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Optimal phase-based control of strongly perturbed limit cycle oscillators
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Phase reduction is a well-established technique for analysis and control of weakly perturbed limit cycle
oscillators. However, its accuracy is diminished in a strongly perturbed setting where information about the
amplitude dynamics must also be considered. In this paper, we consider phase-based control of general limit
cycle oscillators in both weakly and strongly perturbed regimes. For use at the strongly perturbed end of
the continuum, we propose a strategy for optimal phase control of general limit cycle oscillators that uses
an adaptive phase-amplitude reduced order model in conjunction with dynamic programming. This strategy
can accommodate large magnitude inputs at the expense of requiring additional dimensions in the reduced
order equations, thereby increasing the computational complexity. We apply this strategy to two biologically
motivated prototype problems and provide direct comparisons to two related phase-based control algorithms.
In situations where other commonly used strategies fail due to the application of large magnitude inputs, the
adaptive phase-amplitude reduction provides a viable reduced order model while still yielding a computationally
tractable control problem. These results highlight the need for discernment in reduced order model selection for
limit cycle oscillators to balance the trade-off between accuracy and dimensionality.
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I. INTRODUCTION

Periodic oscillations are commonly observed in a wide
array of applications spanning the physical, chemical, and
biological sciences [1]. Due to the sheer size and complex-
ity of many oscillatory systems, model order reduction is
often a necessary first step for mathematical analysis and
control design. Phase reduction [1–3] is a widely used tool for
model-order reduction of limit cycle oscillators, transforming
systems of the form

ẋ = F (x) + U (t ), (1)

where x ∈ RN is the system state, F describes the unper-
turbed dynamics, and U is an exogenous perturbation to a
one-dimensional system,

θ̇ = ω + ZT (θ )U (t ), (2)

where θ ∈ [0, 2π ) represents the oscillator’s phase, ω is the
unperturbed natural frequency, Z (θ ) is the phase response
curve that captures the response to external inputs, and T

denotes the transpose. Phase reduction greatly reduces the
dimension of the original system by viewing the dynamics
not in terms of the underlying state but rather in terms of the
timing of oscillations. This, in turn, often allows for a numer-
ically tractable formulation and solution of optimal control
problems [4–6] and an elegant characterization of emergent
behaviors in weakly coupled oscillator networks [7–10].

The phase reduction (2) implicitly assumes that the system
state is close to the underlying periodic orbit [3]. As such, it
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is only valid in the limit that U (t ) is small—large inputs that
drive the system far from the limit cycle will invalidate these
underlying assumptions. The largeness of U (t ) is considered
relative to the nonunity Floquet multipliers of the periodic or-
bit [11]. Particularly, when some of these Floquet multipliers
are near 1 (indicating slow convergence), the cumulative effect
of even small inputs can grow over time ultimately yielding
large deviations from the nominal limit cycle. In practice, the
effectiveness of a given control algorithm obtained from the
reduction (2) but applied to the full model (1) will begin to
degrade as the magnitude of inputs becomes larger [5,6,12].

Limitations of the standard phase reduction have prompted
the development of new strategies that can consider larger
magnitude inputs. Techniques that employ entrainment maps
[13,14] consider the dynamic in response to large, periodic
perturbations. Related techniques consider the effect of a
residual phase response curve [15,16] to account for a slow
decay to the periodic orbit that occurs over multiple cycles.
Other strategies consider the response to strong inputs in the
limit that they change sufficiently slowly [17,18] or rapidly
[19]. Noting that Z (θ ) from (2) is the gradient of the phase
with respect to the state evaluated on the periodic orbit, a
variety of strategies also consider the phase dynamics where
this gradient is approximated to high orders of accuracy in a
basis of amplitude coordinates [20–23], i.e., that capture the
dynamics in directions transverse to the limit cycle.

The use of amplitude coordinates is critical when consider-
ing large magnitude perturbations applied to phase oscillators.
The isostable coordinate system has recently been proposed
for this purpose. Isostable coordinates share a close con-
nection to Koopman operator theory and can be formally
defined as level sets of slowly decaying eigenfunctions of the
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Koopman operator [24,25] at all locations in the basin of
attraction of a periodic orbit. To linear orders of accuracy,
isostable coordinates give a sense of the distance from the
periodic orbit in a basis of Floquet eigenfunctions. By trun-
cating rapidly decaying isostable coordinates and retaining
those with slow decay, the standard phase reduction (2) can
be augmented with information about isostable coordinates
to arrive at a phase-isostable reduction [26]. To leading order
of accuracy in the basis of isostable coordinates, the equa-
tions are

θ̇ = ω + ZT (θ )U (t ),

ψ̇ j = κ jψ j + IT
j (θ )U (t ) (3)

for j = 1, . . . , β. Here ψ j represents the jth isostable co-
ordinate with associated Floquet exponent κ j and isostable
response curve IT

j (θ ). Here, only the β slowest decaying
isostable coordinates are retained to arrive at a reduced order
system. As compared to Eq. (2), the additional information
about the isostable coordinates provided by (3) can be used
to guarantee that the reduced order model will provide a
good approximation to the full order equations (1) provided
the magnitude of ψ1, . . . , ψβ remains small. This general
approach has been applied successfully to achieve faster en-
trainment [27] or more accurate phase control [28] than can
be obtained with knowledge of the phase dynamics alone.

The phase-amplitude reduction of the form (3) still re-
quires the state to remain close to the underlying limit cycle.
In practice, this often represents a significant limitation for
control applications. In many cases, the goal of achieving a
given control objective and keeping the isostable coordinates
small are in direct conflict, resulting in a control problem that
cannot be solved. More recently the notion of an adaptive
coordinate system has been proposed [29] that considers a
continuous family of limit cycles that result when an under-
lying set of parameters is changed. By adaptively selecting
the nominal attractor with the goal of keeping the associated
amplitude coordinates low, a very accurate reduced order
model can be obtained in regimes for which the standard
phase reduction from (2) and the phase-amplitude reduction
from (3) fail. However, effective strategies for formulating
and solving optimal control problems when using the adaptive
phase-amplitude reduction have yet to be investigated.

In this paper, we investigate a general optimal control
framework for phase-based control of limit cycle oscillators
in a strongly perturbed regime. This strategy considers the
adaptive phase-amplitude reduced order modeling approach
from Ref. [29] to accommodate large magnitude inputs. We
provide direct comparisons to related algorithms that consider
phase-only reduced order models of the form (2) and phase-
isostable models of the form (3). The organization of this
paper is as follows: Section II provides necessary background
on the phase-based reduced order modeling strategies consid-
ered in this paper. Section III describes the proposed optimal
control strategy for rapidly advancing or delaying the phase of
a limit cycle oscillator and provide comparisons to previously
developed strategies from Refs. [4,27,28]. Section IV applies
these control algorithms in two different numerical models:
the first considers a model for a population of circadian oscil-
lators and the second considers a model of coupled neurons.

As compared to previously proposed control strategies, the
adaptive phase-amplitude model requires the solution of a
higher dimensional optimal control problem, but in return can
be used to accurately yield larger magnitude shifts to the un-
perturbed period of oscillation. Section V provides concluding
remarks.

II. BACKGROUND

In this paper, we will consider general ordinary differential
equations of the form

ẋ = F (x, p0) + U (t ), (4)

where p0 ∈ RM is a collection of nominal parameters and x,
F , and U are defined in the same way as the terms from (1).
Suppose that for a fixed value of p0 and taking U (t ) = 0, (4)
exhibits a stable, T -periodic orbit xγ

p0 .

A. Phase and phase reduction

Let θ ∈ [0, 2π ) be a phase defined for any x ∈ xγ
p0 and

scaled so dθ/dt = ω = 2π/T for all points on the periodic
orbit when U (t ) = 0. Isochrons can be used to define phase
for all states in the basin of attraction of the limit cycle [1,30].
Letting θ1 denote a phase that corresponds to w(0) ∈ xγ

p0 , the
θ1 isochron can be defined as the set of all v(0) such that

lim
t→∞ ‖w(t ) − v(t )‖ = 0, (5)

where ‖ · ‖ denotes any vector norm. As seen from the
definition in (5), the phase, as defined by isochrons, gives
information about the asymptotic behavior. Provided that U (t )
is sufficiently small in (4), so the state stays close to the limit
cycle, phase reduction can be used to analyze the behavior of
(4) in the weakly perturbed limit according to

θ̇ = ω(p0) + ZT (θ, p0)U (t ), (6)

where Z (θ, p0) ∈ RN is the gradient of the phase with respect
to the state. It can be useful to work in a phase-reduced coor-
dinate framework because of the reduction in dimensionality
from N to one.

B. Reduction framework based on phase
and isostable coordinates

Although phase reduction is an effective approach for
reducing the complexity of weakly perturbed oscillatory sys-
tems, it often fails when large inputs are required. In these
cases, it can be useful to augment the phase dynamics with
amplitude coordinates that capture the dynamics in directions
transverse to the limit cycle. Floquet theory [31] can be used
to achieve this goal. Defining 	x = x − xγ

p0 (θ ) to a linear
approximation,

	ẋ = DF	x, (7)

where DF denotes the Jacobian matrix evaluated at xγ
p0 (θ ).

Noting that DF is T periodic, let 
 be the monodromy ma-
trix, i.e., with the property that 	x(T ) = 
	x(0). Provided

 is diagonalizable, solutions near the periodic orbit can be
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represented according to [32]

x − xγ
p0

(θ ) =
N−1∑
j=1

ψ jg
j (θ, p0) + O

(
ψ2

1

) + ... + O
(
ψ2

N−1

)
,

(8)

where, ψ j ∈ C is an isostable coordinate (identical to Flo-
quet coordinates to a linear approximation) and gj (θ ) ∈ CN

is a corresponding Floquet eigenfunction associated with the
periodic orbit xγ

p0 (θ ). Note that to linear orders of accuracy,
isostable coordinates are identical to Floquet coordinates.
Also, the Floquet eigenfunction gN (θ, p0) has been absorbed
by the phase coordinate giving N − 1 total isostable coordi-
nates. To linear orders of accuracy, isostable coordinates can
be used to augment the phase dynamics. To linear order, the
phase-isostable reduction is

θ̇ = ω(p0) + ZT (θ, p0)U (t ),

ψ̇ j = κ j (p0)ψ j + IT
j (θ, p0)U (t ) (9)

for j = 1, . . . , β. Above, I j (θ, p0) ∈ CN is the gradient of
ψ j with respect to the state evaluated on the periodic or-
bit and κ j ∈ C is a corresponding Floquet exponent. Note
that since xγ

p0 is assumed to be stable, Real(κ j ) < 0 for
all j. Additionally, for j = β + 1, . . . , N − 1, it is assumed
that |Real(κ j )| = O(1/ε), where 0 � ε < 1, so the corre-
sponding value of ψ j = O(ε), allowing it to be truncated
[29]. Intuitively, for any isostable coordinate corresponding
to a large magnitude Floquet exponent, the influence of any
perturbations will decay rapidly. As a matter of practical
implementation, any isostable coordinate ψ j can typically be
truncated for which | exp(κ jT )| < 0.2, i.e., so |ψ j (t + T )| <

0.2|ψk (t )| when taking U (t ) = 0. To first-order accuracy, the
phase dynamics are decoupled from the isostable coordinate
dynamics. Expansions taken to higher orders of accuracy in
the isostable coordinates can be computed to give more ac-
curate results. For instance, to second-order accuracy in the
expansion of isostable coordinates, the dynamics are [22,32]

θ̇ = ω(p0) + ZT (θ, p0)U (t ) +
β∑

k=1

ψkBkT
(θ, p0)U (t ),

ψ̇ j = κ j (p0)ψ j + IT
j (θ, p0)U (t ) +

β∑
k=1

ψkC
k
j

T
(θ, p0)U (t ),

(10)

where Bk (θ, p0) and Ck
j (θ, p0) provide second-order correc-

tions for the phase and isostable coordinate dynamics. The
interested reader is directed to both Refs. [28,33] for a more
complete description of phase-isostable reduction and other
phase reduction strategies.

C. Adaptive phase-isostable reduction

When large magnitude inputs are applied that drive the
state of (4) far from the underlying periodic orbit xγ

p0 (θ ),
phase-only (5) and phase-isostable reduction (9) generally
fail. For control applications that require large magnitude
inputs, the adaptive phase-isostable strategy [29] can be a
viable alternative. Instead of considering a reduced order

model with respect to a single periodic orbit xγ
p0 , the adaptive

phase-isostable approach considers a family of periodic orbits
that emerge for different constant parameter sets. To this end,
suppose that for any p ∈ P ⊆ RM , ẋ = F (x, p) admits a stable
periodic orbit xγ

p . Phase and isostable coordinates can be de-
fined for each orbit to yield an extended phase θ (x, p) and
extended isostable coordinates ψ1(x, p), . . . , ψβ (x, p) that
correspond to the state on the p-limit cycle. As discussed in
Ref. [29], the phase on each limit cycle can be disambiguated
by defining a level set to correspond to the crossing of some
Poincaré section. To proceed, as described in Ref. [29], we
can consider a slightly modified version of Eq. (4)

ẋ = F (x, p) + Ue(x, t, p), (11)

where

Ue(x, t, p) = U (t ) + F (x, p0) − F (x, p). (12)

Equation (11) above is identical to (4), but can be used to
consider the system dynamics relative to any periodic orbit xγ

p

for p ∈ P. Particularly, if p can be chosen dynamically to keep
the associated isostable coordinates small, the reduced order
model can be used to accurately characterize the response to
large magnitude inputs. Allowing p to be nonstatic, transfor-
mation to phase and isostable coordinates gives

dθ

dt
= ∂θ

∂x
· dx

dt
+ ∂θ

∂ p
· d p

dt
,

dψ j

dt
= ∂ψ j

∂x
· dx

dt
+ ∂ψ j

∂ p
· d p

dt
(13)

for j = 1, . . . , β. Similar to the formulation from (8), it is
assumed that minp, j>β (|Real(κ j (p))|) = O(1/ε) so these N −
1 − β rapidly decaying isostable coordinates can be truncated
[29]. Note that above, for instance, the notation ∂

∂x denotes
the partial derivative with respect to x and d

dt denotes the
total derivative with respect to time. When the isostable co-
ordinates are small and p is held constant, the phase and
isostable dynamics were already given by Eq. (9), so ∂θ

∂x · dx
dt =

ω(p) + ZT (θ, p)Ue and ∂ψ j

∂x · dx
dt = κ j (p)ψ j + IT

j (θ, p)Ue. As
discussed in Ref. [29], the remaining terms are given by

D(θ, p) ≡ ∂θ

∂ p
= −Z (θ, p) · ∂xγ

p

∂ p1
· · · − Z (θ, p) · ∂xγ

p

∂ pM

T

,

Qj (θ, p) ≡ ∂ψ j

∂ p
= −I j (θ, p) · ∂xγ

p

∂ p1
. . . − I j (θ, p) · ∂xγ

p

∂ pM

T

,

(14)

where ∂xγ
p /∂ pi|θ0 ≡ lima→0(xγ

p+eia(θ0) − xγ
p (θ0))/a, where ei

is the ith component of the standard unit basis (i.e., the change
in the stable periodic orbit in response to a change in the
parameter pi). The adaptive phase-isostable reduction is ob-
tained by substituting (14) into (13) together with the phase
and isostable dynamics from (9).

θ̇ = ω(p) + Z (θ, p) · Ue(x, t, p) + D(θ, p) · ṗ,

ψ̇ j = κ j (p)ψ j + I j (θ, p) · Ue(x, t, p) + Qj (θ, p) · ṗ,

ṗ = Gp(p, θ, ψ1, . . . , ψβ ), (15)
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where j = 1, . . . , β and the goal of the function Gp is to
actively select p (and consequently ṗ) in a way that minimizes
the isostable coordinates. Note that higher accuracy represen-
tations can be used for ∂θ

∂x · dx
dt and ∂ψ j

∂x · dx
dt , for instance, using

Eq. (10) instead of (9), ultimately yielding a slightly different
form for (15).

As a matter of practical implementation, there is a large
degree of flexibility in the choice of the adaptive parameter
p. In control applications, it is often useful to choose p to be
similar to the applied input, however, this is not an absolute
requirement. The dynamics of p in Eq. (15) as governed by
Gp can be chosen freely with the requirement that ψ1, . . . , ψβ

remain small at all times. Reference [29] discusses some
heuristics for choosing Gp that are valid in specific circum-
stances, but there is no general way of accomplishing this
task. In this paper, we consider strategies for determining
Gp through the formulation and solution of an optimal con-
trol problem. Note that because the reductions (9) and (10)
are similar to adaptive phase-isostable reduction but do not
consider the nonstatic parameter set, they will be referred
to as nonadaptive phase-isostable reduced order equations in
this paper.

III. OPTIMAL PHASE CONTROL WITH DIFFERENT
REDUCED ORDER MODELS

In this paper, we are interested in general phase-based
control of limit cycles in response to strong inputs. To this
end, we consider a prototype problem of modifying the period
of a limit cycle oscillator of the form (4) using an exter-
nal input U (t ). Specifically, we consider an initial condition
x0 ∈ xγ

p0 with initial phase θ (x0) = 0 and seek a minimum
energy input U (t ) that yields a final phase θ = 2π at time
t = T1 (i.e., so the oscillator completes one full oscillation
in the interval t ∈ [0, T1]). To simplify the problem, we
assume that

U (t ) = hu(t ), (16)

where h ∈ RN so U (t ) is a rank-1 input. Also, for simplicity
of exposition, when considering the adaptive phase-isostable
reduction we let p ∈ R and note that it would be straightfor-
ward to consider more parameters in the problem formulation.

We formulate an optimal control problem in discrete time
using a dynamic programming approach [34,35] when using
either the phase-only reduced order equations (6), nonadap-
tive phase-isostable reduced order equations (9), and adaptive
phase-isostable reduced order equations (15) to inform the
phase dynamics, mapping from one state to the next using a
forward Euler scheme with time step 	t = T1/η, where η is
the total number of time steps considered in the optimization.
We consider a control space U ∈ [umin, umax]. Also, for the
adaptive reduction, we consider an adaptive parameter space
P ∈ [pmin, pmax] which sets the range of the adaptive parame-
ters. As a brief technical note, we did consider other strategies
such as calculus of variations and Hamilton-Jacobi-Bellman
approaches [35] for solution of this control problem in con-
tinuous time. Ultimately, these continuous time approaches
were unsuccessful due to the relatively high dimension of
the resulting control problem when considering the adaptive
phase-isostable reduction.

A. Problem formulation when using the adaptive
phase-isostable reduction

Towards a description of the optimization problem when
using the adaptive phase-isostable reduction (15), we consider
the following difference equation:

θk+1 = [ω(pk ) + Z (θk, pk ) · Ue(θk, pk, uk )

+ D(θk, pk )νk]	t + θk,

ψ j,k+1 = [κ j (pk )ψ j,k + I j (θk, pk ) · Ue(θk, pk, uk )

+ Qj (θk, pk )νk]	t + ψ j,k, j = 1, . . . , β,

pk+1 = pk + νk	t, (17)

where k is the time step, uk ∈ U , and νk ∈ R which controls
the update on the adaptive parameter and is constrained so
pk+1 ∈ P . Note that in the above formulation, we assume that
ψ1, . . . , ψβ is small so the state x ≈ xγ

pk (θ ), allowing Ue to
be written as a function of u, θ , and p. Also, while Eq. (17)
considers accuracy of the phase and isostable coordinate to
first order in the expansion of isostable coordinates, higher
order terms can also be added, e.g., using (10) instead of (9).

Recall that the goal is to identify an energy efficient input
that causes the oscillator to complete one full oscillation on
the interval t ∈ [0, T1]. Towards this goal, letting θ1 = ψ1,1 =
· · · = ψβ,1 = 0 and p1 = p0 (corresponding to an initial con-
dition on the xγ

p0 limit cycle), we seek a sequence uk and νk for
k = 0, . . . , η − 1 that minimizes the cost function

J1
(
(uk )η−1

k=0, (νk )η−1
k=0

) =
η−1∑
k=0

u2
k +

η∑
k=0

β∑
j=1

α1, jψ
2
j,k

+ α2

η∑
k=0

fk (θk ), (18)

where fk (θ ) is a state-based penalty used to ensure that the
phase reaches the prescribed target, and α1,1, . . . , α1,β and
α2 weight the relative importance of minimizing the overall
energy of the input, achieving the control objective, and min-
imizing the value of the isostable coordinates– - recall that
keeping the isostable coordinates small is necessary to ensure
that the adaptive phase-isostable reduction (15) provides an
accurate representation of the full model dynamics (4). It
is possible to take fk (θk ) = 0 for k = 0, . . . , η − 1 to only
consider the terminal value of θ for the phase based penalty,
however, we allow for additional freedom in this state-based
penalty to consider the intermediate values.

B. Problem formulation when using the nonadaptive
phase-isostable reduction

When using the nonadaptive phase-isostable reduced order
equation (9), the problem formulation is similar to the one
given in Sec. III A, except that there is no adaptive parameter.
We consider the difference equation

θk+1 = [ω(p0) + Z (θk, p0) · huk]	t + θk,

ψ j,k+1 = [κ j (p0)ψ j,k + I j (θk, p0) · huk]	t + ψ j,k,

j = 1, . . . , β, (19)
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where uk ∈ U . Letting θ1 = ψ1,1 = · · · = ψβ,1 = 0 (corre-
sponding to an initial condition on the xγ

p0 limit cycle), we
seek a sequence uk for k = 0, . . . , η − 1 that minimizes the
cost function:

J2
(
(uk )η−1

k=0

) =
η−1∑
k=0

u2
k +

η∑
k=0

β∑
j=1

α1, jψ
2
j,k + α2

η∑
k=0

fk (θk ).

(20)

Compared to the cost function (18), Eq. (20) does not con-
sider an adaptive parameter. In this case, the dynamics (19)
are simpler owing to the lower dimension, but there is less
control over the isostable coordinate dynamics. This problem
formulation can be viewed as a discrete time version of the
control strategy considered in Ref. [28].

C. Problem formulation when using the phase-only reduction

The optimal control formulation becomes substantially
simpler when using phase-only reduction (6) as compared to
the formulations from Secs. III A or III B. Here, the relevant
difference equation is

θk+1 = [ω(p0) + Z (θk, p0) · huk]	t + θk, (21)

where uk ∈ U . Letting θ1 = 0, we seek a sequence uk for k =
0, . . . , η − 1 that minimizes

J3
(
(uk )η−1

k=0

) =
η−1∑
k=0

u2
k + α2

η∑
k=0

fk (θk ). (22)

Without isostable coordinates, the cost function (22) only
considers the trade-off between the phase-based penalty and
the overall energy consumption. This problem formulation
can be viewed as a discrete time version of the control strategy
considered in [4].

D. Finding solutions of the optimal control problems

Optimal solutions of the cost functions from (18), (20),
and (22) can be obtained computationally using the principle
of optimality. Stated succinctly in Ref. [34], the principle of
optimality states: “An optimal policy has the property that
whatever the initial state and initial decisions are, the remain-
ing decisions must constitute an optimal policy with regard
to the state resulting from the first decision.” This general
principle allows for the computation of an optimal solution
using a dynamic programming approach [34,35], dividing the
larger problem into a smaller set of nested subproblems as de-
scribed here. For instance, for the problem using the adaptive
phase-isostable reduction (18), the update equations (17) can
be written in shorthand notation according to

χk+1 = G(χk, uk, νk ), (23)

where k = 0, . . . , η − 1, where χk = [θk, ψ1,k, . . . , ψβ,k,

pk]T is the state of the reduced order system and G is defined
appropriately. Considering the cost function (18), one can also
define a cost-to-go function:

J∗
1,η−y(χη−y) =

⎧⎪⎪⎨
⎪⎪⎩

min
uk ,νk

η−y�k�η−1

J1
(
(uk )η−1

k=η−y, (νk )η−1
k=η−y

)
, if y > 0

∑β

j=1 α1, jψ
2
j,η + α2 fη(θη ), if y = 0.

(24)

The cost-to-go function, which is a function of the state χη−y, is the remaining cost when applying an optimal series of inputs, uk

and adaptive parameter updates, νk , over the final y time steps. Leveraging Bellman’s principle of optimality [34], the cost-to-go
function can be computed backwards in time according to

J∗
1,η−y(χη−y) = min

uη−y⊂U
νη−y | pη−y+1⊂P

⎛
⎝u2

η−y +
β∑

j=1

α1, jψ
2
j,η−y + α2 fη−y(θη−1) + J∗

η−y+1(χη−y+1)

⎞
⎠. (25)

With knowledge of the cost-to-go function, the optimal inputs and parameter updates are given by

(u∗
k , ν

∗
k ) = argmin

uk ⊂ U
νk | pη−y+1 ⊂ P

(
u2

k +
β∑

j=1

α1, jψ
2
j,k + α2 fk (θk ) + J∗

1,k+1(χk+1)

)
, (26)

where χk+1 is obtained according to the update rule (23). The
optimal inputs u∗

k and ν∗
k can be computed according to (26)

at all times k = 0, . . . , η − 1 as a function of χk . Subsequent
interpolation allows for the application of these inputs in the
original differential equations.

The formulation of the cost functions in (18), (20), and (22)
consider the control space U and the parameter update space
P on a continuous domain. In practice, it is computationally
infeasible to find the minimizer of (25) over a continuous set
of inputs and parameter updates. Alternatively, computation

of the cost-to-go function in (25) can be performed by
discretizing state space as well as the space of inputs and
parameter updates and finding the minimizers un−y and νn−y

over the resulting finite set of possibilities. Following this
approach, solutions of the update rule (23) will generally
not fall directly on a gridpoint necessitating interpolation at
each step. Minimization of the cost functions J2 and J3, i.e.,
when using the nonadaptive phase-isostable reduced-order
equations and the phase-only reduced-order equations can
be performed using a similar strategy. When considering the
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nonadaptive phase-isostable reduced-order equations there
is no need to consider an adaptive parameter as part of the
state. Similarly, the phase-only equations do not require
an adaptive parameter or an isostable coordinate. This
reduces the dimension of the problem which reduces the
computational burden. However, the simpler reduced-order
models do not always provide a good representation of the
underlying system dynamics. These points are illustrated
further in example problems considered in the next section.

IV. RESULTS

We apply the optimal control frameworks from Sec. III
in two different numerical applications. For both models, the
limit cycles are calculated using the interpolation with re-
spect to p. For the first, we consider the problem of speeding
up recovery from circadian misalignment caused by rapid
travel through multiple time zones. For the second, we con-
sider phase-based control of two strongly coupled neural
oscillators.

A. Application to a circadian model in the context of a jet lag
mitigation strategy

In mammals, the suprachiasmatic nucleus (SCN) is the
master pacemaker for keeping circadian time. The SCN is
comprised of a large population of coupled neurons [36,37]
that maintain daily rhythms relative to a 24-hour light-dark
cycle. Jet lag is caused by a mismatch between the envi-
ronmental and circadian time [38] making the problem of
rapidly shifting the phase of the circadian system (27) relevant
in the context of jet-lag mitigation strategies. The suggested
control approach hastens recovery from circadian misalign-
ment by appropriately shifting the phase to account for travel
across time zones. We investigate the adaptive phase-isostable
reduction approach combined with a dynamic programming
strategy to yield inputs that appropriately shift the phase. For
small and intermediate inputs, both phase-only and phase-
amplitude-based methods yield viable solutions. However,
when it is necessary to apply large magnitude inputs, only the
adaptive phase-amplitude strategy gives viable solutions.

Here we consider a simple model for N = 10 circadian
oscillators originally proposed in Ref. [39]:

ȧi = h1
Kn

1

Kn
1 + cn

i

− h2
ai

K2 + ai

+ hc
KF (t )

Kc + KF (t )
+ SiL(t ) + p,

ḃi = h3ai − h4
bi

K4 + bi
,

ċi = h5bi − h6
ci

K6 + ci
,

ḋi = h7ai − h8
di

K8 + di
. (27)

for i = 1, . . . , N . Above, the concentrations of the mRNA
clock gene, its associated protein, and the nuclear form
of the protein are represented by the variables ai, bi, and ci,
respectively, for cell i, di is a neurotransmitter that controls the

mean-field coupling F (t ), where F (t ) = (1/N )
∑N

j=1 di(t ),
and Si is the sensitivity to light where Si = 1 + (i − 1)/45,
and L(t ) is an external light input. Constants are taken
as n = 7, h1 = 1.05, h2 = 0.525, hc = 0.2, h3 = 0.7, h4 =
0.35, h5 = 0.7, h6 = 0.35, h7 = 0.35, h8 = 1, K1 = 1, K2 =
1, KC = 1, K = 0.5, K4 = 1, K6 = 1, K8 = 1. Here, p is
the adaptive parameter when considering the adaptive
phase-isostable reduction strategy which yields stable limit
cycles for p ∈ [−0.01, 0.019] when taking L(t ) = 0. When
L(t ) = p = 0, the period of the population oscillation
is T = 24.8 hours. For the phase-only and nonadaptive
phase-isostable reductions, p is taken to be 0. The collective
oscillation exhibited by (27) has a total of 40 state variables.
Parameters of (27) are identical to those from Fig. 1 of
Ref. [39] except for n, h1, h2, and hc which are modified made
so that the period of the population oscillation when p = 0 is
close to 24 h.

Using techniques described in Ref. [22], we numerically
compute the necessary terms of the phase-only, nonadaptive
phase-isostable, and adaptive phase-isostable reduced order
equations. For each limit cycle parameterized by the constant
value of p, θ (x, p) = 0 corresponds to the moment that a1

reaches its maximum value. As discussed in Ref. [40], due to
symmetries that arise in (27), only three isostable coordinates
are required to accurately capture the amplitude dynamics.
The phase dynamics are taken to second-order accuracy in the
expansion in isostable coordinates while the isostable coordi-
nate dynamics are taken to first order accuracy. For instance,
when considering the adaptive phase-isostable reduced order
equations, the dynamics are

θ̇ = ω(p) + ZT (θ, p)Ue(t, p)

+
3∑

k=1

ψkBkT
(θ, p)Ue(t, p) + D(θ, p) ṗ,

ψ̇ j = κ j (p)ψ j + IT
j (θ, p)U (θ, p) + Qj (θ, p) ṗ,

j = 1, 2, 3, (28)

where

Ue = [(S1L(t ) − p) 0 0 0 (S2L(t ) − p) . . .

(SN L(t ) − p) 0 0 0]T . (29)

Note that the required terms of (28) are computed for a finite
set of p-limit cycles so intermediate values can be obtained
via interpolation. For the reduced order model (28), the θ

coordinate corresponds to the phase of the limit cycle of the
population oscillation, ψ1 corresponds a mode associated with
a spreading of the phases, and ψ2 and ψ3 are modes associated
with a spreading of the oscillation amplitudes. Note that in
Eq. (28), the second-order terms for the isostable coordinate
dynamics do not improve the overall match between the full
and reduced-order models and are simply truncated from the
reduction. Equations (28) and (29) are used to inform the
dynamics of the difference equation of the form (17) obtained
using the forward Euler method with a time step of 	t = 1 h.
We solve the associated optimization problem that minimizes
the cost function (18) for different choices of target value, T1
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FIG. 1. When taking T1 = 35 hours, (a) shows three optimal
inputs obtained using three different representations for the reduced
order dynamics. These inputs are applied to the full order models
(27) in (b)–(d). Solid black lines show outputs from the full model
while dashed lines show the predicted output from the relevant
reduced order model. The output from the full model is substan-
tially different from the output of the phase-only and nonadaptive
phase-isostable reductions, ultimately yielding an input that does not
achieve the control objective. The predictions between the full order
model and the adaptive phase-isostable reduction are much closer;
as such, the resulting optimal input does satisfy the control objective
when applied to the full-order model.

subject to the constraints

−0.05 � uk � 0.05,

−0.01 � pk � 0.019,

−0.001 � νk � 0.001. (30)

In (30), choosing an appropriately tight window on the fea-
sible values of uk , pk , and νk allows for a sufficiently fine
discretization while limiting the computational burden. It is
necessary to use different scaling factors α1,1, . . . , α1,β and α2

for each choice of T1. For instance, when T1 = 35 hours, the
values α1,1 = 2 × 104, α1,2 = 100, α1,3 = 100, and α2 = 50
are used. These scaling factors are chosen through trial and
error so the control problem has a viable solution. With in-
creasing T1, we use increasing values of α1,1 with α1,2 and
α1,3 remaining constant. We take

fk (θk ) = 1 − exp ( − 0.5(θk − 2π )2) (31)

as the state-based penalty.
Optimal inputs are also obtained using the nonadaptive

phase-isostable and phase-only reductions using the strat-
egy described in Secs. III B and III C, respectively. For this
optimization, we consider the same constraint on the in-
put from Eq. (30); additionally phase-only and nonadaptive
phase-isostable reductions from (6) and (9), respectively, are
computed for the limit cycle that results when taking L0 = 0.

Figure 1 shows results when considering the control prob-
lem taking T1 = 35 hours, i.e., so the period is increased

FIG. 2. (a)–(e) State variables associated with the optimal so-
lutions obtained with the adaptive and nonadaptive phase-isostable
reductions when T1 = 35 hours. While both reduced-order models
satisfy θ (T1) = 2π , the ψ1 coordinate when using the nonadaptive
phase-isostable reduction is relatively large, degrading the accuracy
of the reduced-order model and ultimately explaining the mismatch
between the full-order and reduced-order models in (f). By contrast,
the outputs from the full and adaptive phase-isostable reduced-
order models in (g) are nearly identical and both satisfy the control
objective.

by about 10 h. Figure 1(a) shows three different optimal
inputs obtained from minimizing the three different cost func-
tions (18), (20), and (22) that result when using the adaptive
phase-isostable, nonadaptive phase-isostable, and phase-only
representations for the reduce order dynamics. Note that while
these inputs are substantially different, they all satisfy θ (T1) =
2π for their respective difference equations. Their efficacy
when applied to the full model (27) is not the same, however,
as shown from the black traces Figs. 1(b)– 1(d). Both inputs
obtained from phase-only and nonadaptive phase-isostable
reduction yield periods that are less than the target. The input
obtained using the adaptive phase-isostable reduction yields
an input that achieves the intended goal.

Considering the optimal control inputs that were shown in
Fig. 1, Figs. 2(a)–2(e) show the value of the state variables
associated with the optimal solution obtained when consid-
ering the adaptive phase-isostable reduction (blue lines) and
the nonadaptive phase-isostable reduction (green lines). As
seen in Fig. 2(a), both solutions reach θ = 2π at t = 35
hours. While both of these methods penalize against large
magnitude isostable coordinates, maxt (|ψ1|, |ψ2|, |ψ3|) =
1.3 for the nonadaptive phase-isostable approach while
maxt (|ψ1|, |ψ2|, |ψ3|) = 0.6 when using the adaptive phase-
isostable reduction approach. The difference in the magnitude
of the isostable coordinates explains the difference in the
effectiveness of the resulting control input when it is applied
to the full model equations (27), shown once again in panels
(f) and (g) for reference.

Figure 3 collects results for different values of T1. Here,
we define Ta to be the actual time required to complete a
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FIG. 3. Optimal inputs for various choices of T1 are obtained
by solving cost functions (18), (20), and (22) and applied to the
full-order model (27). Each dot represents the results for a single
input, Ta is the actual oscillation period when the resulting input is
applied to the full model. If there is perfect agreement between the
full and reduced order models, the dot will fall on the dashed red
identity line, which is shown for reference. As the difference be-
tween T1 and the unperturbed period T = 24.8 h begins to increase,
larger magnitude inputs are required necessitating the use of more
accurate methods to accurately handle the amplitude dynamics. The
nonadaptive phase-isostable reduction method generally outperforms
the phase-only reduction, however, the adaptive phase-isostable re-
duction is superior to both, especially for larger values of T1.

full oscillation when the input obtained taking the target T1

is applied to the full order model (27). Each dot in Fig. 3
represents the result of a single trial—if there is a perfect
match between the full-order and reduced-order models,
the dot will fall on the dashed red identity line. Mismatch
between the reduced- and full-order models will degrade the
efficacy of the resulting control input. We find that when using
the adaptive phase-isostable reduction to solve the control
problem, the resulting optimal input achieves the desired
oscillation time for T1 up to 35 h. After this point, there is
a slight degradation. By contrast, efficacy of the optimal
inputs obtained using the phase-only and nonadaptive phase-
isostable reduced-order model begin to degrade much earlier.

B. Application to a model of strongly coupled neurons

Here, we consider a prototype problem of phase-based
control of two strongly coupled neural oscillators. The model
equations are taken from Ref. [41],

Cmv̇ j = −IL(v j ) − INa(v j, h j ) − IK (v j, h j ) − IT (v j, r j )

+ Ib + a(vi − v j ) + j

2
u(t ) + p,

ḣ j = h∞ − h

τh
,

ṙ j = r∞ − r

τr
, (32)

where j = 1, 2 and i = 2, 1. Here v j is the transmembrane
voltage of neuron j, h j and r j are associated gating variables,
IL, INa, IK , and IT are ionic currents, Ib = 8μA/μF is
a constant baseline current, u(t ) is an external current,
and Cm = 1 μF/cm2 is the membrane capacitance.
Here, the influence of u(t ) is reduced by a factor 2 for
neuron 1. Electronic coupling is added to the voltage
equation [42], where a = 2 sets the coupling strength.
Auxiliary functions and constants are given below:
h∞ = 1/(1 + exp((v + 41)/4)), r∞ = 1/(1 + exp((v + 84)/
4)), αh = 0.128 exp(−(v + 46)/18), βh = 4/(1 + exp(−(v
+ 23)/5)), τh = 1/(αh + βh), τr = (28 + exp(−(v + 25)/
10.5)), m∞ = 1/(1 + exp(−(v + 37)/7)), p∞ = 1/(1 + exp
(−(v + 60)/6.2)), IL = gL(v − eL ), INa = gNa(m3

∞)h(v − e
Na), IK = gK ((0.75(1 − h))4)(v − eK ), IT = gT (p2

∞)r(v −
eT ), gL = 0.05 mS/m2, eL = −70 mV, gNa = 3 mS/m2,
eNa = 50 mV, gK = 5 mS/m2, eK = −90 mV, gT =
5 mS/m2, eT = 0 mV.

When evaluating the adaptive phase-isostable reduction
technique, p is taken as the adaptive parameter yielding stable
limit cycles for p ∈ [−9.3, 8.1]μA/μF when u(t ) = 0. When
u(t ) = p = 0, the aggregate oscillation has a period of T =
6.56 ms. p is taken to be 0 for phase-only and nonadaptive
phase-isostable reductions. For each limit cycle parameter-
ized by a constant value of p, θ (x, p) = 0 corresponds to the
point at which v1 reaches its maximum value. We numerically
evaluate the required terms of the phase-only, nonadaptive
phase-isostable, and adaptive phase-isostable reduced order
equations using approaches described in [22]. For example,
while considering the adaptive phase-isostable reduced order
equations, the dynamics are

θ̇ = ω(p) + ZT (θ, p)Ue(t, p) + D(θ, p) ṗ,

ψ̇ j = κ j (p)ψ j + IT
j (θ, p)Ue(t, p) + Qj (θ, p) ṗ,

j = 1, 2, 3, (33)

where

Ue = [
(u(t )/2 − p) 0 0 (u(t ) − p) 0 0

]T
. (34)

Equations (33) and (34) are used to inform the dynamics of
the difference equation of the form (17) obtained using the
forward Euler method with a time step of 	t = 0.5 ms. We
solve the optimization problem that minimizes the cost func-
tion (18) for various target values, T1 subject to constraints

− 11 � uk � 11,

−9.3 � pk � 8.1,

−1.1 � νk � 1.1.

(35)

In (35), choosing an appropriately tight window on the fea-
sible values of uk , pk and νk allows for a sufficiently fine
discretization while limiting the computational burden.

For this example, we consider only an endpoint cost for the
state-based penalty:

fk (θk ) =
{

0, if k = 0
1 − exp(−0.5(θk − 2π )2), if k = η.

(36)

For each T1, distinct scaling factors α1,1, . . . , α1,β and α2

are used. For example, when T1 = 7.5 ms, the values α1,1 =
1, α1,2 = 0.01, α1,3 = 10, and α2 = 8 × 107 are considered.
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FIG. 4. When taking T1 = 7.5 ms, (a) shows three optimal in-
puts obtained using three different representations for the reduced
order dynamics. These inputs are applied to the full order models
(32) in (b-d). Solid lines show outputs from the full model while
dashed lines show the output predicted by the relevant reduced order
model. The output from the full order model is substantially different
from the output of the phase-only and nonadaptive phase-isostable
reductions, ultimately yielding an input that does not achieve the
control objective. By contrast, the output from the full and adaptive
phase-isostable reduced order models in (d) are nearly identical with
both satisfying the control objective.

Optimal inputs are also obtained utilizing the nonadaptive
phase-isostable and phase-only reduction strategies described
in Sections III B and III C, respectively.

Figure 4 shows results when considering the spike timing
control problem taking T1 = 7.5 ms, i.e., increasing the period
by around 1 ms. (a) shows three different optimal inputs
obtained by minimizing the three cost functions (18), (20),
and (22) that use the adaptive phase-isostable, nonadaptive
phase-isostable, and phase-only representations, respectively,
for the reduction order dynamics. While these inputs differ
significantly, they all satisfy θ (T1) = 2π for their respective
difference equations. Their efficacy when applied to the un-
derlying model (32) is substantially different, as evidenced by
the black traces in (b)–(d). Both phase-only and nonadaptive
phase-isostable reduction inputs produce periods shorter than
the target.

Using the optimal control inputs shown in Fig. 4, (a)–(e)
of Fig. 5 show the value of the state variables associated
with the optimal solution obtained when considering the
adaptive phase-isostable reduction (blue lines) and the non-
adaptive phase-isostable reduction (green lines). As seen in
Fig. 5(a), both solutions reach θ = 2π at the target t =
7.5 ms. While both approaches penalize for large magni-
tude isostable coordinates, maxt (|ψ1|, |ψ2|, |ψ3|) = 8.7 for
the nonadaptive phase-isostable reduction approach and
maxt (|ψ1|, |ψ2|, |ψ3|) = 2.4 for the adaptive phase-isostable
reduction approach. The difference in the magnitude of
the isostable coordinates explains the difference in the ef-
ficacy of the resultant control input when applied to the

FIG. 5. (a-e) show the state variables associated with the optimal
solutions obtained with the adaptive and nonadaptive phase-isostable
reductions when taking T1 = 7.5 ms. While both reduced order mod-
els satisfy θ (T1) = 2π , the ψ3 coordinate when using the nonadaptive
phase-isostable reduction is relatively high, degrading the accuracy
of the reduced order model and ultimately explaining mismatch
between the full order and reduced order models in (f). By contrast,
the results from the full and reduced order models in (g) are nearly
identical and both satisfy the control objective.

entire model equations (32), as illustrated in (f) and (g) for
reference.

Figure 6 shows the results for various T1 values. Ta is
defined here as the actual time necessary to complete a full os-
cillation when the input obtained using the target T1 is applied
to the full order model (32). Each dot in Fig. 6 represents the
outcome of a single trial; if there is a perfect match between
the full order and reduced order models, the dot will fall on the
dashed red identity line. Mismatches between the reduced and
full order models will diminish the efficacy of the resulting
control input. When the control problem is solved using the
adaptive phase-isostable reduction, the resulting optimal input
achieves the requisite oscillation time for T1 up to 12 ms.
There is a small degradation after this point. The efficacy of
optimal inputs obtained using the phase-only and nonadaptive
phase-isostable reduced order models, on the other hand, be-
gins to degrade significantly earlier.

V. CONCLUSION AND DISCUSSION

Phase reduction is an essential tool that can be used to
understand and control the behavior of weakly perturbed limit
cycle oscillators. In situations that require strong perturbation,
i.e., those that drive the dynamics far from the underlying limit
cycle, additional information about the amplitude dynamics
must be considered. Here we consider the adaptive phase-
isostable reduction approach in conjunction with a dynamic
programming strategy to implement phase-based control of
limit cycle oscillators in a strongly perturbed regime. Consid-
ering the results presented in Sec. IV, the proposed approach
yields inputs that are substantially more accurate than other

024223-9



ADHARAA NEELIM DEWANJEE AND DAN WILSON PHYSICAL REVIEW E 109, 024223 (2024)

FIG. 6. Optimal inputs obtained for various choices of T1 are
obtained by solving cost functions (18), (20), and (22) and applied to
the full order model (32). Each dot compares T1 (the target oscillation
period) to Ta (the actual oscillation period when the input is applied
to the full model). For a perfect agreement between the full and
reduced order models, the dot will fall on the dashed red identity line,
shown for reference. Note that the unperturbed period is T = 6.46
ms. As the difference between T1 and T begins to increase, more
accurate methods are required to accurately handle the amplitude
dynamics. The nonadaptive phase-isostable reduction method gives
results that outperform the phase-only reduction, however the adap-
tive phase-isostable reduction is superior to both, especially for larger
values of T1.

reduced order modeling and control strategies when large
magnitude inputs must be used.

In the weakly perturbed setting, phase-only reduction
strategies [1–3] can be used, requiring a single phase variable
to represent the underlying N-dimensional system. References
[28,27,32] augment the phase dynamics with information
about amplitude dynamics using an isostable coordinate
system, yielding control inputs that outperform phase-only
models when moderately sized inputs are used. The adaptive
phase-isostable strategy used here takes this analysis a step
further, considering a continuous family of limit cycles in
the reduction that can accurately accommodate even larger
magnitude inputs.

This work highlights an essential trade-off when consider-
ing reduced order modeling of strongly perturbed limit cycle
oscillators. Specifically, as stronger inputs are required, more
accurate information about the amplitude dynamics are nec-
essary so that the reduced order model remains an accurate
reflection of the full order dynamics. This additional infor-
mation generally results in additional dimensions and degrees
of freedom in the reduced order models. In the models consid-
ered in this work, the phase-only, nonadaptive phase-isostable,
and adaptive phase-isostable models required 1 (phase), 4
(phase and three isostable coordinates), and 5 (phase, three
isostable coordinates, and adaptive parameter) dimensions
respectively, with each additional dimension increasing the
computational expense of finding an optimal solution to the
associated control problem. Additionally, the optimization

when using adaptive phase-isostable reduction (18) has two
degrees of freedom (the change in the adaptive parameter
and the control input) while the other two cost functions
only consider the input at each timestep. For the formulation
and solution of general phase-based control problems, we
recommend starting with a phase-only reduction. If phase-
only reduction proves insufficient, we recommend moving
to nonadaptive phase-isostable reduction and finally adaptive
phase-isostable reduction strategies as necessary.

While the adaptive phase-amplitude reduction strategy pro-
vides a more accurate representation of the underlying model
as compared to the phase-only or nonadaptive phase-isostable
reduction, it generally does not provide a perfect match. As
such, care must still be taken in the design of the cost functions
associated with a given control problem. For example, in the
application from Section IV A, the state-based penalty from
(31) is applied at each timestep. For this same example, we
also considered a state-based penalty applied only at the end-
point [similar to the penalty from Eq. (36)], but the resulting
control yielded inputs that attempted to rapidly shift the phase
in the final moments of the interval t ∈ [0, T1]. When these
inputs were subsequently applied to the full order model (27),
the results did not match those of the reduced order model.
Instead, considering the state-based penalty at each timestep
ultimately yielded control inputs for which the behavior of
full order and adaptive phase-amplitude reduction strategies
matched. We emphasize that modifications to the cost function
did not yield viable solutions when using the phase-only or
nonadaptive phase-isostable reductions in either of the appli-
cations considered in this work.

We note that there is no guarantee that an adequate solution
for a given control problem exists. In both applications con-
sidered in this work, none of the methods could find a viable
solution when choosing the target T1 to be much smaller than
the unperturbed period. Of course, each method is able to find
solutions to optimize the associated cost function but in the
case of the phase-only reduction the resulting input did not
work when applied to the full order model. In the case of the
phase-amplitude reduction, the optimal solution was to apply
input with very small magnitude indicating that the state-
based penalty cannot be mitigated and that the next best thing
is to do nothing. It may be the case that no inputs will yield a
full oscillation for smaller values of T1 for each of the models
considered in this work. It would be of interest to investigate
the fundamental limitations of the models themselves to more
carefully address this question.

In this work, we only consider a single control objective of
modifying the period of a general limit cycle oscillator with
external input. However, we believe that the insight gained
from this study would readily extend to other phase-based
control problems (e.g., that consider desynchronization, etc.)
Owing to the low dimensionality of phase-only reduction, it is
generally the best option when applicable, allowing for more
sophisticated control and analysis techniques. When required
perturbations are strong enough that phase-only reduction is
not a possibility, information about the amplitude coordinates
must be considered. While there are many options available
to consider the amplitude dynamics, a judicious choice is
necessary in order to obtain a model that is not prohibitively
high-dimensional but still accurately reflects the full model
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dynamics. Our results indicate that adaptive phase-isostable
reduced order models may be well-suited for this task and
further investigation about how best to choose the adaptive
parameter set as well as the parameter update function would
be warranted.

ACKNOWLEDGMENTS

This material is based upon the work supported by the
National Science Foundation (NSF) under Grant No. CMMI-
2140527.

[1] A. Winfree, The Geometry of Biological Time, 2nd ed. (Springer
Verlag, New York, 2001).

[2] G. B. Ermentrout and D. H. Terman, Mathematical Foundations
of Neuroscience (Springer, New York, 2010), Vol. 35.

[3] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
(Springer-Verlag, Berlin, 1984).

[4] J. Moehlis, E. Shea-Brown, and H. Rabitz, Optimal inputs for
phase models of spiking neurons, ASME J. Comput. Nonlinear
Dyn. 1, 358 (2006).

[5] A. Zlotnik, Y. Chen, I. Z. Kiss, H. A. Tanaka, and J. S. Li, Opti-
mal waveform for fast entrainment of weakly forced nonlinear
oscillators, Phys. Rev. Lett. 111, 024102 (2013).

[6] D. Wilson and J. Moehlis, Optimal chaotic desynchronization
for neural populations, SIAM J. Appl. Dynamical Syst. 13, 276
(2014).

[7] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and
E. Ott, Crowd synchrony on the Millennium Bridge, Nature
(London) 438, 43 (2005).

[8] F. Dörfler, M. Chertkov, and F. Bullo, Synchronization in com-
plex oscillator networks and smart grids, Proc. Natl. Acad. Sci.
110, 2005 (2013).

[9] D. M. Abrams and S. H. Strogatz, Chimera states for coupled
oscillators, Phys. Rev. Lett. 93, 174102 (2004).

[10] D. Wilson and J. Moehlis, Clustered desynchronization from
high-frequency deep brain stimulation, PLoS Comput. Biol. 11,
e1004673 (2015).

[11] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fields (Springer
Verlag, New York, 1983), Vol. 42.

[12] R. Snari, M. R. Tinsley, D. Wilson, S. Faramarzi, T. I. Netoff, J.
Moehlis, and K. Showalter, Desynchronization of stochastically
synchronized chemical oscillators, Chaos 25, 123116 (2015).

[13] C. O. Diekman and A. Bose, Entrainment maps: a new tool for
understanding properties of circadian oscillator models, J. Biol.
Rhythms 31, 598 (2016).

[14] J. Cui, C. C. Canavier, and R. J. Butera, Functional phase
response curves: A method for understanding synchronization
of adapting neurons, J. Neurophysiol. 102, 387 (2009).

[15] J. Foss and J. Milton, Multistability in recurrent neural loops
arising from delay, J. Neurophysiol. 84, 975 (2000).

[16] T. I. Netoff, C. D. Acker, J. C. Bettencourt, and J. A.
White, Beyond two-cell networks: Experimental measurement
of neuronal responses to multiple synaptic inputs, J. Comput.
Neurosci. 18, 287 (2005).

[17] W. Kurebayashi, S. Shirasaka, and H. Nakao, Phase reduction
method for strongly perturbed limit cycle oscillators, Phys. Rev.
Lett. 111, 214101 (2013).

[18] Y. Park and B. Ermentrout, Weakly coupled oscillators in a
slowly varying world, J. Comput. Neurosci. 40, 269 (2016).

[19] K. Pyragas and V. Novičenko, Phase reduction
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