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Self-trapping of vortex crystals via competing nonlinearities
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We investigate the existence of self-trapped nonlinear waves with multiple phase singularities. Working with
the cubic-quintic nonlinear Schrödinger equation, we focus on configurations with an antivortex surrounded by
a triangular arrangement of vortices within a hosting soliton. We find stationary patterns that can be interpreted
as stable self-trapped vortex crystals, constituting the first example of a configuration of this sort with space-
independent potentials. Their stability is linked to their norm, transitioning from unstable to stable as their size
increases, with an intermediate region where the structure is marginally unstable, undergoing a remarkable and
puzzling self-reconstruction during its evolution.
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I. INTRODUCTION

Localized self-trapped modes emerge in diverse physical
situations as a result of the balance between nonlinearity,
diffraction and/or dispersion, with implications for many ar-
eas of physics, mathematics and other disciplines [1]. They
are usually named solitons abusing language from the original
meaning of the term [2], where an integrable one-dimensional
problem was considered. Multidimensional [two-dimensional
(2D) and three-dimensional (3D)] solitons pave the way to the
observation of a variety of interesting phenomena and con-
stitute a broad research topic for both theory and experiment
[3–5]. In particular, they allow for the existence of phase dis-
locations [6], namely vortices, that evolve without distortion
and exist in media with repulsive self-interactions [7], for in-
stance in nonlinear optics [8,9] or Bose-Einstein condensates
[10,11]. Different versions of the nonlinear Schrödinger equa-
tion (NLSE) are useful to model diverse physical situations.

Vortices located at the center of self-trapped beams are
usually called bright vortex solitons [12,13]. In this contri-
bution, we disclose the existence of two-dimensional bright
solitons pinched by several phase singularities, which we
may call multivortex solitons, In particular, we focus on the
stationary case, where stationary refers to solutions of the
wave equation for which the intensity profile |�|2 remains
propagation-invariant. However, it should be noted that some
cases are unstable, leading to the eventual unraveling of the
initial configuration. These solitons are constructed by arrang-
ing the vortex singularities in such a way that their interactions
with each other leave the profile invariant. The solutions carry
fractional angular momentum, in the sense of Refs. [14–16].

Multivortex solitons have been discussed in the discrete
case [17] or in the presence of lattice potentials [18,19].
Arrangements of vortices rotating around a central point
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have been discussed for nonlocal interactions, giving rise
to spiraling multivortex solitons [20]. In a recent interest-
ing paper [21], stationary arrangements of vortices supported
by space-dependent nonlinearities were found. Vortex lat-
tices or clusters in Bose-Einstein condensates in rotating
traps have been discussed at length, e.g., Ref. [22]. Similar
configurations have been found to spontaneously arise in
particular laser cavities with dissipation and gain [23].
Our work differs from these cases since we have a self-
trapped propagation-invariant profile supported by a space-
independent local nonlinear potential.

This novel class of multivortex solitons can be regarded as
a self-trapped version of vortex crystals, namely vortex pat-
terns that evolve without change of shape or size [24,25], the
simplest example being that of regular polygons [26]. Vortex
crystals have been discussed in different physical situations
where quantized vortices exist. For instance, Ref. [27] studied
regular polygons in Bose-Einstein condensates and Ref. [28]
investigated more complicated configurations in superfluids.

Vortex soliton solutions are unstable in many cases, and
one of the possibilities for stabilization [29] is the presence
of competing nonlinearities [13,30]. In this vein, we work
with the cubic-quintic NLSE (CQNLSE), a model with many
interesting properties, including the existence of stable bright
vortex solitons of arbitrarily high topological charge [31–33].
In optics, that dependence of the refractive index can be
achieved for carbon disulfide [34], with solutions of nanopar-
ticles [35] or by appropriately preparing a quantum state
within a cold atomic gas, as initially proposed in Ref. [36] and
subsequently validated experimentally [37]. The CQNLSE
has also been applied to Bose-Einstein condensates, see e.g.,
Refs. [38,39], superfluids [40] and other fields.

II. SETUP AND FORMALISM

By rescaling, the 2D CQNLSE can be written in the fol-
lowing adimensional form:

i
∂�

∂t
= −∇2� + (|�|4 − |�|2)�, (1)
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where ∇2 = ∂2
x + ∂2

y . Conserved quantities include the norm
and angular momentum:

N =
∫

|�|2dxdy, (2)

J =
∫

Im[�∗(x∂y − y∂x )�]dxdy. (3)

It is well known that Eq. (1) has flat-top self-trapped solutions
with liquidlike properties for large N [41,42]. Using r, θ as
polar coordinates in the x − y plane, the vorticity-less soli-
tons are given by �sol = eiβtψsol(r) with β < βcri = 3

16 [43],
where the ψsol(r) profile can be found numerically by standard
methods. When β approaches βcr , the following expression
becomes a useful approximation:

ψsol(r) ≈
√

3/2√
e

√
3

2 (r−Rsol ) + 1

, (4)

where Rsol is the soliton radius. We have Rsol → ∞ as β →
βcr . Notice that Eq. (4) represents a flat-top droplet with

ψ ≈ ψcr =
√

3/2 (5)

for r < Rsol and ψ ≈ 0 for r > Rsol. There are also dark soli-
ton solutions with vorticity of the form � = eiβt eilθψ|l|(r). In
the present paper, we will deal with the |l| = 1 case, for which
we can use a Padé approximant, along the lines of [44]:

ψ|l|=1 ≈
√

r2(606 + 260r2 + 0.356r4)

105 − 390r2 + 360r4 + 0.475r6
. (6)

III. MULTIVORTEX POLYGONAL CONFIGURATIONS

We can construct multivortex configurations within a flat-
top soliton using Eqs. (4) and (6) as building blocks. Take

ψ (x, y) = ψsol(r)

ψ
nV
cr

nV∏
j=1

ψ|l j |(r j )e
il jθ j , (7)

where nV is the total number of phase dislocations, ψcr

is defined in Eq. (5) and r j = √
(x − x j )2 + (y − y j )2, θ j =

arctan((y − y j )/(x − x j )) are sets of polar coordinates cen-
tered at each of the vortices (or antivortices). A particularly
interesting case corresponds to placing n vortices of equal
l at the vertices of a regular polygon, concentric with the
background soliton, i.e.,

(xa, ya) = R

(
cos

(
2πa

n

)
, sin

(
2πa

n

))
(8)

with a = 0, . . . , n − 1. Note that in our notation, n and nV can
be different integers, as there may be additional singularities
beyond those associated with the polygon, as discussed below.
These configurations preserve a Zn rotational symmetry and
can rotate rigidly (see Ref. [45] for related studies within a
trap).

Flows rotating around the vortex singularities drag other
vortices located in their vicinity [8]. The drag velocity is
perpendicular to the line joining the two vortices and, with
the present conventions, its modulus is 2l/ρ, where l is the
topological charge of the vortex inducing the flow and ρ the
intervortex distance, see, e.g., Ref. [45]. Let us apply these

FIG. 1. Schematic vector representation of the dragging veloci-
ties induced on the top vortex by others located at the consecutive
vertices for various regular polygons. We can see that

∑(n−1)
i vi,⊥ =

4l
∑(n−1)/2

i
cos(αi )

Li
where R cos(αi ) = Li/2, with Li the distance be-

tween the top vertex to each other vertex, and therefore we
immediately derive Eq. (9). This construction, valid for odd n can be
easily generalized to even n and the result (9) holds for any integer
n � 2.

considerations to a regular n-polygon with l-charged vortices
placed at their vertices. The total drag velocity induced in one
vortex by the rest of them will be tangential to the circumcircle
with modulus:

v =
(n−1)∑

i

vi,⊥ = l (n − 1)

R
, (9)

where vi,⊥ is the component of vi tangential to the circle.
Figure 1 provides a graphical illustration of these result. This
kind of configuration gives rise to self-trapped spiraling multi-
vortex solutions similar to [20], see the Supplemental Material
for an illustrative example [46] of the evolution of a triangle
of vortices.

We perform numerical integration of Eq. (1) using the
beam propagation method [47] adapting the open source code
provided in Ref. [48]. We have controlled the accuracy of the
computed evolution by monitoring the conserved quantities.
Apart from using small enough spacing for the discretization
along x, y, and t , we have found it necessary to use 64-
bit floating-point numbers to keep track of the evolution for
long simulations as those reported below when discussing the
stability.

IV. STATIONARY MULTIVORTEX SOLUTIONS

The main question that we address here is whether station-
ary solutions � = eiβtψ (x, y) can be constructed by inserting
multiple vortex singularities inside a large bright soliton.
Namely, we look for self-trapped solutions of the equation:

−βψ = −∇2ψ + (|ψ |4 − |ψ |2)ψ (10)

that have more than one phase dislocation. The simplest gen-
eralization of the polygonal configurations of Fig. 1 is to add
another vortex, with topological charge lC , at the center of the
droplet. Then, Eq. (9) becomes v = (2lC + l (n − 1))/R and
the configuration should remain static if

lC = −l (n − 1)/2. (11)

In the following, we concentrate on the l = 1, lC = −1,
n = 3 case, namely a singly charged antivortex surrounded by
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an equilateral triangle of singly charged vortices [49]. This
configuration corresponds to the simplest static vortex crystal
[24,25].

Even if the leading contribution to the velocity vanishes,
as described above, we find that the triangle rotates, albeit
extremely slowly as compared to the case without central
antivortex. This happens because there are two subleading
contributions that become relevant. One is related to the finite-
ness of the bright soliton, that can be modeled by introducing
image vortices [50]. The second one is related to the nonzero
size of the vortex cores. These contributions were discussed in
detail in Ref. [45] for a case with external trapping and work
in a qualitatively similar fashion in the self-trapped case: for
large enough R, the triangle rotates counterclockwise whereas
for small enough R it rotates clockwise. By continuity, there
must exist a radius Rst for which the triangle remains static
and, consequently, there is a solution of Eq. (10).

Clearly, Eq. (7) does not provide an exact solution of
Eq. (10), but it does provide a good approximation if R is
chosen close to Rst . Thus, to find our best numerical approx-
imation to stationary solutions we use the following process.
First, we choose a hosting bright soliton of a given size and
power, therefore fixing ψsol(r). Then, we run Eq. (1) with
initial conditions (7) for different values of the triangle ra-
dius R. The result of these simulations show clockwise or
counterclockwise rotation of the triangle for different values
R and we can find a value Rst for which there is no rotation
at all. Starting with that initial condition, we use a method of
propagation in imaginary time to approach the actual solution
[51,52]. Still, this may not fully converge to a completely
static configuration but we can further refine the value of Rst

by running in real time the results of propagation in imaginary
time and, again, looking for nonrotating configurations. With
this procedure, we find a one-parameter family of solutions,
with Rst determined as a function of Rsol (or, equivalently, of
the norm N). Obviously, there is a second, trivial, parameter
that can be chosen at will, corresponding to U (1) rotations of
the configuration, namely different orientations of the triangle.
In Fig. 2, we depict one case and how some of the physical
quantities vary along the family.

It is interesting to notice that the stationary solutions have
fractional angular momentum, using the nomenclature of
[14–16], namely noninteger J/N . To find an approximation
for J/N , take

� ≈ ψcr
(Rsol − r)
nV∏
j=1

eil jθ j (12)

so the integral of Eq. (3) can be computed explicitly. With
this ansatz, where 
(·) is the Heaviside step-function, the
contribution from the different vortices is additive: J =
ψ2

cr

∑nV
j=1 l j I j with

I j =
∫

r<Rsol

(
x(x − x j ) + y(y − y j )

(x − x j )2 + (y − y j )2

)
dxdy = π

(
R2

sol − R2
j

)
,

(13)

where Rj =
√

x2
j + y2

j and we have assumed Rj < Rsol (for

Rj > Rsol the integral vanishes and therefore image vortices
do not affect J in this approximation). Using N ≈ πR2

solψ
2
cr

(a) (b)

(c) (d)

(e) (f)

FIG. 2. A stationary and stable multivortex soliton, with Rsol =
192, Rst = 38. Panel a) represents |�(x, y)|2 and panel b) is a quiver
plot for the momentum, where we have enlarged the area around the
vortices. (c)–(f) show how Rst , Rst/Rsol, β and J/N change along the
family. The dashed line indicates the unstable region, whereas the
solid line is the stable region and the green dot marks the solution
of (a) and (b). In (f), the horizontal line corresponds to the integer
values J/N = 2, and the dotted line represents the approximation for
J/N given in Eq. (14). We only draw the dotted line for small values
of N since then it becomes hardly distinguishable from the solid line,
to which it tends asymptotically.

and taking the n = 3, l = −lC = 1 case, we find:

J

N
≈ 2 − 3

R2
st

R2
sol

(14)

which, indeed, matches very well the numerical findings es-
pecially for large N , see Fig. 2, panel (e).

V. STABILITY

We have studied the stability of the stationary solutions by
simulating long propagations, where long is defined by com-
paring with the period of rotation of the triangle without cen-
tral antivortex. For small values of N , the vortex cores are too
close to each other and the interaction between them ends up
destabilizing the stationary solution. Within the unstable so-
lutions, there are two qualitatively distinct behaviors. In both
cases, the instability starts with an oscillation of the central
antivortex around the central position. Then, for small enough
N , the antivortex eventually pairs with one of the vortices and
the pair gets a velocity large enough to escape, completely
unravelling the initial configuration, as depicted in Fig. 3.

On the other hand, for an intermediate range of N , after os-
cillating for a while, the central antivortex, amazingly, returns
to the center, reconstructing the initial configuration, albeit
rotated. This produces a series of cycles of destabilization
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FIG. 3. Evolution of a stationary but unstable multivortex solu-
tion (Rsol = 64, Rst = 22.5). See Ref. [46] for a video of the process.

and self-reconstruction such that the triangle remains static,
then rotates, remains static again, etc. These cycles are non-
linear recurrences somehow reminiscent of those described in
Refs. [53,54] in different setups. They are a two-dimensional
generalization of a kind of phenomenon beautifully addressed
in [55] in a one-dimensional setting: close to the transition of
linear stability a linear eigenvalue becomes small and time-
periodic orbits consisting of cycles of departure and recon-
struction can appear. See Fig. 4 and Ref. [46] for illustration.

For larger values of N , our numerical simulations suggest
that solutions are stable. In the Supplemental Material [46],
we provide a video which shows how the profile depicted in
Fig. 2 remains static and stable. In a second video, we use an
analytic initial condition, Eq. (7) and check that the configu-
ration is stable even if the initial condition is not exactly an
eigenstate. Comparing both videos is interesting to visualize
how good an approximation given by Eq. (7) can be.

It is worth mentioning that these are long propagation
times, which amount to approximately a hundred full turns
of the triangle if the central antivortex were absent. We
have also checked stability with respect to dynamical pro-
cesses. In Fig. 5, we simulate an example of collision of
two stable multivortex solitons and show that their structure
remains unchanged despite the resulting shakeup. Together,
these computations provide strong evidence of the stability of
the solutions.

VI. A NECESSARY CONDITION FOR THE EXISTENCE OF
STATIC CONFIGURATIONS WITHIN

A FLAT-TOP BACKGROUND

Up to now, we have studied the case of three vortices
surrounding an antivortex in a cubic-quintic background. In

FIG. 4. Evolution in time of the polar angle at which one of the
vertices of the equilateral triangle is located, for a stationary solution
in the intermediate N region (Rsol = 96, Rst = 22.5). As a qualitative
description, the triangle remains initially in a static state, then un-
dergoes rotation, comes to a halt, resumes rotation, and repeats this
sequence cyclically.

FIG. 5. Collision of two equal stable solitons (Rsol = 134, Rst =
34) in phase opposition [46]. Initial velocities are |v| = 0.005. Col-
lisions with different relative phases or larger velocities can result
in droplet merging and the consequent unraveling of the vortex
structures.

the limit β → βcr , both Rsol and Rst grow, the profile be-
comes increasingly flat-top, the soliton becomes larger and
the interplay between the vortices and the boundary becomes
negligible. In the limit Rsol → ∞ we can show that there is a
necessary condition for the existence of stationary multivortex
solutions to Eq. (10) or any other NLSE of the sort that admits
flat-top solutions. The condition is very simple and relates
the topological charges of all the phase dislocations in the
configuration: (

nV∑
i=1

li

)2

=
nV∑
i=1

l2
i . (15)

Notice that this condition is trivially satisfied by nV = 1
(a vortex soliton). If nV > 1, presence of both vortices and
antivortices is required. If a stationary self-trapped solution
can be continuosly connected to the limit with an infinitely
large flat background, then Eq. (15) must be satisfied.

We now outline the proof of Eq. (15), which relies on a
Pohozaev identity [56]. We use a result given in Ref. [57]
for an NLSE of the form −β� = −∇2� + g(|�|)� when the
asymptotic value of the wave function is limr→∞ � ≈ ψcreilθ .
A simple generalization of the result in Ref. [57] can be
written as ∫

R2

Fdxdy = −π

2
l2ψ2

cr, (16)

where F (|�|) is a function such that dF (|�|)
d|�| = f (|�|) and

F (ψcr ) = 0, with f (|�|) = −(β + g(|�|))|�|. Let us apply
this for vortices within a constant background, with the inter-
vortex separation much larger than the size of the vortex core.
Far from the vortex cores, |�| ≈ ψcr , and the contribution to
the integral

∫
Fdxdy is negligible. Therefore, the integral can

be written as a sum of the integrals around each vortex core:∫
R2

Fdxdy = ∑nV
i=1

∫
Si

Fdxdy = −π
2 ψ2

cr

∑nV
i=1 l2

i , where Si is
a surface around each vortex which is far from the other vor-
tices but much larger than the vortex cores. On the other hand,
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applying the Pohozaev identity for the whole x − y plane we
get

∫
R2

Fdxdy = −π
2 ψ2

cr (
∑nV

i=1 li )2. Comparing both expres-
sions, we immediately find the relation (15).

Please note that we utilized Eq. (16), which strictly holds
only in the limit as Rsol → ∞, corresponding to vortices em-
bedded in an infinite background. Nevertheless, when Rsol is
significantly larger than the intervortex separation but finite, a
similar approach can be employed by truncating the integral
at a radius within the soliton but far from the vortices. Under
these conditions, Eq. (16) serves as a reliable approximation,
and its accuracy improves with the growth of Rsol. If a station-
ary solution belongs to a family dependent on Rsol, it can be
continuously linked to a case with Rsol → ∞. Consequently,
the Diophantine relation (15), which remains unaltered in a
continuous deformation, must hold for the entire family.

Finally, it is worth noting that in the case of a single poly-
gon and a central vortex, Eq. (15) is equivalent to Eq. (11).
However, Eq. (15) becomes particularly useful in more com-
plex configurations. For instance, consider a configuration of
three nested triangles, two of them with l = 1 vortices at their
vertices, and one with l = −1 antivortices. This configuration
is known to exhibit a static solution for point vortices [25],
and the topological charges appropriately satisfy (15). The
investigation of the existence of self-trapped crystals with a
similar arrangement of vortices is deferred to future work.

VII. CONCLUSION AND OUTLOOK

We have presented a one-parameter family of stationary
solutions to the CQNLSE with four phase dislocations: three
vortices and one antivortex (or viceversa). We have shown that
there is a transition from instability to stability, with a pecu-
liar intermediate region with nonlinear recurrences. We have
also provided a simple but rather accurate expression for the
angular momentum of these solitons, Eq. (14), and we have
found a simple relation between the topological charges that
is necessary for the existence of families of solutions of this
sort, Eq. (15). These findings can pave the way for the search
of more quiescent or spiraling multivortex solitons in the form
of self-trapped vortex crystals, both in the CQNLSE or, more
generally, for the NLSE with different nonlinear potentials.
They can be applicable in different physical contexts, e.g.,
quantum droplets [58] where flat-top vortices also exist [59].
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