to further
reveal the impacts of several key parameters on the resulting
dynamics of the system (1).

Mathematical complexity restricts us to derive the expres-
sions for the coexistence equilibria explicitly in terms of the
key parameters. Figure 1 illustrates that the nullclines inter-
sect precisely once, indicating the appearance of a unique
coexisting equilibrium E∗ = (N∗, P∗) for appropriate param-
eter configurations. The system possesses stable dynamics

at the unique interior equilibrium level E∗(0.4926, 0.2985)
[Fig. 1(a)]. An increase in the strength of hunting coopera-
tion produces periodic phenomenon around the equilibrium
E∗(0.4055, 0.2663) [Fig. 1(b)]. The refuge by prey m and the
quantity of additional food A potentially suppress the instabil-
ity of the system, when increased to certain levels [Figs. 1(c)
and 1(d)].

Figure 2 represents the changes in equilibrium densities
of predator and prey populations by varying additional food
quantity and quality, which prognosticate that higher amounts
of additional food decrease the basal prey population. For a
higher quantity of additional food, as the quality of the food
continues to decrease, predator biomass increases to a certain
level and then experiences a significant decline.

A. Stability behavior of the system

Figure 3(a) shows that two nontrivial nullclines f1(N, P)
and f2(N, P) intersect at exactly two points in the interior of
the first quadrant. The phase portrait diagram depicts the bista-
bility phenomenon, where the system possesses two attractors,
namely, E1 = (1.6, 0) and E∗

1 = (0.95, 0.3). We observe that,
for the same parametric setup, green trajectories converge to
the predator-free equilibrium E1, whereas gray trajectories
settle to the coexisting equilibrium E∗

1 . However, Fig. 3(b)
supports the monostability of the system at the coexisting
steady state E∗(0.19, 0.53) as the nearby trajectories approach
the attractor.
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FIG. 2. Dependence of prey N∗ and predator P∗ equilibrium
biomasses on quantity A and quality β1 of additional food.

1. Increase in additional food quantity reduces probability
of predator extinction

Now we consider a scenario in which the energy flow from
focal prey cannot maintain survivability of potential predators

in the absence of additional food. To observe the occurrence of
backward bifurcation of the system (1) between the predator-
free equilibrium and the coexisting equilibrium with respect
to the quantity of additional food, we vary the parameter
A in the interval [0,1.2] and plot the equilibrium densities
of the predator population [Fig. 4(a)]. In this representation,
we depict the stable branches of the boundary (predator-free
and additional food dominated) and coexisting equilibria as
blue straight lines and the blue curve, respectively; their un-
stable counterparts are represented by red straight lines and
the red curve, respectively. The bifurcation diagram depicts
that predator population does not survive for A < 0.1157
(region I). However, predators benefit from increasing ad-
ditional food quantity. As a consequence, their equilibrium
density is enhanced. We observe that there exists an interval
0.1157 < A < 0.2978 for which a stable interior equilibrium
coexists with the stable predator-free equilibrium (region II).
Therefore, in this region the system displays susceptibility
to small perturbations. At A = A∗ = 0.2978, the unstable
branch of the coexisting equilibrium meets the predator-free
attractor and the equilibrium E1 loses stability, yielding a
backward bifurcation. For A ∈ (0.2978, 1.1305), the system
exhibits a unique coexisting attractor (regions III and IV). As
A surpasses the threshold Â = 1.1305, the predator density
reaches a plateau and a stable prey-free steady state orig-
inates from the former via a transcritical bifurcation. For
A > 1.1305, the system exhibits monostability at the prey-free
steady state E2 (region V). Biologically, a large abundance
of additional food may result in a significant increase in
predator density that substantially leads to overexploitation of
prey. In this situation, prey experience complete eradication
from the ecosystem. To enhance the understanding of the
bistability phenomenon, we draw the basins of attraction of
the predator-free and coexisting equilibria for different levels
of additional food [Figs. 4(b) and 4(c)]. Notably, the time
evolutions starting from the blue region eventually converge
to the predator-free equilibrium E1, while for initial densities
in the green region, the time evolutions settle to the coex-
isting equilibrium E∗

1 . It is worth noting that the quantity of
additional food significantly increases the domain of the basin
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FIG. 3. (a) Bistability of the equilibria E1(1.6, 0) and E∗
1 (0.95, 0.3). (b) Monostability of the equilibrium E∗(0.19, 0.53). The parameters

are at the same levels as in Table I except for (a) m = 0.62, α = 1.05, and A = 0.1 and (b) m = 0.68, α = 1.05, and A = 0.9. Here red circles
and magenta diamonds correspond to the stable and unstable equilibria, respectively.
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FIG. 4. (a) Backward bifurcation of the system (1) with respect to additional food quantity A with m = 0.68 and α = 1.05. The hysteresis
loop is represented by arrows. Also shown are the basins of attraction of the equilibria (b) E∗

1 (1.1248, 0.2686) (green) and E1(1.6, 0) (blue)
for A = 0.14 and (c) E∗

1 (0.9571, 0.3286) (green) and E1(1.6, 0) (blue) for A = 0.21.

of attraction of the coexistence equilibrium. Therefore, an in-
crease in the additional food quantity A reduces the possibility
of predator extinction from the ecosystem.

2. Elevated strength of cooperative hunting induces
different types of bistabilities

Figure 5(a) shows that for α < 0.7189 the system (1) pos-
sesses no biologically feasible interior equilibrium. A pair of
coexisting equilibria E∗

1 and E∗
2 emerge through a saddle-

node bifurcation when α crosses the threshold α = 0.7189.
However, strong predation pressure on prey due to elevated
cooperative intensity decreases prey density, which in turn
becomes detrimental to predators. The equilibrium position
E∗

2 is always unstable, whereas E∗
1 exchanges its stability and

produces a periodic phenomenon via a Hopf bifurcation at
α = 2.374. In the parameter window α ∈ (0.7189, 2.374), the
system experiences bistability between the coexisting steady
state with higher predator biomass and a predator-free state.
The population cycles develop rapidly until it experiences a
collision with the coexisting steady state with lower predator
density. Then the oscillations are suddenly wiped out via a
homoclinic bifurcation at α = 6.829. Therefore, the system

exhibits another type of bistability between periodic cy-
cles and the predator-free equilibrium for α ∈ (2.374, 6.829).
Thus, strong cooperation intensities hamper the stable coex-
istence of interacting populations. Strong hunting cooperation
decreases the domain of the basin of attraction of the coex-
istence equilibrium (figure is not shown). The hump-shaped
equilibrium curve supports that the beneficial impact of strong
cooperative hunting on predator population is overcompen-
sated by the decline in prey density.

3. Prey refuge size promotes sudden collapse
of coexistence scenario

Now we explore the bifurcation scenario and stability
patterns of the system when multiple coexisting equilibrium
states exist, considering variations in the prey refuge size m
[Fig. 5(b)]. The predator-free equilibrium E1 is unstable for
m < m∗ = 0.5979 and stable if m > m∗. For m < m∗, there
is a unique coexisting steady state, which is a local attractor.
At m = m∗, another coexisting state originates in the forward
route from E1. For m∗ < m < m̄, where m̄ is approximately
0.6961, there are two coexistence equilibria, but at m = m̄,
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FIG. 5. (a) Saddle-node and homoclinic bifurcations of the system (1) with respect to α for m = 0.65 and A = 0.15. (b) Backward and
saddle-node bifurcations with respect to m for A = 0.15 and α = 1.05. (c) The predator experiences catastrophic extinction with respect to k
(=k1 = k2) for α = 0.65, m = 0.62, and A = 0.15. The hysteresis loop is depicted by arrows.

they coalesce and disappear, and for m > m̄, no coexistence is
captured.

4. Increased fear of predation risk increases the likelihood of
predator extinction

Next we discuss a situation in which the ecological system
exhibits a pair of coexisting steady states in the absence of the
fear factor [Fig. 5(c)]. Numerical computations explore that
for k ∈ [0, 0.229], one interior equilibrium E∗

1 is stable and
another E∗

2 is unstable. In this parameter window, the solution
settles to either a predator-free state or the coexistence of both
populations depending upon initial densities. Notably, above
the threshold level k = 0.229, these two equilibria annihilate.
Therefore, a gradual increment in the fear level k may induce
sudden predator extinction in the system.

V. STOCHASTIC MODEL

Several stochastic population dynamic frameworks adopt
the assumption of temporally uncorrelated noise for math-
ematical simplicity. However, it is noteworthy that in real
ecological systems, environmental fluctuations tend to exhibit
positive autocorrelation [38]. This motivates us to model en-
vironmental stochasticity as an autocorrelated process. We
propose the stochastic model as

dX

dt
= ψ (X ) + Xξ (t ), (5)

where X = [N, P]T and ψ (X ) is the corresponding determin-
istic skeleton. The value of a colored noise random field at any
given location may be independent, but it exhibits correlations
with the values of that field at other locations. Here we address
the Gaussian stochastic process ξ that exhibits a temporal
autocorrelation characterized by a 1/ f β frequency spectrum.
The 1/ f β model characterizes perturbations with a memory
component. Under the framework of 1/ f β noise, the correla-
tion in the ξ values at two distinct time points is diminished
following a power-law pattern, signifying that the correlation
is proportional to a power of the time interval. As the redness
of noise β increases, the noise realizations exhibit greater
“smoothness,” indicating an escalating correlation within the
random field.

We term this formulation multiplicative noise because ξ (t )
is multiplied by a population density-dependent function (in
this case, X ). While alternative approaches, such as additive
noise [39], can be employed to represent stochasticity, the
more prevalent practice in ecological modeling is to incorpo-
rate environmental fluctuations by multiplying the noise term
by the state variable [40,41]. In this scenario, fluctuations
around low-density states are notably diminished, and when
the state reaches zero, the noise component will disappear.
Multiplicative noise accounts for perturbations that have a per
capita impact, such as random variations in survivorship or
fecundity.

A. Stochastic simulation

We perform stochastic simulations in MATLAB employing
the Euler-Maruyama method [42]. A time span of 20 000 units
is taken into account to encompass the overall configuration of
the stochastic counterpart. The step size of integration is set as
�t = 1. We increase the redness of noise to explore how the
system dynamics alters with lag-1 autocorrelation elevation.
We produce a stochastic signal with spectral exponent β uti-
lizing the algorithm outlined in [43]. Here β → 0 indicates
white noise while β > 0 captures redshifted (positively auto-
correlated) noise.

1. Time-series analysis

In the absence of noise or with white or pale red noise
(β ≈ 0) with low intensity, the system tends to visit the
coexisting attractor depending upon initial conditions and re-
mains in its vicinity (see Fig. 6). In the case of white noise,
an elevation in noise intensity drives the population densi-
ties to fluctuate in a wider range around the deterministic
steady state (0.8253,0.3849). With moderate noise intensity,
as we increase the redness of noise, the time series shows
an attractor-switching behavior between the coexisting and
predator-free states. Interestingly, the residence time at the
predator-free attractor is relatively short, and the populations
predominantly remain around their respective equilibrium
densities at the coexisting steady state for the majority of time.
High-intensity redshifted noise induces a similar dynamical
scenario. However, in this case, the residence time at the
boundary attractor increases and the system spends significant
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FIG. 6. Time evolutions of the stochastic system (5) for dif-
ferent noise intensities σ and colors β. The parameters are taken
from Table I except for β1 = 1.1, m = 0.68, A = 0.3528, and α =
1.05. Yellow and orange represent the prey and predator densities,
respectively.

time near the attractor (1.6,0). For high-enough intensity σ

with increased redness, the time evolutions initially fluctu-
ating around the deterministic coexisting state jump to the
predator-extinction state and reside there.

2. Transitions from changes in control parameters

To investigate the transitions resulting from variations in
additional food quantity and quality, we have conducted sim-
ulations by uniformly changing the control parameters β1 and
A over a span of 20 000 time units. To facilitate comparison,
we have included the deterministic bifurcation diagrams in the
same figure. The number of possible feasible interior equilib-
ria is one, two, or zero according to 0 < β1 < 1, 1 < β1 <

4.0702, or β1 > 4.0702, respectively. The system undergoes
a backward bifurcation at β1 = 1. The predator equilibrium
density decreases with increasing β1. Interestingly, predators
experience catastrophic eradication around a saddle-node bi-
furcation at β1 = 4.0702 and the prey population reaches its
carrying capacity.

Under environmental stochasticity, we observe critical
transitions by decreasing additional food quality over time
for a fixed intensity of white noise [Fig. 7(a)]. However, an
increase in intensity or redness of noise results in such a
transition far before the tipping point [Figs. 7(b) and 7(c)].
We document a noncatastrophic pattern of prey eradication
with an increase in additional food quantity [Figs. 7(d)–7(f)].

3. Confidence ellipse analysis: White noise case

In recent decades, extensive research has been conducted
on deterministic models featuring transitions induced by
noise [44,45]. Bashkirtseva et al. [46] introduced a novel

approach that utilizes the stochastic sensitivity function (SSF)
technique for constructing analytical descriptions of randomly
forced equilibria and cycles in discrete-time models. Multi-
stable systems demonstrate intricate dynamics characterized
by noise-induced hopping between attractors and their re-
spective basins of attraction [47]. Analyzing the sensitivity of
randomly forced oscillations is crucial for the investigation
of these transitions. Utilizing the SSF technique [48], we
construct confidence ellipses to characterize the phenomenon
of noise-induced state switching between two stochastic equi-
libria. Subsequently, we estimate the tipping threshold σT .

Define

F =
(

f11 f12

f21 f22

)
, G =

(
g11 0
0 g22

)
, S = GGT ,

where

fi j = ci j, g11 = N∗, g22 = P∗.

Let W be the stochastic sensitivity matrix

W =
(

w11 w12

w21 w22

)
,

which satisfies the equations

2 f11w11 + f12w12 + f12w21 = −g2
11,

f21w11 + ( f11 + f22)w12 + f12w22 = 0,

f21w11 + ( f11 + f22)w21 + f12w22 = 0,

f21w12 + f21w21 + 2 f22w22 = −g2
22.

Employing (A.3) in [49], the equation of confidence ellipse is
given by

〈(x − N∗, y − P∗)T ,W −1(x − N∗, y − P∗)T 〉

= 2σ 2 ln

(
1

1 − p

)
, (6)

where p represents the fiducial probability. At the attractor
E∗

1 = (0.9708, 0.3548), the stochastic sensitivity matrix and
its inverse are obtained as

W =
(

22.4813 −6.3349
−6.3349 4.0697

)
,

W −1 =
(

0.0792 0.1233
0.1233 0.4377

)
.

From (6), the equation of confidence ellipse at E∗
1 is given by

0.0792(x − 0.9708)2 + 0.2466(x − 0.9708)(y − 0.3548)

+ 0.4377(y − 0.3548)2 = 2σ 2 ln

(
1

1 − p

)
. (7)

Fixing the fiducial probability at p = 0.95, we calibrate dif-
ferent noise intensities σ = 0.025, 0.059, and 0.067. The
corresponding confidence ellipses are depicted in Fig. 8(a).
It is noteworthy that as the noise intensity increases, the con-
fidence ellipse expands and enters the attraction domain of
the predator-free equilibrium after crossing the separatrix. The
value of σ at which the confidence ellipse tangentially meets
the separatrix serves as an estimate for the threshold noise
marking the onset of noise-induced transitions. In our case, the
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FIG. 7. (a)–(c) Bifurcation-induced tipping driven by variation in additional food quality β1. (d)–(f) Critical transitions for varying
additional food quantity A. The control parameters are varied over the time window t ∈ [0, 20 000] for different combinations of σ and β.
Parameter values are the same as in Fig. 6.

tipping threshold is estimated as σ = σT = 0.059. Figure 8(b)
showcases the confidence ellipse with σ = 0.03, demonstrat-
ing that the stochastic model’s random states are distributed
around the associated deterministic coexistence equilibrium.
Furthermore, these states lie within the confidence ellipse with
probability 0.95.

4. Early warning signals

We have observed that when the quality of additional food
A deteriorates, i.e., if the predator takes longer to handle
additional food compared to the basal resource, the predator
population undergoes an abrupt collapse within the ecosystem
via a saddle-node bifurcation. Furthermore, with an increase

in additional food quantity β1 for predators, the prey density
drops and eventually vanishes. This noncatastrophic collapse
of prey population is characterized by the emergence of a
transcritical bifurcation. The propensity of the proposed eco-
logical model to exhibit early warning signals (EWSs) before
a shift varies significantly when transitions are driven by
alterations in the control parameters β1 and A. To achieve
stationary residuals, we apply Gaussian detrending with band-
width 5 to the time series prior to analysis. We compute the
variance and lag-1 autocorrelation with window size equal to
60% of the pretransition data. For both types of transitions,
we estimate the rise of EWSs utilizing Kendall’s τ . Prior
to the saddle-node bifurcation, both variance and autocorre-
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FIG. 8. (a) Separatrix (red dashed curve) of the basins of attraction of the equilibria E∗
1 (0.971, 0.3548) and E1(1.6, 0) and confidence

ellipses for different intensities σ of white noise (β1 = 0). (b) Random states (green dots) and confidence ellipse (brown curve) for σ = 0.03
and β1 = 0. The rest of the parameters are at the same levels as in Fig. 7(a) with β1 = 2.5.

lation consistently experience an upward trend (see Fig. 9).
However, in the case of the transcritical bifurcation, these
indicators do not follow the same pattern.

VI. RESULTS AND DISCUSSION

In our present investigation, we have taken into account
the impact of hunting cooperation among predators, which
induces a heightened fear of predation in the prey species.
Predator incited fear compels the prey to migrate temporarily
to a substandard-quality zone. Due to insufficient resources,
predators switch to additional food supplements to withstand
their extinction. In our mathematical analysis, we first ex-
amined the feasibility of possible equilibria in the ecological
system. Subsequently, we established the sufficient conditions
that guarantee the local stability of these steady states.

We investigated how different strengths of cooperative
hunting affect predator density, predator survival, and the
stability scenario of the ecological configuration. We ob-
served that when predators cooperate weakly, the captured
prey biomass is not sufficient for their survival. When the
predator cooperation strength increases, it is possible that
predator interference surpasses foraging facilitation, leading
to a hump-shaped relationship between the degree of coop-
eration and predator biomass. Ecologically, the hump-shaped
curve illustrates that a certain level of cooperation can enhance
foraging efficiency and consequently lead to a higher predator
population. However, increased predation pressure on prey
due to elevated cooperation intensity decreases prey density,
which becomes detrimental to predators. Recently, Biswas
and Mandal [9] studied a prey-predator model with infection
and revealed that the cooperation intensity can by itself induce
the phenomenon of bistability between the disease-free and
disease-dominated states. Here we observed the oscillatory
coexistence of interacting populations in intermediate ranges
of cooperation intensity. The elevated intensity may prevent
the abruptly increasing oscillations through the onset of a
homoclinic bifurcation. As a result, the system transitions to a
state of monostability and converges towards the predator-free
environment. Different types of bistability scenarios reflect

sensitivity of the proposed model to small perturbations. In-
terestingly, we found that the beneficial effect of a strong prey
refuge is overcompensated by the decrease in predator density.
Previous empirical literature documented that predator popu-
lation decreases continuously as a consequence of prey refuge
and eventually experiences complete eradication through a
transcritical bifurcation [21,29,50]. However, we observed
that with a high amount of prey refuge, due to a shortage of
basal resources, the predator population experiences an ex-
treme risk of catastrophic collapse. Sk et al. [51] investigated a
predator-prey system with additional food and concluded that
ample availability of additional food helps control population
fluctuations. In contrast, we obtained more complicated dy-
namical scenarios in terms of both additional food quantity
and quality. We observed the onset of twofold coexisting equi-
libria through a saddle-node bifurcation with varying quantity
of additional food. This type of bifurcation leads to a poten-
tial regime shift, whereby a minute alteration in additional
food quantity may result in an abrupt state transition from
a predator-free to a predator-dominated configuration or vice
versa. Notably, a huge amount of additional food for predators
is not conducive to the survival of basal prey. The quality of
additional food also determines the fate of predators. As the
quality of additional food continues to decrease, the predator
experiences a sudden collapse from the ecosystem. However,
the fear phenomenon affecting the prey’s reproductive success
and mortality causes a significant decline in prey biomass.
Scarcity of the focal resource drives the predator density to
a low level. This outcome agrees with that in [50]. If the addi-
tional food is available at a high concentration, due to predator
abundance, the impact of nonconsumptive risk becomes more
effective. Under these circumstances, the prey density drops
rapidly and eventually undergoes a sudden collapse.

We observed that the population densities exhibit a wider
range of fluctuations around the deterministic steady state due
to the influence of noise intensity σ . In the case of moder-
ate noise intensity, augmenting the redness of the noise β

reveals the occurrence of noise-induced stochastic switching
dynamics between the coexisting and predator-free states
within the region of bistability. As the intensity of the noise
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FIG. 9. Early warning signals for transitions of the stochastic model (5) with redshifted noise driven by changes in (a) additional food
quality β1 and (b) quantity A. The results are obtained using (a) t = 3700–15 700 from Fig. 7(b) (red segment) and (b) t = 8700–10 700 from
Fig. 7(e) (blue segment). We calculated variance and autocorrelation within rolling windows of 60% the size of the time-series segments.

increases further with increased redness, the time evolutions
initially characterized by fluctuations around the deterministic
coexisting state eventually transition towards the predator-
extinction state. We have employed a confidence ellipse
analysis technique to estimate the tipping threshold σT of the
white noise intensity. In a noisy environment, we observed
critical transitions by decreasing (increasing) additional food
quality (quantity) over time. However, an escalation in noise
intensity or redness triggers these transitions to occur well
before reaching the tipping point. In summary, generic early
warning indicators can successfully predict the imminent
catastrophic extinction of predators resulting from a low-
quality diet. However, these indicators fail to forecast the
noncatastrophic transitions that lead to the extinction of prey
species in the presence of abundant additional food for preda-
tors. Therefore, in environments enriched with additional food
sources, conservation management efforts may encounter
challenges in effectively preserving both the predators and
their basal resources simultaneously.

In the context of prey-predator systems, supplying ad-
ditional food to stabilize prey populations draws parallels
with interventions like vaccinations and monetary policies,
aimed to stabilize and prevent crises. External interventions
encompass feedback loops that amplify or dampen their im-
pacts, resulting in dynamic behaviors, such as economic
growth or reduced disease transmission. However, introducing
additional resources or interventions can yield unexpected
repercussions, akin to overpopulation of predators or alter-
ations in prey behavior. In both prey-predator and human
systems, resilience and adaptation are observed when addi-
tional resources are introduced, potentially leading to new
steady states or behaviors. For example, social safety nets help
individuals adapt to economic shocks. Understanding these
analogies can inform decision-making in various fields and
help mitigate unintended consequences when making inter-
ventions in complex systems.

Providing additional resources without ensuring their qual-
ity or proper management can lead to adverse outcomes,
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analogous to the predator becoming extinct in a low-quality
additional food scenario. For example, use of excessive
and substandard-quality resources (antibiotics) to combat in-
fections can possess negative consequences, impacting the
overall healthcare system. If low-quality subsidies are offered
without any proper strategy, it might not stimulate economic
growth as expected. This can lead to economic instability
and long-term negative effects on the economic system. This
emphasizes the importance of thoughtful planning, quality as-

surance, and strategic resource allocation in various domains
to achieve positive and sustainable outcomes.
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