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Self-driven configurational dynamics in frustrated spring-mass systems
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Various physical systems relax mechanical frustration through configurational rearrangements. We examine
such rearrangements via Hamiltonian dynamics of simple internally stressed harmonic four-mass systems. We
demonstrate theoretically and numerically how mechanical frustration controls the underlying potential energy
landscape. Then, we examine the harmonic four-mass systems’ Hamiltonian dynamics and relate the onset of
chaotic motion to self-driven rearrangements. We show such configurational dynamics may occur without strong
precursors, rendering such dynamics seemingly spontaneous.
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I. INTRODUCTION

Mechanical frustration and internal stresses endow inan-
imate and active physical systems with unusual structural
features. Internal stresses generate universal low-frequency
quasilocalized vibrational modes in amorphous materials and
alter their thermodynamical properties [1–5]. Mechanical
frustration promotes nonextensive statistics and enables the
emergence of complex patterns in spatially extended systems
[6–11], and a wide range of conformations and structures
for biomolecules and active matter [12,13]. Understanding
the role of mechanical frustration in generating these exotic
properties is crucial.

Frustrated systems also exhibit diverse dynamical behav-
iors, including folding and conformational transitions, as
means of stress relaxation [14–21]. Such configurational dy-
namics are either triggered by external driving forces (e.g.,
mechanical loading) [22–28] or are self-induced [29–36].
However, stress relaxation cannot be entirely attributed to
thermally activated or externally driven processes, as stress
relaxation can occur even in the absence of external driving
or noise [37–45]. Specifically, athermal systems also un-
dergo configurational rearrangements, even though external
thermal fluctuations are insufficient to induce such events.
While internal stresses clearly play a vital role in self-induced
relaxation events [20,46–49], their effects on the underly-
ing energy landscape and on the emerging dynamics remain
unclear.

In this work, we use a mechanically frustrated, isolated,
spring-mass system [50] to study the role of mechanical
frustration on both structural characteristics and emerging
dynamics, focusing on self-driven configurational rearrange-
ments. Considering such a simple system allows us to probe
generic structural and dynamic effects of internal stresses.
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We probe the system’s Hamiltonian dynamics, rendering all
observed behaviors self-driven and not externally induced. We
first study how frustration modifies the underlying potential
energy landscape, the local and global energetic minima, and
the transition state. These modifications affect the system’s
Hamiltonian dynamics and alter the onset of chaotic motion
and configurational rearrangements. Finally, we show such
configurational dynamics can occur without strong dynamic
precursors.

II. FRUSTRATED SPRING-MASS SYSTEMS

To study internal stress’s roles, we look for a simple
spring-mass system supporting mechanical frustration. Previ-
ous works on the harmonic three-mass systems demonstrated
that such a simple system could self-induce rotations [51,52].
As the three masses have to align to allow a force-balanced
internally stressed state, we consider here a similar harmonic
system composed of fully interacting four-particles (i.e., each
particle has three interactions) in two dimensions [50]. Unlike
[51,52], we focus on the actual configurational dynamics,
and their dependence on the underlying internal stresses. The
particles interact via geometrically nonlinear springs of finite
rest length k

2 (ri j − Li j )2, where the spring constant k is set
to unity, ri j ≡

√
(xi − x j )2 + (yi − y j )2 is the distance, and Li j

is the rest length of the spring between the particles i and j.
Using a quadratic potential allows us to study generic fea-
tures of internally stressed systems, as it is the leading-order
contribution of pairwise potentials featuring both repulsive
and attractive interactions near the pairwise potential’s stable
minimum. The total potential energy U is a sum over the
pairwise interactions U = k

2

∑6
α=1(rα − Lα )2 (where α runs

over all pairs). Figure 1(a) shows a sketch of the system of
interest.

The system is stress free when each pairwise interaction
exerts zero force. For a stress-free square configuration, Li j =
� for peripheral pairs and Li j =

√
2� for pairs interacting along

the diagonals (� sets the length dimensions). If the net force
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FIG. 1. (a) The square configuration, with the rest lengths of
the peripheral springs (red) and diagonal springs (blue) specified
as a function of the amplitude of internal stress ε and lengthscale
�. (b) The transition configuration between the square and rectan-
gle stable mechanical minima. (c) The rectangle stable mechanical
minima, where the two blue springs are now on the outer part. All
panels are generated using ε = 0.3 (and � = 1), and in panels (b) and
(c) the square configuration is reproduced in the background for
comparison.

over each particle vanishes, while the pairwise forces are
nonzero, the system is mechanically frustrated [1,50,53,54].
The four-mass system allows a frustrated state once the in-
dividual springs are not at their rest lengths. We obtain such
a state by changing the spring rest lengths to Li j =�(1 + ε)
for peripheral pairs, and Li j =

√
2�(1 − ε) along the diagonals

[55], as shown in Fig. 1(a). We set � to unity, such that the
dimensionless ε captures the internal stress amplitude.

Taken together with the kinetic energy K = 1
2m

∑4
i=1 p2

i of
the four-mass system (i runs over the four particles, pi ≡|pi|,
pi = (px

i , py
i ), and m set to unity), the system’s Hamiltonian H

is [56]

H = K + U . (1)

The Hamiltonian dynamics of the system conserve the total
energy, such that possible configurational changes are only
self-induced (and are not externally triggered).

III. MECHANICAL FRUSTRATION MODIFIES
THE ENERGY LANDSCAPE

We first focus on the implications of mechanical frustration
on the underlying potential energy U . The potential energy
at the square configuration US changes quadratically with ε,
as shown in Fig. 2(a). Expanding U perturbatively around
the square geometry, we obtain the Hessian M≡ ∂2U

∂r∂r , its
eigenmodes ψ, and their respective frequencies ω via the
eigenvalue equation Mψi =ω2

i ψi (without summation). The
lowest frequency at the square configuration ωmin

S changes
with ε as shown in Fig. 2(b), and becomes negative at |ε|=1
[50], implying the square configuration becomes unstable. In
what follows, we study the system in the stable range |ε|<1.

While the square configuration is stable for |ε|<1, it does
not imply that it is the only energetic minimum in the entire
energy landscape. A particle swap along the two diagonals
will result in a geometrically identical square configuration;
swapping any peripheral pair will yield a rectangular shape
with potential energy UR and minimal frequency ωmin

R as
sketched in Fig. 1(c). This configuration is potentially another
energetic minimum [55]. We numerically test and verify that
the rectangular configuration serves as an additional mini-
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FIG. 2. (a) The potential energy values at the square configura-
tion US, the rectangular configuration UR, and the transition state UT.
The US,UR data are obtained from random configuration sampling
and numerical minimization of the potential energy. The UT data are
obtained via the nudged elastic band algorithm between the square
and rectangle configuration. Dashed lines indicate the theoretically
predicted values [55], and the vertical dashed line denotes the critical
ε∗ value where the global minimum switches between the square
geometry (ε<ε∗) and the rectangular configuration (ε>ε∗). Inset:
a sketch of the potential energy landscape versus the reaction co-
ordinate ξ , showing schematically that for ε<ε∗ the square is a
global minimum (blue), and for ε>ε∗ the rectangular configura-
tion becomes the global one (orange). (b) The minimal frequencies
at the square and rectangular minima and the divergence rate at
the transition configurations. ωmin

S and ωmin
R are associated with the

minimal oscillation frequencies around the square and rectangle con-
figurations, while, for the transition state, iωmin

T corresponds to the
divergence rate from the transition state.

mum by initiating the four masses at random configurations
and minimizing their potential energy to recover the closest
minimum. The results obtained from this numerical proce-
dure exactly match our analytical calculations, as shown in
Fig. 2(a).

For ε values below a critical value [55] ε∗ =3 − 2
√

2 the
square geometry serves as a global minimum of the potential
energy landscape, while for ε>ε∗ the rectangle configuration
becomes the global minimum, and the initial square geometry
turns into a local minimum [interestingly ωmin

R crosses ωmin
S at

ε∗, shown in Fig. 2(b)]. The value of ε∗ is plotted as a dashed
vertical line in Fig. 2(a), and we sketch this scenario in the
inset of Fig. 2(a).

The existence of several energetic minima implies that
transition states exist in between. The transition state be-
tween the square and rectangular geometry resembles the one
sketched in Fig. 1(b), where the top two particles swap. To
detect and probe the transition state between the two
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minima, we employ the nudged elastic band algorithm [57,58]
followed by force amplitude minimization. We plot the poten-
tial energy at the transition state UT in Fig. 2(a). For ε<ε∗ the
transition potential energy is well approximated by UR, while
for ε>ε∗ it is closer to US (though UT > US,UR).

At the transition state, the smallest eigenvalue is negative
by definition [59]. We plotted the associated frequency iωmin

T
in Fig. 2(b). Unlike the stable mechanical minima, this value
corresponds to a divergence rate, not an oscillation frequency.
Once the system is provided with sufficient energy, it can pass
between the two minima. The internal stress level changes the
potential energy minima (local and global) and the potential
energy barrier. Thus, we hypothesize mechanical frustration
will also play a crucial role in the Hamiltonian dynamics of
such a system, specifically in the onset of chaotic motion and
configurational rearrangements.

IV. HAMILTONIAN DYNAMICS AND CHAOTIC MOTION

So far, we considered internal stresses’ effects on the un-
derlying potential energy landscape. Which special dynamical
behaviors emerge due to mechanical frustration? To probe the
intrinsic dynamics of the frustrated spring-mass systems, we
consider the Hamiltonian dynamics governed by Eq. (1). We
initialize the system at its internally stressed, square configu-
ration and set the initial velocities randomly. We remove any
linear and angular momentum from the initial velocities and
ensure that the total excess kinetic energy provided to the sys-
tem is E∗ [55]. Overall, the initial configuration corresponds
to a potential energy US(ε), and an initial kinetic energy
K =E∗ (with no linear and angular momentum). We probe the
self-driven dynamics via measuring the maximal Lyapunov
exponent λmax [59,60] numerically [61,62], at the end of our
simulations (well after the initial transient dynamics [55]). We
plot λmax averaged over an ensemble of 100 realizations in
Fig. 3(a).

At low E∗ values, the system oscillates around the square
configuration (as it is a stable mechanical minimum [56,59],
according to the KAM theory [63]), and λmax is expected to
be low [52,59]. At high E∗, the values of Li j become irrele-
vant, and the system is expected to exhibit regular dynamics
again [52]. For intermediate excess energies, λmax peaks ap-
proximately at the energy needed to compress a single bond
(varying with ε). These results are qualitatively similar to
those of the harmonic three-mass system [52].

Surprisingly, at low energies and for ε >ε∗, λmax plateaus
at energy scales lower than those associated with a single
bond compression, as shown in Fig. 3(a). As ε →1 the plateau
persists to lower energy scales. This peculiar behavior has
not been observed in the case of a triangle [52] and seems
to emerge specifically due to mechanical frustration (absent
from the system considered in [51,52]). Intrigued by this
phenomenon, we repeated the same procedure, initializing
the system at the rectangular configuration. This results in
λmax shown in Fig. 3(b). Now we observe a plateau for suffi-
ciently low ε values (we discuss the appearance of plateaus at
higher ε values in [55]). The λmax plateaus seem to correlate
with the global-to-local transition of the two configurations.
We hypothesize the transition state governs this dynamical
observable.

FIG. 3. (a) The maximal Lyapunov exponents λmax for trajecto-
ries initiated with the square geometry, for different ε values and
wide excess energy E∗ ranges (each point corresponds to ensemble
average over 100 realizations). Above ε∗, λmax plateaus to a finite
value at low E∗. (b) λmax for trajectories initiated with the rectangle
geometry, for ε values and energy range as in panel (a) (each point
corresponds to ensemble average over 100 realizations). A λmax

plateau occurs at ε<ε∗ values, where the rectangular geometry is
a local minimum of the potential energy landscape. Inset: a log-log
plot zoomed-in on the plateau at low E∗ values for ε between −0.8
(blue) and −0.2 (green).

At low energies, the system’s trajectories occupy phase
space regions close to the mechanically stable states. Such
trajectories describe the system’s oscillations around the sta-
ble mechanical minimum. At some stage, E∗ is sufficient
for the system to pass over the transition state, resulting
in configurational rearrangement; the available phase space
changes dramatically as it now includes several stable minima
and saddles. We hypothesize that the saddles act as effective
scatterers of the trajectories, causing them to diverge from
one another, increasing the Lyapunov exponent [59]. Further
increasing E∗, the phase space volume includes more saddles
and minima, possibly scattering the trajectories even more
strongly. Eventually, all minima and saddles are included,
and the phase-space volume increases trivially with increased
available energy.

To test this argument, we focus on the transition between
the square and rectangular configurations. We consider tra-
jectories with ε values in which the initial configuration is
the local minimum, as shown in Figs. 4(a) and 4(b). Once
we rescale E∗ by the relative barrier energy 	UT−S ≡UT − US

(	UT−R ≡UT − UR) for the square (rectangular) trajectories,
the initial increase in λmax collapses, as shown in Fig. 4(c).
Then, we approximate the value of λmax at the plateau, λ

p
max,

by averaging over the first seven entries above the barrier
energy. We plot the resulting λ

p
max versus iωmin

T in Fig. 4(d),
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FIG. 4. (a) λmax from the square trajectories (with ε>ε∗) versus
E∗. (b) λmax form the rectangular trajectories (with ε<ε∗) vs E∗.
(c) The same λmax from panels (a) and (b) [� corresponds to the
square data of panel (a) and ◦ corresponds to the rectangular data
from panel (b)] vs E∗ rescaled by the barrier energy 	UT−S for
data from panel (a), and 	UT−R for data from panel (b). (d) The
approximated plateau value of the Lyapunov exponent λp

max (an av-
erage over the first seven points above the barrier energy) vs iωmin

T

(error bars indicate the standard deviation of the seven points). For
well-approximated plateaus (small error bars), λp

max forms a function
of iωmin

T (the two gray exponential curves serve as a guide to the eye).
� corresponds to the square data and ◦ corresponds to the rectangular
data. The color bar shows the ε values used in the four panels.

demonstrating the functional relation λ
p
max(iωmin

T ) for well-
detected plateaus [59]. The results of Figs. 4(c) and 4(d)
demonstrate the relation between the transition state, which is
a potential energy landscape property, and an increased Lya-
punov exponent, which is a dynamical observable [64–66].

V. CONFIGURATIONAL DYNAMICS

The Lyapunov exponents’ plateaus emerging at energies
above the barrier energy hint that at least some trajectories
within the ensemble are configurationally rearranged. Next,
we would like to dynamically follow individual trajectories,
looking for dynamical precursors for configurational rear-
rangements. To do that, we follow trajectories originating
from the square configuration for ε >ε∗, with E∗ slightly
above 	UT−S to detect self-driven configurational rearrange-
ments. The system oscillates around the initial configuration
until it passes over the energetic barrier, releasing its stored
potential energy. These dynamics correspond to configura-
tional rearrangements like that shown in Fig. 1.

Are there any precursors to these rearrangements? We plot
various dynamic measurements from an example trajectory in
Fig. 5. Figure 5(a) shows K and U throughout the dynamics,
revealing the finite-time release of the initially stored potential
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FIG. 5. (a) Kinetic (blue) and potential (red) energies as a func-
tion of time for ε = 0.3 and E∗ � 0.08 (	UT−S � 0.07). A vertical
black dashed line marks the first crossing between U and K . Early-
time and late-time regions are marked with green- and purple-shaded
regions, respectively. (b) The power spectrum of the early-time and
late-time shaded regions of (a). The early-time power spectrum of U
includes discrete peaks representative of regular dynamics, while the
late-time power spectrum contains contributions at all frequencies.
(c) D2

min measure of nonaffine motion as a function of time for the
same trajectory. The moment of the first crossing is marked with a
vertical black dashed line, indicating that the crossing of U and K is
accompanied by a large nonaffine motion.

energy, as indicated by the vertical dashed line. This release
signifies passing away from the square energy basin to other
regions in phase space. The system oscillates uniformly until
it passes over the energetic barrier, after which the dynamics
become irregular.

To further examine the dynamics before and after the bar-
rier crossing, we analyze the power spectrum of U in the early
and late stages of the simulations in Fig. 5(b) [corresponding
to the shaded regions in Fig. 5(a)]. The early-time power
spectrum shows discrete peaks and does not hint at the im-
pending configurational change. After crossing the energetic
barrier, various frequencies fill the power spectrum, indicating
that the trajectory becomes irregular, and the total energy was
redistributed (reminiscent of thermalization [67]).

We also measured the degree of nonaffine motion via the
D2

min measure [22] in Fig. 5(c). The D2
min measure peaks at

the first crossing of U and K , indicating that passing from the
square energy basin to the outer phase-space is associated with
a nonaffine deformation of the system, suggesting that the
system underwent a dramatic configurational rearrangement
to pass over the barrier. While other dynamical behaviors
are possible [55], we have not observed strong dynamical
precursors to such configurational changes, rendering these
self-driven events “spontaneous” [20].
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VI. DISCUSSION

We studied self-driven configurational dynamics in frus-
trated spring four-mass systems. Changing the internal stress
amplitude ε varied the springs’ rest lengths and modified the
stable mechanical minima and the transition states between
them. These modifications yielded unique Lyapunov exponent
plateaus. The plateaus arise at energies comparable to the
barrier energies UT − US/R and are affected by the eigenvalue
associated with the saddle’s most unstable direction. Finally,
we have demonstrated how trajectories with sufficient excess
energy could seem completely regular before undergoing con-
figurational changes and overcoming the energetic barrier.

The isolated spring-mass systems considered above al-
lowed us to vary the internal stress continuously and study
the emerging self-driven dynamics. This systematic variation
allowed us to relate the emerging plateau in λ

p
max with iωmin

T ,
which is unavailable once a specific molecule or material
is considered [64–66]. Mathematically, this demonstrates the
effects of saddle points on λmax when the underlying energy
landscape is complex (e.g., in mixed systems).

The isolated system considered above is not spatially
extended, preventing us from further exploring the spatial sig-
natures of such configurational dynamics [20,37,39]. Spatially
extended systems undergoing configurational rearrangements
can divert and spread the released energy to other system parts

or an external bath, possibly inducing avalanches [23,38,45].
The isolated four-mass system cannot support this behavior.
We suspect that embedding a mechanically frustrated element
within a stress-free spatially extended system will suppress
the configurational dynamics observed above (as these will
be more energetically costly). Including positional disordered,
internally stressed elements may lower the energetic barriers
and enable studying the spatiotemporal dynamics triggered by
self-induced configurational dynamics.
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