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After decades of study, there are only two known mechanisms to induce global synchronization in a population
of oscillators: Deterministic coupling and common forcing. The inclusion of independent noise in these models
typically serves to drive disorder, increasing the stability of the incoherent state. Here we show that the reverse
is also possible. We propose and analyze a simple general model of purely noise coupled oscillators. In the
first explicit choice of noise coupling, we find the linear response around incoherence is identical to that of the
paradigmatic Kuramoto model but exhibits binary phase locking instead of full coherence. We characterize the
phase diagram, stationary states, and approximate low-dimensional dynamics for the model, revealing the curious
behavior of this mechanism of synchronization. In the second minimal case we connect the final synchronized
state to the initial conditions of the system.
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I. INTRODUCTION

Emergent synchronization has been studied extensively
over the last half century, initiated by Kuramoto’s introduction
in 1975 [1,2] of a paradigmatic model of globally coupled os-
cillators. Numerous applications exist, from power networks
[3,4] to Josephson arrays [5], synchronization of fireflies
[6], and bacterial suspensions [7]. Most modern versions of
Kuramoto’s model feature two sources of randomness: The
quenched disorder of the randomly chosen intrinsic frequen-
cies and independent constant-coefficient stochastic noise
terms in the dynamics of the oscillators. The first of these
models natural variability in populations; the second mod-
els inherent stochasticity or unpredictability in the behavior
of individual elements. Invariably, both are drivers of global
disorder acting counter to the deterministic coupling, raising
the coupling strength required to induce synchronization and
lowering the coherence of the emergent states.

In other areas of physics situations have been observed in
which randomness is, in fact, a driver global ordering. For ex-
ample, equilibrium statistical physics possesses many exam-
ples of entropically driven ordered states which can be thought
of as emerging from purely random interactions, a canonical
example being Onsager’s work on nematic fluids [8]. Re-
cently, there has been some effort to search for similar effects
in the dynamics of coupled oscillators. Promising work has in-
cluded studies considering common noise terms, for example,
arising from environmental fluctuations, that aid synchroniza-
tion [9–12], but so far the possibility of independent noise
driving the emergence of coherent states has been overlooked.

Models with multiplicative, independent noise terms have
been stated in the context of Viscek flocking models but
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reduced to common noise [10]. Here we explore two simple
choices for the noise coupling without reducing our analysis
to common noise. We show that, in fact, the phase diagram
of the Kuramoto model can be replicated in a population of
oscillators with purely random forcing. As in the original
Kuramoto model, the oscillators are influenced by only their
phase difference from the others oscillators. Since only the
strength of the noise changes, there is no bias on the direc-
tion the oscillator moves; remarkably, we show this can be
sufficient to induce features similar to traditional Kuramoto
coupling models. We further show that the emergent behavior,
such as the steady states and individual oscillator movement,
can be characterized in the order regime, which exhibits a cu-
rious phenomenon of binary synchronization (see Fig. 1). We
derive explicit expressions for the steady states and capture the
qualitative behavior of the order parameters with approximate
low-dimensional dynamics. For a similar minimal model we
also find binary synchronization occurs, but its exact form is
dependent on the initial condition of the system.

II. GENERAL MODEL

We consider a population of N oscillators with phases
θn(t ). Each oscillator has an inherent natural frequency ωn

sampled from a distribution g(ω), which should be considered
as a source of quenched disorder. There is no deterministic
coupling, but each oscillator will be subject to an independent,
multiplicative Levy noise term ξn(t ), whose strength at time t
is determined by summing contributions from the rest of the
population. Specifically, we write the following Itô stochastic
differential equation:

θ̇n = ωn +
(

1

N

∑
m

f (θn − θm)

)β

ξn(t ), (1)

where f is a function to be chosen and ξn is a Levy noise with
index α = 2/β. Two cases are of particular interest: If β = 1,
then we have Gaussian white noise; if β = 2, then noise terms
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are Cauchy distributed, which facilitates the computation of
low-dimensional dynamics [13].

Our main object of study will be the oscillator den-
sity ρ(θ, ω, t ) = 1

Ng(ω)

∑
n δ[θ − θn(t )]δ(ω − ωn). Using the

shorthand 〈· · · 〉 = ∫
(· · · )g(ω) dω to denote averaging over

the distribution in intrinsic frequencies, the noise strength
term in (1) can be written simply as the convolution 〈ρ ∗ f 〉.
Applying standard methods [14], one can then take the limit
N → ∞ to obtain an integro-differential equation for the os-
cillator density:

∂tρ = −ω∂θρ + ∂α
|θ |(ρ 〈ρ ∗ f 〉2). (2)

Here we use the Riesz derivative ∂α
|θ |, defined through

its action under Fourier transformation. Specifically,∫ π

−π
e−ikθ ∂α

|θ |u(θ ) dθ = −|k|αuk . Note that in the Gaussian
(α = 2) case, this is simply the diffusion operator. By
symmetry, the above equation admits a fixed-point solution
that does not vary in phase or time, ρ◦ ≡ 1/2π , known as
the incoherent state. This state may or may not be stable.
The phenomenon of synchronization may broadly be defined
as the emergence of one or more peaks in the oscillator
phase density which persist over time. An indicator of
synchronization in the system is provided by the complex
order parameter

z =
∫ π

−π

〈ρeiθ 〉 dθ. (3)

The argument of z gives the average phase, while the modulus
describes the level of global coherence; in the incoherent state
we have |z| = 0, while full synchronization implies |z| = 1.

III. COSINE COUPLING

We begin by examining the dynamics of fluctuations
around the incoherent state, studied in detail in [15]. In doing
so, we will identify a choice of noise-coupling function f that
exactly maps the fluctuations in our system to those of the
well-studied noisy Kuramoto model. If ρ = ρ◦ + εψ , where
ε is small, then to leading order (2) yields

∂tψ = −ω∂θψ + f0∂
α
|θ |ψ + 2ρ◦

〈
ψ ∗ ∂α

|θ | f
〉
,

where f0 = 1
2π

∫ π

−π
f (θ ) dθ . Performing the same analysis on

the noisy Kuramoto model yields a similar equation for the
linear evolution of fluctuations. In fact, if we make the choice
f (θ ) = 1 − κ cos(θ ), then we obtain precisely the same ex-
pression for both models:

∂tψ = −ω∂θψ + ∂α
|θ |ψ + 2κρ◦〈ψ ∗ cos〉. (4)

In Appendix A we give the full details of the derivation of
this result for both models and show that this choice for the
noise-coupling function is the only one for which the statistics
fluctuations match.

A. Linear stability at incoherence

As a consequence of the equivalence of our noise-coupled
oscillator model with the noisy Kuramoto model, the systems
have identical phase boundaries for the onset of synchroniza-
tion. Following Strogatz and Mirollo [16], we show that for

specific choices of the frequency distribution the exact sta-
bility boundary for the homogeneous state can be calculated.
In [16], it was shown that only the first Fourier mode of
the perturbation ψ1(ω) need be considered in the stability
analysis. Briefly, this can be seen as the higher modes do not
have any contributions from the final term while the first term
is diffusive and thus all higher modes decay over time. For the
first Fourier mode, we have

∂tψ1 = (iω − 1)ψ1 + κ〈ψ1〉.
Assuming this Fourier mode has an exponential form,
ψ1(ω) = φ(ω)eηt , then

ηφ(ω) = (iω − 1)φ(ω) + κ〈φ〉.
The average over frequencies 〈φ〉 is just a constant, so the
frequency dependence of ψ1 is

φ(ω) = κ〈φ〉
η + 1 − iω

.

In addition, the average must be self-consistent so that

〈φ〉 =
∫

−∞

∞ κ〈φ〉
η + 1 − iω

dω,

or, equivalently, 1 = κ〈1/(η + 1 − iω)〉. It can be shown that
if g(ω) is a nonincreasing function for ω > 0 and is symmetric
about the origin, then at most one solution for η exists, and it
is necessarily real (see [16,17]). Hence, we need to take only
the real component of the integrand

1 = κ

〈
1 + η

(1 + η)2 + ω2

〉
, (5)

as the symmetry in ω implies that the imaginary component
integrates to zero.

Here we show only the result for Lorentz distributed fre-
quencies g(ω) = (γ 2/π )[γ 4 + ω2]−1, with width γ 2, as it is
the focus of subsequent sections. The integrand in (5) can now
be separated into partial fractions and integrated with standard
results to give∫

−∞

∞ 1 + η

(1 + η)2 + ω2
g(ω) dω = 1

1 + γ 2 + η
.

Comparing this to (5), it is clear that κ = 1 + γ 2 + η. The
system is stable if η < 0, which we deduce is satisfied when

κ < 1 + γ 2, (6)

which can be seen to match simulations for various values of
κ and γ in Fig. 2.

B. Stationary state without disorder

With Lorentz distributed intrinsic frequencies, g(ω; γ ) =
(γ 2/π )[ω2 + γ 4]−1, the incoherent state is stable for κ < 1 +
γ 2, as shown in Fig. 2(a).

Although the dynamics of our model are indistinguishable
from the Kuramoto model in the incoherent phase, the behav-
ior on the other side of the phase transition is dramatically
different. As illustrated in Figs. 1, 2(b), and 2(c), simulations
of our model exhibit binary synchronization, with the oscilla-
tor population spontaneously dividing into two quasi-coherent
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FIG. 1. Emergence of binary synchronization from a sample of
N = 2 × 103 oscillators for the Cauchy noise case (α = 1) of our
model and Lorentz distributed frequencies with κ = 5, γ = 0.1.

phase-locked groups with a consistent separation distance be-
tween groups. The remainder of the paper will be devoted to
studying this unusual behavior.

The starting point for all our analysis will be the Fourier
representation of the governing equation (2). Writing ρk for
the kth Fourier mode of ρ (note that z = 2π〈ρ−1〉), we have

ρ̇k = − ikωρk − |k|αρk + |k|ακ (zρk−1 + z̄ρk+1)

− |k|α κ2

4
(z̄2ρk+2 + 2|z|2ρk + z2ρk−2). (7)

First, we characterize the state of full binary synchroniza-
tion occurring when κ > 1 if the oscillators all have the same
intrinsic frequency. We pick an appropriately chosen rotating
reference frame such that the density is symmetric and cen-
tered at zero. Then (7) simplifies to

ρk =−|k|α
(

ρk − |z|κ (ρk−1 + ρk+1)

+ |z|2κ2

4
(ρk+2 + 2ρk + ρk−2)

)
, (8)

FIG. 2. (a) Variation of the coherence of a single peak |λ| for
the stationary distribution, with the stability boundary κ = 1 + γ 2

indicated with a dashed line. Each square shows a simulation of
N = 103 oscillators until t = 100 with 2 × 104 time steps initial-
ized at the incoherent state. The color indicates the fitted value |λ|
of the time-averaged stationary distribution after t = 87.5. (b) and
(c) Stationary distributions for Lorentz distributed frequencies and
Cauchy noise calculated from the 4 × 104 time steps for N = 104

until t = 100. The blue line shows the Kato-Jones distribution in (15)
with parameters given by the triangle and star in (a).

FIG. 3. Exact binary synchronization without disordered intrin-
sic frequencies. (a) The half separation of the peaks � as a function
of κ: The line shows the theoretical steady state; open circles show
simulation results. (b) Simulation close to the binary synchronized
state with κ = 5 for Brownian noise. Stray oscillators diffuse across
the gap between the two peaks.

where we can further identify |z| = 2πρ1. This infinite sys-
tem of equations can be collapsed by making the ansatz
ρk = Tk ( cos(�))/2π , where Tk is the kth order Chebyshev
polynomial of the first kind and � is a non-negative number.
Collapsing (8) is possible since the Chebyshev polynomials
obey the following rules:

Tk+1(x) + Tk−1(x) = 2T1(x)Tk (x),

Tk+2(x) + Tk−2(x) = 2[2T1(x)2 − 1]Tk (x).

Substituting our ansatz into (8) and writing Tk (cos �) = Tk for
brevity, this becomes

0 = |k|α
(

Tk − 2κT 2
1 Tk + κ2

4
T 2

1

(
4T 2

1 Tk
))

= |k|αTk
(
1 − κT 2

1

)2
.

Thus, the ansatz is a solution if T1 = κ−1/2, from which we
deduce � = arccos(1/

√
κ ).

This solution corresponds to the oscillator phase density
condensing to a symmetric pair of Dirac masses with sep-
aration 2�. That is, ρ(θ ) = [δ(θ − �) + δ(θ + �)]/2. The
oscillators become phase locked in these binary positions as
the contributions from each Dirac mass to the convolution
term in (2) negatively interfere to precisely cancel each other.

In Fig. 3, while the system approaches the two-peak steady
state, erratic particles diffuse from near one peak to the other.
To comprehend this steady state for identical oscillators better,
we study the behavior of a single stray oscillator in the Brow-
nian noise case (α = 2). Consider the motion of this stray
oscillator to be between the two peaks (i.e., θ ∈ [−�,�])
governed by

θ̇ = [1 − √
κ cos(θ )]ξ (t ). (9)

The expected time τ (θ ) to reach a distance ε from one of the
peaks is the solution to

τ ′′(θ ) = [1 − √
κ cos(θ )]−2, (10)

subject to the boundary conditions τ (�− ε) = τ (ε −�) = 0.
The solution to the equation above and the mean first passage
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FIG. 4. Mean first passage time for a stray particle about the
Dirac mass pair solution through a boundary ε = 0.1 away from
either of the peaks. We take κ = 5 and simulate the full system from
different stray particle initial conditions with mean first passage time
shown by open circles. The solid line shows the numerical solution
to (10). The position of all particles was initialized at a state close to
the stationary solution found from a separate simulation.

time from stochastic simulations are shown in Fig. 4. Interest-
ingly, the equation above is the same if the oscillator starts at
� < |θ0| < π since the increase in noise strength is matched
by the larger distance from the peaks. We also observe that,
since there is no drift term in Eq. (9), the probability that the
stray oscillator will reach one peak as opposed to the other
is directly proportional to its distance from the peak relative
to the other. Explicitly, we have p�(θ0) = (� + θ0)/2� and
p−�(θ0) = 1 − p�(θ0), where p±�(θ0) are the probabilities
the oscillator will reach θ = ±� eventually (see [18] and
Appendix B).

Studying an individual oscillator gives intuition for why the
two-peak state is stable for κ > 1. Assume all particles are
perturbed by a small amount ϑi. If the perturbation is small
enough that

√
κ ′ = κ|z| > 1 still holds, each oscillator still

has a solution to θ̇ = [1 − √
κ ′ cos(θ )]ξ (t ), and the probabil-

ity that it will return to its closest peak can be approximated by
p�(� − ϑi ). Hence, at least close to this solution, it appears to
be stochastically asymptotically stable [19]. Due to the irreg-
ularity of the two-peak solution, formally showing stability at
the macroscopic scale would be a more involved task, which
we leave for future work.

C. Stationary state with disorder

We broaden our investigation now to address the more
general case of heterogeneous intrinsic frequencies. In the
last two decades, great strides have been made in describing
the dynamics of Kuramoto-like systems in terms of sim-
ple equations for the order parameters. Starting with the
Watanabe-Strogatz variables [5], it was shown that a suitable
transformation of the oscillator phase to a homogeneous, sta-
tionary phase results in just three equations needed to describe
the full dynamics of the system of N particles [20]. Ott and
Antonsen [21] subsequently derived similar equations for the
order parameters.

These equations connect the nonequilibrium transition
from the incoherent state to the synchronized state. Incorpo-
rating intrinsic noise has presented another challenge as the
Ott-Antonsen manifold no longer holds when the oscillator

phases have additive Brownian noise [22]. When Cauchy
noise is included instead, it has been shown to give low-
dimensional dynamics equivalent to systems with Lorentz
distributed frequencies [23]. Exact low-dimensional expres-
sions for the steady states of models with more complex
coupling have also been achieved with Cauchy noise [13]. We
use a similar approach here to identify the nontrivial steady
state of the model presented above. As with the majority
of Kuramoto-based models, we examine the case where the
oscillator frequencies are Lorentz distributed, which enables
the steady state of (7) to be solved exactly.

When the incoherent state is unstable, numerical simu-
lations reveal the emergence of a bimodal distribution (see
Fig. 1) which is surprisingly distinct from the unimodal dis-
tribution seen in the Kuramoto model. The stationary solution
solves

0 = −ikωρk − |k|ρk + |k|κ (zρk−1 + z̄ρk+1)

− |k|κ
2

4
(z̄2ρk+2 + 2|z|2ρk + z2ρk−2). (11)

This multimode coupled equation is directly comparable to a
class studied by Tönjes and Pikovsky [13]. Here there is disor-
der in the frequencies in addition to the coupling originating
from the noise term. In both cases, however, the recurrence
equation (11) can be solved using the transfer matrix method,
which gives a general solution of the form

ρk (ω) =
2L∑
�=1

c�λ�(ω)k, k � 1 − L,

where L = 2 is the order of the coupling as we have up to
k ± 2 modes coupled to the kth mode. It is also required that
the complex roots λ� lie within the unit disk, so the actual
solution necessarily takes the form

ρk (ω) = c1λ1(ω)k + c2λ2(ω)k, (12)

where c1 and c2 are normalization coefficients summing to
1/2π . Explicitly,

c1(ω) = 1

2π

(
1 − λ2(1 − |λ1|2)(1 − λ2λ1)

λ1(1 − |λ2|2)(1 − λ1λ2)

)−1

, (13)

and c2(ω) = 1/2π − c1(ω). In real (phase) space, this so-
lution posits that the density of oscillators with a given
frequency has the form of the product of two wrapped Cauchy
distributions, also known as a Kato-Jones distribution (cf.
[13,24]). Specifically, this distribution can be written as

ρ(θ, ω) = 1

2πM

2∏
n=1

1 − |λn|2
|eiθ − λn|2 ,

where M is a normalization constant given by

M = λ1(1 − |λ2|2)

(λ1 − λ2)(1 − λ̄2λ1)
+ λ2(1 − |λ1|2)

(λ2 − λ1)(1 − λ̄1λ2)

and we have omitted the dependence of ω on λ1 and λ2. In this
distribution, the arguments of the complex parameters λ1 and
λ2 determine the positions of the two peaks, while the moduli
determine the coherence and relative weighting of the peaks.
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Applying (12) to (7) reveals an equation that must be satis-
fied by each of these complex parameters. First, for k � 1,

0 =
2∑

n=1

cn

{
−ikωλk

n − |k|
[
λk

n − κz
(
λk−1

n + λk+1
n

)

+ κ2z2

4

(
λk−2

n + 2λk
n + λk+2

n

)]}
.

If the argument in the curly brackets is zero for each of n =
1, 2, then dividing through by kλk

n, we obtain

0 = iω +
[
1 − κz

2
(λ + λ−1)

]2
. (14)

Recalling that z = 2π〈ρ−1〉, we see that this equation must
be solved self-consistently with z determined as a func-
tion of λ1,2. Here we appeal to the remarkable result
of Ott and Antonsen [21], that when the intrinsic fre-
quencies are chosen from a Lorentz distribution, disorder
averaging can be replaced by evaluation at a particular com-
plex frequency. Specifically, if g(ω) = [(ω − iγ 2)−1 − (ω +
iγ 2)−1]/2π i, then 〈ρk〉 = ρk (−iγ 2). The symmetry of g im-
plies that we may choose a frame of reference in which the
disorder-averaged stationary distribution 〈ρ〉 is also symmet-
ric, implying that 〈λ1〉 = 〈λ2〉 = λ. The frequency-averaged
distribution can thus be written as

〈ρst(θ )〉 = 1

2π

1 − |λ|2
1 + |λ|2

( |1 − λ2|
|eiθ − λ||eiθ − λ̄|

)2

. (15)

Moreover, the frequency-averaged Fourier modes, 〈ρk〉 =
〈c1〉〈λ〉k + 〈c2〉〈λ〉k , now have normalization constants given
by

〈c1〉 = 1

2π

λ(1 − λ̄2)

λ(1 − λ̄2) − λ̄(1 − λ2)
(16)

or, after some manipulation,

〈c1〉 = 1

4π

(
1 + i

|λ|2 − 1

|λ|2 + 1

Re(λ)

Im(λ)

)
,

from which we see that 〈c1〉 = 〈c2〉, recalling that 〈c2〉 =
1/2π − 〈c1〉. This is also apparent as we require 〈ρk〉 =
〈c1〉λk + 〈c2〉λ̄k to be real, which is satisfied for all k
only if 〈c1〉 = 〈c2〉. Returning to the order parameter, z =
2π (〈c1〉λ + 〈c2〉λ̄), after some simplification, we can com-
pactly express this as

z = λ + λ̄

|λ|2 + 1
. (17)

Consequently, (17) reduces (14) to the algebraic equation

iγ = 1 − κ

2

(λ + λ̄)

1 + |λ|2 (λ + λ−1). (18)

Of the possible roots within the unit disk (accounting for
rotation and reflection symmetry) we pick the one in the top
right quadrant and write it as λ = |λ|ei�. The solution can then
be explicitly stated:

|λ| =
(√

κ − 1 − γ√
κ − 1 + γ

)1/2

, � = arccos(1/
√

κ ). (19)

This solution exists only for κ > γ 2 + 1, matching the stabil-
ity condition for the incoherent state, and in the limit γ → 0
it recovers the Dirac mass pair solution obtained above. The
argument of λ is the separation between the peaks in ρ, while
the modulus controls their coherence. For small values of
γ and large values of κ , the peaks are sharp, whereas they
become less pronounced when γ is small and as κ → γ 2 + 1,
as can be seen in Fig. 2. From this solution we also obtain a
closed expression for the averaged coherence order parameter:
|z| = 2|λ| cos(�)/(|λ|2 + 1) =

√
(κ − γ 2 − 1)/κ (κ − 1).

D. Approximate low-dimensional dynamics

We now extend the method applied above beyond the
stationary states to deduce approximate low-dimensional dy-
namics for the evolution of the disorder-averaged oscillator
phase density for Cauchy noise. Applying the disorder aver-
age to (7) in the case α = 1, we obtain

1

|k|∂t 〈ρk〉 = −(1 + γ 2)〈ρk〉 + κ (z〈ρk−1〉 + z̄〈ρk+1〉)

− κ2

4
(z̄2〈ρk+2〉 + 2|z|2〈ρk〉 + z2〈ρk−2〉). (20)

Similarly, the disorder average of the Tönjes-Pikovsky ansatz
(12) is simply 〈ρk〉 = cλk + cλk . This is consistent with (20)
if c is assumed to be constant and if

λ̇ = −λ[1 − κ (cλ + cλ)(λ + λ−1)]2 − λγ 2. (21)

This equation describes the approximate low-dimensional dy-
namics of the order parameter λ. Unlike the Ott-Antonsen
manifold for the Kuramoto model with Cauchy noise and
Lorentz intrinsic frequencies, this is not an exact mapping; the
coefficient c actually has a nonconstant imaginary part, which
was ignored in the derivation of (21). Nonetheless, we find it
provides a good qualitative description of the evolution of the
system in simulation experiments.

To test the predictive power of our approximate low-
dimensional dynamics, we prepare a finite sample system in a
state consistent with the Tönjes-Pikovsky ansatz and forward
integrate. A time series for λ can be inferred by fitting the
empirical distribution of oscillator phase to the Kato-Jones
distribution in (15). Full details of how to correctly prepare
the samples are provided in Appendix C. Figure 5 shows the
complex flow field described by (21), overlaid with simulation
results for various initial values of λ. We see that the approxi-
mate low-dimensional dynamics represent well the trajectory
of the order parameter as it evolves towards the steady state.

IV. SINE COUPLING

Perhaps a more minimal example of the noise-coupled
model in (1) would be a pure sinusoidal coupling function. To
see if binary synchronization is specific to the previous choice
of coupling, we propose another form:

θ̇n =
(

1

N

∑
m

sin(θm − θn)

)β

ξn(t ). (22)
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FIG. 5. Field lines for the approximate low-dimensional dynam-
ics given in (21) with κ = 5, γ = 0.1 as in Fig. 2(b). Cyan lines
show paths of the fitted order parameter according to the approximate
distribution from oscillator simulations.

The oscillator density equation is

∂tρ = ∂α
|θ |(ρ〈sin ∗ρ〉2) − ω∂θρ, (23)

which, in terms of its Fourier series, is

∂tρk = −|k|α
4

(z2ρk−2 + z̄2ρk+2 − 2|z|2ρk ) − ikωρk . (24)

If there is no disorder in the frequencies, g(ω) = δ(ω),
there are two trivial steady states: ρ(θ ) = 1/2π and ρ(θ ) =
δ(θ ), which is the same as the traditional Kuramoto model.
This gives support to our idea that this is the minimal
noise-coupling model which displays synchronization. The
interesting behavior in the Kuramoto model is the dynamics—
the nonequilibrium transition from incoherence to coherence.
What we observe in this model, however, is that a family of
steady states exists. The one that is observed is thus deter-
mined by the initial condition of the system.

Taking a closer look at the system without frequency dis-
order and imposing symmetry about the origin, we have

ρ̇k = −|k|α
4

z2(ρk+2 + ρk−2 − 2ρk ), (25)

where z = 2πρ−1 = 2πρ1. Trivial steady states exist when
z = 0, in other words, when the distribution is mirrored at
0 and π . The other possible steady states are when the ex-
pression in the brackets of (25) is zero. Solving this recursive
equation and imposing symmetry in k → −k, we find that ρk

must be of the form

ρk = a1 + (−1)ka2.

Splitting it into odd and even k, it is

ρk =
{

(a1 + a2)/2π k even,
(a1 − a2)/2π k odd.

(26)

Now, we show that this must be equivalent to two Dirac
masses of differing weights,

ρ(θ ) = aδ(θ ) + (1 − a)δ(θ − π ) (27)

for 0 � a � 1. The Fourier modes of this equation are

ρk =
{

1/2π k even,
(2a − 1)/2π k odd.

(28)

If we match 1 = a1 + a2 and (2a − 1) = a1 − a2, then these
equations are the same with a1 = a and a2 = 1 − a. The odd
and even Fourier modes are decoupled, with the even modes
always tending towards 1/2π no matter what the initial con-
dition is. On the other hand, the odd modes will also average
out, but to a constant yet to be determined. This constant can
be found in terms of the odd modes of the initial condition.
We find that

S(t ) =
∑
k odd

1

|k|α ρk (t ) =
∞∑

�=1

1

|2l − 1|α ρ2l−1(t )

is a conserved quantity for α > 1 since, using Eq. (25), we
have

d S

dt
= −ρ2

1

4

∞∑
l=1

(ρ2l+1 + ρ2l−3 − 2ρ2l−1)

= −ρ2
1

4

( ∞∑
l=2

ρ2l−1 +
∞∑

l=0

ρ2l−1 − 2
∞∑

l=1

ρ2l−1

)

= −ρ2
1

4
(ρ−1 + ρ1 − 2ρ1) = 0.

For the stationary state in Eq. (28) we have

S(∞) =
∞∑

l=1

2a − 1

2π |2l − 1|α .

Taking the Brownian motion case (α = 2) leads to

S(∞) = π

16
(2a − 1).

Since the summation at any moment in time must be the same
as the summation at the start, the proportion of oscillators at
the origin, a, is determined by

a = 1

2
+ 8

π
S(0). (29)

We also require that the summation converges for the initial
condition. For instance, if we start from a wrapped Cauchy
distribution centered on zero, the Fourier modes are given by

ρk (0) = zk

2π
, 0 � z � 1.

Hence, substituting this into (29), we find

a = 1

2
+ 4

π2

∞∑
l=1

z2l−1

(2l − 1)2
. (30)

024218-6



COLLECTIVE SYNCHRONIZATION THROUGH NOISE … PHYSICAL REVIEW E 109, 024218 (2024)

FIG. 6. Proportion of oscillators at the origin at the final time due
to the initial condition; 2000 oscillators were initially sampled from a
wrapped Cauchy distribution with coherence parameter a. Evolving
under the sine-coupled noise model described by the stochastic dif-
ferential equation (22), the oscillators tend to a two-peak stationary
state (28), with proportion c determined by Eq. (30).

An approximation of this sum is displayed in Fig. 6 and
matches well the numerical solutions to the stochastic oscilla-
tor system.

V. DISCUSSION

To summarize, we have sought to find a model of synchro-
nization arising from coupling purely in the noise strength on
each oscillator. This model differs from almost all previous
models of synchronization as the tendency towards synchrony
is completely intrinsic to the system, with each oscillator act-
ing under independent noise. In contrast, the existing literature
focuses on deterministic coupling or random coupling through
external or common noise to each oscillator. The specific
choice made for the first model reproduces the exact stability
condition about the incoherent state for the noisy Kuramoto
model with a general frequency distribution [16]. For the other
stationary state, comparisons can be made to systems with
multiharmonic, deterministic coupling [13,23]. We applied
the approaches developed for such systems to this model,
which enabled us to characterize the binary synchronized
steady state in terms of a Kato-Jones distribution. While not
being exact, this description was also useful in describing the
general dynamics of the system in terms of the order parame-
ter λ. It remains to be seen whether an exact description of the
low-dimensional manifold can be found. That has also been a
challenge for more traditional Kuramoto models with noise.
Recent developments showed that the Ott-Antonsen ansatz
can be generalized to a larger family of invariant manifolds
[22], so it is possible a similar approach could be taken for the
system present in this paper.

For the minimal model with sine coupling, we demon-
strated the degeneracy in the stationary state. By finding a
conserved quantity in the odd Fourier modes, the exact form
of the final state could be determined in terms of the initial
configuration of the oscillators.

Models with common noise [9,12] have provided interpre-
tations for synchronization in neocortical neurons [25] as well
as the dynamics of independent ecosystem populations [26].
Such models posit that the decisions or behavior of individuals

is dependent on an external random environment, whereas in
this context the model presented here supposes the random
environment is a product of the overall population in the
system. Another possible link to the work presented here is
in temporal networks [27]. Such networks can also display
synchronization phenomena [28,29], and one could view the
state dependent noise in this model as being comparable to
the continuous-time limit of these temporal networks with
stochastically varying connections.
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APPENDIX A: STABILITY OF THE INCOHERENT STATE

In terms of the density of oscillators ρ(θ, ω, t ), the general
system in the main text is

∂tρ = −ω∂θρ + ∂α
|θ |(ρ 〈ρ ∗ f 〉2). (A1)

We study the linear stability about the incoherent state by
writing ρ(θ, ω, t ) = ρ◦ + εψ (θ, ω, t ) for small ε > 0, where
ρ◦ = 1/2π . Substituting this into (A1), we have

ε∂tψ = ∂α
|θ |[(ρ◦ + εψ )〈(ρ◦ + εψ ) ∗ f 〉2] − ωε∂θψ

= ∂α
|θ |[(ρ◦ + εψ )( f0 + ε〈 f ∗ ψ〉)2] − ωε∂θψ

= ∂α
|θ |[2ερ◦ f0〈 f ∗ ψ〉 + ε f0ψ] − ωε∂θψ + O(ε2),

where f0 = 1
2π

∫ π

−π
f (θ ) dθ . Therefore, the linearized fluctu-

ations about the incoherent state evolve according to

∂tψ = f0∂
α
|θ |(ψ + 2ρ◦〈 f ∗ ψ〉) − ω∂θψ

= f0∂
α
|θ |ψ + 2ρ◦ f0

〈(
∂α
|θ | f

) ∗ ψ
〉 − ω∂θψ.

Similar stability conditions have been found for systems
with deterministic coupling and independent Brownian noise.
Strogatz and Mirollo [16] studied the Kuramoto model with
stochastic noise and general intrinsic frequencies. Here we
follow their approach with the generalized Levy noise used
above. The evolution of the oscillators with Kuramoto cou-
pling and Levy noise is

θ̇n = ωn + K

N

N∑
m=1

sin(θm − θn) + ξn(t ).

For this system, we can write the density of oscillators as

∂tρ = ∂α
|θ |ρ − ω∂θρ + K∂θ (ρ〈sin ∗ρ〉)

Again, applying the linear perturbation about the incoherent
state, we obtain

∂tψ = ∂α
|θ |ψ + K∂θ (ρ◦〈sin ∗ψ〉 + ψ〈sin ∗ρ◦〉) − ω∂θψ

= ∂α
|θ |ψ + Kρ◦∂θ 〈sin ∗ψ〉 − ω∂θψ

= ∂α
|θ |ψ + Kρ◦〈cos ∗ψ〉 − ω∂θψ,

024218-7



JEREMY WORSFOLD AND TIM ROGERS PHYSICAL REVIEW E 109, 024218 (2024)

where in the second line we use
∫ π

−π
ρ◦ sin(θ ) dθ = 0.

Comparing this with the stability for our model, it can be seen
that the stability conditions match if the coupling function is
chosen such that f0 = 1 and

2∂α
|θ | f (θ ) = K cos(θ ).

The form of the function f is apparent if we consider its
Fourier modes:

−|k|α fk = K

4
(δk,−1 + δk,1) − δk,0,

so f±1 = −K/4, fk = 0 for k �= ±1, 0, and f0 = 1 as before.
Thus, the only functional form which matches for all Fourier
modes is

f (θ ) = 1 − κ cos(θ ),

with κ = K/2.

APPENDIX B: STOCHASTIC ASYMPTOTIC STABILITY

By considering the noise strength on an individual particle
due to the mean field of all particles, we can understand the
dynamics of the system in terms of two states. The stochastic
differential equation (SDE) of an individual particle when
there are no intrinsic frequencies [with the distribution cen-
tered on zero so that arg(z) = 0] is

θ̇ = [1 − κ|z| cos(θ )]ξ (t ).

The coupling strength indicates the state each particle gravi-
tates towards. Particles get trapped in regions with small noise
strength and diffuse away faster from regions with large noise
strength. The result is that, eventually, particles will tend to-
wards the minimum of the noise strength: [1 − κ|z| cos(θ )]2.

When κR < 1, the system behaves similarly to the Ku-
ramoto model as the particles tend towards the mean phase,
increasing the overall coherence. The difference comes once
the coherence reaches the point that κ|z| and two minima
exist at ± arccos(1/κ|z|). The particles are equally attracted
to these points, and eventually, all particles are equally dis-
tributed between these two phases. At this state |z| = 1/

√
κ ,

and all particles are at ±� = ± arccos(1/
√

κ ). Initially, the
particles diffuse, but the ones around the mean phase do
so less strongly. Particles coalesce onto this region until the
kernel changes, and then particles on either side of the mean
become static. These static regions move away from the mean
phase slowly as more particles condense onto the two points.
Here we discuss the stability of this binary synchronized state
from the perspective of the stochastic stability of a single
oscillator. First, we define what it means for an oscillator to
be stochastically stable.

Theorem 1. Stochastic asymptotic stability [19]. Assume
a SDE has a trivial solution x = 0. The trivial solution is
stochastically asymptotically stable (SAS) if it is stochasti-
cally stable, and for every ε ∈ (0, 1), ∃δ0 = δ0(ε) > 0 such
that

P { lim
t→∞ |x(t ; x0)| = 0} � 1 − ε

whenever |x0| < δ0.
Suppose the system is in the binary synchronized state with

β = 1 (Brownian noise). The SDE for a single stray oscillator

away from the two peaks is then

θ̇ = [1 − √
κ cos(θ )]ξ (t ). (B1)

The mean first passage time τ (θ ) for the oscillator starting
in the region [−� + ε,� + ε] to reach a distance ε from the
peaks is

d2τ

dθ2
= [1 − √

κ cos(θ )]−2,

with the boundary conditions τ (ε − �) = τ (� − ε) = 0. We
can also determine which peak it is likely to join given a
starting point θ0. For an SDE with no drift, the probability
pi of exit through a boundary bi given an initial position x0 is
[18]

p1(x0) = b2 − x0

b2 − b1
, p2(x0) = x0 − b1

b2 − b1
.

Thus, in this case,

p±�(θ0) = � ± θ0

2�
.

Suppose that the particle starts a distance ϑ0 from the peak at
−�. Writing θ = ϑ − �, we have

P
[

lim
t→∞ ϑ (t ) = 0 |ϑ (0) = ϑ0

]
= p−�(ϑ0 − �)

= 1 − ϑ0

2�
.

Therefore, from Theorem 1, the particle is stochastically
asymptotically stable with δ0(ε) = 2�ε and ε = ϑ0/2�. If all
oscillators are perturbed such that we still have

√
κ ′ = κ|z| > 1

and arg(z) = 0, the SDE for each particle has a form similar
to (B1):

θ̇n = [1 −
√

κ ′ cos(θn)]ξn(t ).

We conclude that the distribution is also SAS in the thermo-
dynamic limit N → ∞ since all perturbed particles at least
appear to be SAS near the binary synchronized state.

APPENDIX C: SAMPLING FROM THE APPROXIMATE
LOW-DIMENSIONAL DISTRIBUTION

To find an approximate manifold for the dynamics of the
system, we proposed that the order parameters took the form

ρk (ω) = c1(ω)λ1(ω)k + c2(ω)λ2(ω)k.

To sample an initial condition, we first note that no assumption
was made of the form of λ(ω) besides requiring analyticity of
ρk and thus z. In other words, we must have |z(ω)| < 1.

One possible initial condition is λ1(ω) = Ke−i|ω|φ , where,
for simplicity, we choose λ1 = λ2. The overall order parame-
ter 〈λ〉 can be found from

〈λ〉 =
∫ ∞

−∞
g(ω)λ1(ω) dω

= λ1(−iγ 2) = Ke−iγ 2φ.

Thus, recalling that 〈λ〉 = λ = |λ|ei�, we have

|λ| = |K|eIm(φ)γ 2
, � = arg(K ) − γ 2Re(φ).
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Given a distribution width γ 2, we can choose (K, φ) to give
the (|λ|,�) we desire for the initial condition. Since we re-
quire |λ1(ω)| < 1 for all ω and |λ̄| < 1, we are constrained to
Im(φ) < 0. In addition to this we must have |K| < 1, which
means

1 > |λ|e−Im(φ)γ 2
,

ln(|λ|−1) > −Im(φ)γ 2.

In summary,

1

γ 2
ln |λ| < Im(φ) < 0, |K| < 1.

Beyond this, the parameters are free to be chosen in any way
to obtain the desired order parameter. For simplicity in our
simulations we choose Im(K ) = Re(φ) = 0.
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