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Spatiotemporal patterns induced by Turing-Hopf interaction and symmetry on a disk
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Turing bifurcation and Hopf bifurcation are two important kinds of transitions giving birth to inhomogeneous
solutions, in spatial or temporal ways. On a disk, these two bifurcations may lead to equivariant Turing-Hopf
bifurcations whose normal forms are given in three different cases in this paper. In addition, we analyzed the
possible solutions for each normal form, which can guide us to find solutions with physical significance in
real-world systems, and the breathing, standing wave-like, and rotating wave-like patterns are found in a delayed
mussel-algae model.
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I. INTRODUCTION

Complex spatiotemporal patterns that appear on approxi-
mate circular domains are abundant and absorbing, such as
the distribution of microbial bioherms in irregular natural or
artificial lakes [1,2], spiral waves generated by the interac-
tion of activator and inhibitor in Petri dishes [3,4], rotating
waves in an optical system consisting of a thin Kerr nonlinear
layer and a feedback loop [5,6], and so on. To comprehend
and manage these dynamic phenomena effectively, model-
ing with reaction-diffusion equations and analysis through
Turing-Hopf bifurcations are proved to be essential tools.
Such approaches offer valuable insights into the future man-
agement of some fragile ecosystems [7,8], the formation
mechanisms of spiral waves in fibrous ventricular fibrilla-
tion and tachycardia [9,10], and enable pattern selection and
control, thereby expanding the scope of optical information
processing [11,12]. Mathematically, in the case of planar
waves, the solution to the reaction-diffusion equation is given
by u j (�x, t ) = u j0 ei�q·�x+σ t [13], where �q is the wave vector and
σ is the eigenvalue with the largest real part. For a point where
both Turing instability [14] and Hopf bifurcation [15–17] oc-
cur, or the Turing-Hopf bifurcation point we say �q is nonzero
and σ is also an imaginary value iω. Thus, there exists the
interaction of two Fourier modes, which is accompanied by
quite complicated dynamics [18–21]. The wave solutions on
circular domains mentioned above are also important, and we
will study them in this paper.

Turing-Hopf bifurcation has been studied both numerically
and analytically in the literature [22–28]. In recent years,
scholars have begun to use normal forms to analyze Turing-
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Hopf bifurcation. In particular, Song et al. [29] and Jiang
et al. [30] extended the results in Ref. [31] and derived the
normal form of the Turing-Hopf bifurcation of partial dif-
ferential equations (PDEs) and partial functional differential
equations (PFDEs), respectively. Following the method pro-
posed, there are many subsequent works on normal forms of
the Turing-Hopf bifurcation [32–37]. The recently developed
analytical tool using normal form is adopted in the current
work.

However, most of these works focused on one-dimensional
intervals and could not better describe the complex patterns
that occur in high-dimensional domains. In fact, the complex
spatiotemporal patterns appearing in circular domains can
be studied through equivariant bifurcation [38,39]. That is
to say, the existence of symmetry leads to the multiplicity
of eigenvalues, and some more complex phenomena may
occur under the influence of symmetric groups. In previous
works, inspired by theories of the symmetric group [38] and
equivariant normal forms [39–41], we provided approximate
expressions for periodic solutions generated by the Hopf bi-
furcation, including the rotating wave and the standing wave
solution on a circular domain in [42]. Equivariant Turing-
Hopf bifurcation on a disk has not been considered, to our
best knowledge. Therefore, in this paper, we shall consider
a general reaction-diffusion system with homogeneous Neu-
mann boundary conditions on a disk and aim to explain more
complicated spatiotemporal patterns induced by Turing-Hopf
interaction and symmetry.

Compared to previous work, this paper has several addi-
tional features. We derive formulas of the equivariant normal
forms truncated to the third order of a general reaction-
diffusion system on a disk and divide them into three types:
ET-H, T-EH, and ET-EH bifurcations, according to the dif-
ferent structure of the center subspace of the equilibrium. We
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characterize the long-term asymptotic behavior of the solution
by normal forms, which can explain the occurrence of many
patterns in real life more fitly. The theoretical results indicate
the existence of several kinds of interesting patterns, several
of which are unique to the equivariant Turing-Hopf bifurca-
tion, including mixed ET-EH, breathing, quasi-periodic ET-H,
standing wave-like T-EH, rotating wave-like patterns T-EH
patterns.

The rest of the paper is organized as follows. In Sec. II, we
provide the preliminaries required for normal form derivation,
including the introduction to the model, the definition of phase
space, the eigenvalue problem of the Laplace operator on a cir-
cular domain, and the necessary assumptions for bifurcations.
In Sec. III, we prove the main results of normal forms for
ET-H, T-EH, and ET-EH bifurcations on a disk, respectively,
and provide the classification of various pattern solutions. In
Sec. IV, to verify the theory, we study two delayed mussel-
algae systems numerically. Rich spatiotemporal patterns are
observed near the Turing-Hopf points.

II. ANALYTICAL PRELIMINARIES

This section begins with an explanation of the reaction-
diffusion equation studied and we provide some simple
results on characteristic equations and sufficient conditions for
the existence of bifurcations through traditional linearization
methods.

A. Mathematical model

The reaction-diffusion equation stands as an important the-
oretical model in the fields of ecology, medicine, chemistry,
physics, and so on, which provides valuable insights into the
understanding of interesting phenomena that occur in complex
systems. Its general formulation is

∂u

∂t
= d�u + f (u),

where � denotes the Laplacian, d represents the diffusion
coefficient and f is the kinetic function. In many scenarios,
it is necessary to establish a reaction-diffusion system, incor-
porating multiple equations to characterize distinct interaction
processes through the varied selection of f . Examples include
predator-prey behavior [43–46], disease infection [47,48],
chemical reactions [49,50], semiconductor charge transport
in heterostructure devices [23,25], and so on. Additionally,
considering factors such as biological maturation periods, the
time required for energy conversion in biological systems or
chemical reactions, incubation periods, and charge transfer
times, introducing time delay in reaction-diffusion systems
can better depict real-world situations.

Taking these factors into consideration, we select a general
delayed reaction-diffusion system of n equations with homo-
geneous Neumann boundary conditions defined on a disk as
follows:

∂U (t, r, θ )

∂t
= D(ν)�rθU (t, r, θ ) + L(ν)Ut (r, θ )

+ F (Ut (r, θ ), ν), (r, θ ) ∈ D, t > 0, (1)

where D(ν) = diag{d1(ν), d2(ν), . . . , dn(ν)}, �rθ = ∂2

∂r2 +
1
r · ∂

∂r + 1
r2 · ∂2

∂θ2 represents the Laplace operator on a disk
D = {(r, θ ) : 0 � r � R, 0 � θ � 2π}, ν represents the sum
of the system control parameters, L(ν) is a linear operator that
preserves the eigenspace of the Laplace operator, and F (ν)
can be genuine nonlinear. Ut (ϑ )(r, θ ) = U (t + ϑ, r, θ ), ϑ ∈
[−1, 0). Here, we normalize the maximum delay to 1, so that
the time delay τ can be included in the parameter ν. The
parameters in the kinetic functions have a certain possibility
of inducing Hopf bifurcations, among which the time delay
τ is most commonly selected as the bifurcation parameter. In
addition, the diffusion coefficient is often used as an important
parameter to induce Turing instability. When studying the
interaction between Turing instability and Hopf bifurcation,
which is generally of codimension-two, we set ν = (ν1, ν2) ∈
R2. This is a general representation, which means that any two
parameters in the equation can be chosen as the bifurcation pa-
rameters of inducing Turing-Hopf bifurcations. For example,
if we focus on the impact of the diffusion coefficient in the
first equation and the time delay on bifurcation phenomenon,
we can choose ν = (d1, τ ), and other diffusion parameters are
fixed as constants.

When considering a reaction-diffusion equation with time
delay, one usually uses the phase space of functions C :=
C([−1, 0],XC ) [51,52], where XC is the complexification of
X = {ũ(r, θ ) ∈ W 2,2(D) : ∂r ũ(R, θ ) = 0, θ ∈ [0, 2π )}, with
L2 inner product (weighted r)

〈u(r, θ ), v(r, θ )〉 =
∫∫

D
ru(r, θ )v̄(r, θ )drdθ.

Then, Ut ∈ C n, L : R × C n → X n
C is a bounded linear op-

erator, and F : C n × R → X n
C , where n is the number of

equations included in the reaction-diffusion system (1). Here
we only consider the zero equilibrium, that is to say, we as-
sume F (0, ν) = 0, DϕF (0, ν) = 0 that stands for the Fréchet
derivative of F (ϕ, ν) with respect to ϕ at ϕ = 0, ∀ν ∈ R2, and
F is Ck (k � 3).

B. Linearization analysis

Linearizing (1) around the zero equilibrium gives

∂U (t, r, θ )

∂t
= D(ν)�rθU (t, r, θ ) + L(ν)Ut (r, θ ). (2)

The characteristic equation of the linearized equation (2) is∏
p

�p(γ )
∏
n,m

�nm(γ ) = 0, (3)

with

�p(γ ) = det
[
γ I + λpD(ν) − L(ν)(eγ ·I )

] = 0,

p = 0, 1, 2, . . . ,

�nm(γ ) = det[γ I + λnmD(ν) − L(ν)(eγ ·I )]2 = 0,

n = 1, 2, . . . , m = 1, 2, . . . ,

and

λ =
{

λp = α2
p

R2 , p = 0, 1, 2, . . . ,

λnm = α2
nm

R2 , n = 1, 2, . . . , m = 1, 2, . . . ,
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TABLE I. Roots with zero real part of (3) and the dimension of the central subspace (dim).

(ET-H) (T-EH) (ET-EH)

�p = 0 ±iωH1 0 -
�nm = 0 0 (repeated) ±iωH2 (repeated) 0 (repeated), ±iωH3 (repeated)
p, n, m p = pH1 , n = nT1 , m = mT1 p = pT2 , n = nH2 , m = mH2 n = nT3 , m = mT3 , n = nH3 , m = mH3

a

dim 4 5 6

aIn (ET-EH), for example, the chosen indexes mean that �nT3 mT3
(0) = 0, �nH3 mH3

(±iωH3 ) = 0.

where −αp and −αnm are eigenvalues of the Laplacian on
the unit disk, see [42,53] and the corresponding normalized
eigenfuncitons are expressed from Bessel functions J0, Jn by

φ̂ =
⎧⎨
⎩

φ̂c
p, p = 0, 1, 2, . . . ,

φ̂c
nm, φ̂s

nm, n = 1, 2, . . . , m = 1, 2, . . . ,

with

φ̂c
p = J0

( αp

R r
)

‖J0
( αp

R r
)‖ , φ̂c

nm = Jn
(

αnm
R r

)
einθ

2π‖Jn
(

αnm
R r

)‖ ,

φ̂s
nm = φ̂c

nm = Jn
(

αnm
R r

)
e−inθ

2π‖Jn
(

αnm
R r

)‖ ,

which form an orthonormal basis for XC .
To consider the interaction of Turing instability and

Hopf bifurcation, assuming that there exists a vector ν∗ =
(ν∗

1 , ν∗
2 ) ∈ R2, such that one of the situations in Table I holds.

Inspired by [38,39], if (ET-H) holds, we call this is a ET-H
bifurcation, which means, the center space is spanned by the
eigenvectors of a repeated semi-simple zero eigenvalue (mul-
tiplicity 2) and a pair of simple imaginary roots. Similarly,
if (T-EH) holds, we call this a T-EH bifurcation. If (ET-EH)
holds, we call this a ET-EH bifurcation.

To study the spatiotemporal dynamic behavior near the
critical point ν = ν∗, it is necessary to introduce a new
perturbation parameter μ = (μ1, μ2) = (ν1 − ν∗

1 , ν1 − ν∗
2 ) =

ν − ν∗. Then, system (1) is equivalent to

∂U (t )

∂t
= L̃(μ)Ut + F̃ (Ut , μ), (4)

where L̃U = D0�rθU + L0U and F̃ (Ut , μ) = [D(μ +
ν∗) − D0]�rθU + [L(μ + ν∗) − L0]Ut + F (Ut , μ). D0 =
D(ν∗), L0 = L(ν∗) are obtained by the following Taylor
expansions:

D(μ + ν∗) = D0 + μ1D(1,0)
1 + μ2D(0,1)

1

+ 1
2

(
μ2

1D(2,0)
2 + 2μ1μ2D(1,1)

2 + μ2
2D(0,2)

2

) + · · · ,

L(μ + ν∗) = L0 + μ1L(1,0)
1 + μ2L(0,1)

1

+ 1
2

(
μ2

1L(2,0)
2 +2μ1μ2L(1,1)

2 +μ2
2L(0,2)

2

)+ · · · .

We will conduct subsequent bifurcation analysis based on
system (4).

III. MAIN RESULTS

A. Bifurcation analysis and normal forms

In this section, the center manifold reduction and nor-
mal form method are employed to simplify the bifurcation

problem. Based on the Turing-Hopf normal forms theory
for reaction-diffusion systems in a one-dimensional interval
[29,30], we will derive the normal forms for ET-H, T-EH, and
ET-EH bifurcations on a disk, respectively. If (ET-EH) holds,
both the Turing and Hopf portions are affected by symmetry.
At this time, the center subspace of the equilibrium is six-
dimensional and the result is the most complex. Therefore,
let’s first tackle this difficult problem. Normal forms in polar
coordinates are used to represent the changes in amplitude
(ρ) and complex angle (χ ) of the solutions under different
oscillation modes, and the mathematical derivation is shown
in the Appendix. When nT3 
= 2nH3 or nT3 = 2nH3 , there will
be two different normal forms.

When nT3 
= 2nH3 , the normal form truncated to the third
order for the ET-EH bifurcation can be written in polar
coordinates as

ρ̇H1 = (
ε1(μ) + c11ρ

2
H1 + c12ρ

2
H2 + c13ρT 1ρT 2

)
ρH1 ,

ρ̇H2 = (
ε1(μ) + c11ρ

2
H2 + c12ρ

2
H1 + c13ρT 1ρT 2

)
ρH2 ,

ρ̇T 1 = (
ε2(μ) + c21ρ

2
H1 + c22ρ

2
H2 + c23ρT 1ρT 2

)
ρT 1 ,

ρ̇T 2 = (
ε2(μ) + c21ρ

2
H1 + c22ρ

2
H2 + c23ρT 1ρT 2

)
ρT 2 . (5)

This a four-dimensional real ordinary differential equa-
tions (ODEs) with ρH1 , ρH2 , ρT 1 , and ρT 2 as independent
variables, where ρHi , i = 1, 2 are variables on the eigenspace
corresponding to pure imaginary roots ±iωH3 (Hopf) and
ρT i , i = 1, 2 correspond to the zero root (Turing). When nT3 =
2nH3 , there will be additional terms like z3z5e1, z4z5e2, z1z6e3,
and z2z6e4 in the normal form. If we use the same polar
coordinate transformation, a phase shift between two Hopf
modes �χ = χH1 − χH2 will appear as a new variable, i.e.,
the normal form written in polar coordinates becomes

ρ̇H = (
ε1(μ) + (c11 + c12)ρ2

H + c13ρ
2
T + c14ρT cos �χ

)
ρH ,

�̇χ = −2c14ρT sin �χ,

ρ̇T = (
ε2(μ) + (c21 + c22)ρ2

H + c23ρ
2
T

)
ρT .

(6)
For �χ = 0 or π , two Fourier modes are in-phase or
anti-phase.

The normal forms for ET-H and T-EH bifurcations can be
considered as parts of the normal form of the ET-EH bifurca-
tion, and the derivation is somewhat simpler. Therefore, based
on the derivation provided in the Appendix, it is easy to obtain
normal forms of ET-H and T-EH bifurcations, respectively. If
(ET-H) holds, the dimension of the eigenspace corresponding
to pure imaginary roots ±iωH2 decreases. By (A2) and (A3),
we can obtain that the normal form truncated to the third order
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for ET-H bifurcation in polar coordinates is

ρ̇H = (
α1(μ) + a11ρ

2
H + a12ρT 1ρT 2

)
ρH ,

ρ̇T 1 = (
α2(μ) + a21ρT 1ρT 2 + a22ρ

2
H

)
ρT 1 ,

ρ̇T 2 = (
α2(μ) + a21ρT 1ρT 2 + a22ρ

2
H

)
ρT 2 . (7)

If (T-EH) holds, the dimension of the eigenspace correspond-
ing to the zero root decreases and the normal form truncated
to the third order for T-EH bifurcation in polar coordinates is

ρ̇H1 = (
β1(μ) + b1ρT + b11ρ

2
H1 + b12ρ

2
H2 + b13ρ

2
T

)
ρH1 ,

ρ̇H2 = (
β1(μ) + b1ρT + b11ρ

2
H2 + b12ρ

2
H1 + b13ρ

2
T

)
ρH2 ,

ρ̇T = (
β2(μ) + b2ρT + b21ρ

2
H1 + b22ρ

2
H2 + b23ρ

2
T

)
ρT . (8)

B. Classification of pattern solutions

The normal form on the center manifold inherits the dy-
namic properties of the original system, and equilibrium
points of (5) to (8) correspond to different wave patterns.
Therefore, we will follow this approach to classify the
possible wave patterns induced by equivariant Turing-Hopf
bifurcations in detail in this subsection.

1. ET-EH patterns

When nT3 
= 2nH3 , we are mainly concerned with the prop-
erties corresponding to the following fourteen equilibrium
points of (5), which are separated into five categories.

(ET-EH-i) Stationary solution. (ρH1 , ρH2 , ρT 1 , ρT 2 ) =
(0, 0, 0, 0) corresponds to the origin in the six-dimensional
phase space, which is spatially homogeneous.

(ET-EH-ii) Static Turing pattern. (ρH1 , ρH2 , ρT 1 , ρT 2 ) =
(0, 0, ρT 1 , ρT 2 ) with ρT 1ρT 2 = −ε2(μ)/c23.

(ET-EH-iii) Rotating wave pattern. In this case, for
ε1(μ)c11 < 0, (ρH1 , ρH2 , ρT 1 , ρT 2 ) = (0,

√−ε1(μ)/c11, 0, 0)
and (ρH1 , ρH2 , ρT 1 , ρT 2 ) = (

√−ε1(μ)/c11, 0, 0, 0) corre-
spond to the periodic solutions in the subspace of (z2, z3) and
(z1, z4), respectively. The periodic solutions restricted to the
center subspace has one of the following approximate forms:

U (t )(r, θ ) ≈
n∑

i=1

2|p1i|
√

−ε1(μ)

c11
JnH3

(
√

λnH3 mH3
r) cos(Arg(p1i )

+ ωH3t ± nH3θ )ei,

where ei is the ith unit coordinate vector of Rn and p1i, 1 �
i � n are defined in the Appendix. The physical solutions
in (ET-EH-iii) are spatially inhomogenous oscillations with
frequency ωH3 and rotates clockwise or anticlockwise, which
can be inferred from the sign before nH3θ .

(ET-EH-iv) Standing wave pattern. In this case, (ρH1 , ρH2 , ρT 1 , ρT 2 ) = (
√

−ε1(μ)
c11+c12

,

√
−ε1(μ)
c11+c12

, 0, 0), the periodic solution

restricted to the center subspace has the following approximate form:

U (t )(r, θ ) ≈
n∑

i=1

4|p1i|
√

−ε1(μ)

c11 + c12
JnH3

(
√

λnH3 mH3
r) cos(Arg(p1i ) + ωH3t ) cos(nH3θ )ei.

The physical solution in (ET-EH-iv) is also a spatially inhomogenous oscillation with frequency ωH3 . However, the existence of
a fixed axis is out of the ordinary, which can be obtained from cos(nH3θ ) = 0.

(ET-EH-v) Mixed ET-EH pattern. In this case, there are nine groups of ET-EH patterns.

(a) (ρH1 , ρH2 , ρT 1 , ρT 2 ) = (0,

√
c13ε2(μ)−c23ε1(μ)

c23c11−c13c22
, ρT 1 , ρT 2 ) with ρT 1ρT 2 = −(ε1(μ) + c11ρ

2
H2 )/c13, or (0,

√
−ε1(μ)

c11
, 0, ρT 2 ) and

(0,

√
−ε1(μ)

c11
, ρT 1 , 0) with ε1(μ)

c11
= ε2(μ)

c22
, correspond to three groups of type-A mixed ET-EH patterns. At these points, the solution

of real form restricted to the center subspace has the following approximate form:

U (t )(r, θ ) ≈
n∑

i=1

2|p1i|ρH2 JnH3

(√
λnH3 mH3

r
)

cos(Arg(p1i ) + ωH3t + nH3θ )ei + ξT (ρT 1 + ρT 2 )JnT3

(√
λnT3 mT3

r
)

cos(nT3θ ). (9)

(b) (ρH1 , ρH2 , ρT 1 , ρT 2 ) = (
√

c13ε2(μ)−c23ε1(μ)
c23c11−c13c21

, 0, ρT 1 , ρT 2 ) with ρT 1ρT 2 = −(ε1(μ) + c11ρ
2
H1 )/c13, or (

√
−ε1(μ)

c11
, 0, 0, ρT 2 ) and

(
√

−ε1(μ)
c11

, 0, ρT 1 , 0) with ε1(μ)
c11

= ε2(μ)
c22

, correspond to three groups of type-B mixed ET-EH patterns. At these points, the solution

restricted to the center subspace has the following approximate form:

U (t )(r, θ ) ≈
n∑

i=1

2|p1i|ρH1 JnH3

(√
λnH3 mH3

r
)

cos
(
Arg(p1i ) + ωH3t − nH3θ

)
ei + ξT (ρT 1 + ρT 2 )JnT3

(√
λnT3 mT3

r
)

cos(nT3θ ). (10)

(c) (ρH1 , ρH2 , ρT 1 , ρT 2 ) = (
√

c13ε2(μ)−c23ε1(μ)
c23(c11+c12 )−c13(c21+c22 ) ,

√
c13ε2(μ)−c23ε1(μ)

c23(c11+c12 )−c13(c21+c22 ) , ρT 1 , ρT 2 ) with ρT 1ρT 2 = − ε1(μ)+(c11+c12 )ρ2
H1

c13
, or

(
√

−ε1(μ)
c11+c12

,

√
−ε1(μ)
c11+c12

, ρT 1 , 0) and (
√

−ε1(μ)
c11+c12

,

√
−ε1(μ)
c11+c12

, 0, ρT 2 ) with ε1(μ)
c11+c12

= ε2(μ)
c21+c22

correspond to three groups of type-C mixed

ET-EH patterns. At these point, the solution restricted to the center subspace has the following approximate form:

U (t )(r, θ ) ≈
n∑

i=1

4|p1i|ρH1 JnH3

(√
λnH3 mH3

r
)

cos(Arg(p1i ) + ωH3t ) cos(nH3θ )ei + ξT (ρT 1 + ρT 2 )JnT3

(√
λnT3 mT3

r
)

cos(nT3θ ). (11)
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FIG. 1. First row: Mixed ET-EH patterns in (12). Second and third rows: At r = R/r = R
2 , the Hopf component, Turing component, and

their sum of (12) are illustrated.

We demonstrated the specific forms of rotating and stand-
ing wave patterns in our previous work [42]. Now, let’s discuss
the mixed ET-EH patterns. (ET-EH-v) shows three types of
complex mixed ET-EH patterns. We draw a schematic di-
agram in Fig. 1 of the solution in (9) with nT3 = 1, mT3 =
1; nH3 = 2, mH3 = 2 and ωH3 = 1 as an example, which is

U (t )(r, θ ) ≈ J2(
√

λ22r) cos(t + 2θ ) + J1(
√

λ11r) cos θ.

(12)

The subfigures in the first row provide mixed ET-EH pat-
terns like (9) at t = 0, T/3, 2T/3, and T , respectively, where
T ≈ 6 is the period. Fixing r = R and r = R/2, we find that
despite (12) is a sum of two regular patterns generating from
Hopf bifurcation and Turing instability, under the interaction
of the two, the spatial form of (12) is quite complex, making
it difficult to summarize general rule. Similarly, the solutions
in (10) and (11) can be explained in the same way.

When nT3 = 2nH3 , we are more concerned about the form
of the original system solution corresponds to the equilibrium
point of (6) with ρH 
= 0, ρT 
= 0 and �χ 
= 0, for instance,

(ρH , ρT ,�χ ) = (
√

c23ρ
2
T +ε2(μ)

c21+c22
,

−C2±
√

C2
2 −4C1C3

2C1
, π ), with C1 =

(c11 + c12)c23 + (c21 + c22)c13, C2 = −(c21+c22 )c14π

2 , C3 =
(c11 + c12)ε2(μ) + (c21 + c22)ε1(μ). At these points, the
solution restricted to the center subspace has the following
approximate form:

U (t )(r, θ ) ≈ −
n∑

i=1

4|p1i|ρH JnH3

(√
λnH3 mH3

r
)

sin(Arg(p1i )

+ χH1 (t )) sin(nH3θ )ei

+ 2ξT ρT JnT3

(√
λnT3 mT3

r
)

cos(nT3θ ). (13)

It can be observed that two Fourier modes of the equivariant
Hopf parts are anti-phase, with a shift �χ = χH1 − χH2 = π ,
which ultimately manifests as π phase difference in the Hopf
part and Turing part of the expression (13). Thus, the form of
solution maintains standing-wave characteristics (Hopf) and
static pattern characteristics (Turing) at opposite positions on
the disk.

2. ET-H patterns

We can explain dynamics of the system by analyzing
five equilibrium points of system (7). The equilibrium points
(0,0,0) and (0, ρT 1 , ρT 2 ) with ρT 1ρT 2 = −α2(μ)

a21
are similar

to (ET-EH-i)-(ET-EH-ii), but the dynamic properties of the
other equilibrium points are simpler than (ET-EH-v). There-
fore, we only introduce the following mixed mode.

(ET-H-i) Breathing pattern. (ρH , ρT 1 , ρT 2 ) =
(
√

a12α2(μ)−a21α1(μ)
a11a21−a12a22

, ρT 1 , ρT 2 ) with ρT 1ρT 2 = α1(μ)+a11ρ
2
H

−a12
,

or (
√

−α1(μ)
a11

, ρT 1 , 0) and (
√

−α1(μ)
a11

, 0, ρT 1 ) with α1(μ)
a11

= α2(μ)
a22

,

correspond to three groups of dynamic Turing-Hopf patterns.
At these points, the solution restricted to the center subspace
has the following approximate form:

U (t )(r, θ ) ≈
n∑

i=1

2|p1i|ρH J0
(√

λpH1
r
)

cos(Arg(p1i ) + ωH1t )ei

+ ξT (ρT 1 + ρT 2 )JnT1

(√
λnT1 mT1

r
)

cos(nT1θ ).

The physical solution will maintain a fixed inhomogeneous
form and oscillate up and down over time with frequency ωH1

(breathing).
Further research on stability of the solution can be con-

ducted to achieve pattern control. Let ρ2
T = ρT 1ρT 2 , ρ̄H =
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ρH
√|a11|, ρ̄T = ρT

√|a21|, and drop the bars, then system
(7) can be transformed into

ρ̇H = (
α1(μ) + ρ2

H + abρ
2
T

)
ρH ,

ρ̇T = (
α2(μ) + acρ

2
H + adρ

2
T

)
ρT ,

(14)

which has 12 distinct kinds of unfoldings. The stability condi-
tions of equilibrium points can be given, by Chap. 7.5 in [54].
Thus, in this case, the stability of spatiotemporal solutions and
a complete bifurcation set are easily obtained and there will be
a quasiperiodic solution on the three-dimensional torus.

(ET-H-ii) Quasi-periodic ET-H pattern. Here, the solution
corresponds to that system (14) has a center and level curves
with ρ2

H + υρ2
T = −α1(μ) where υ = ab+1

ac−1 . The solution gen-
erated by the Hopf bifurcation restricted to the center subspace
has the following approximate form:

U (t )(r, θ ) ≈
n∑

i=1

2|p1i|ρH J0
(√

λpH1
r
)

cos(Arg(p1i )

+ ωH1t ) cos(ω̄t )ei

+ ξT ρT JnT1

(√
λnT1 mT1

r
)

cos(nT1θ ) sin(ω̄t ),

where ω̄ = O(αi(μ)). This is a rather complicated pattern
including one spatial frequency and two different temporal
frequencies, which is actually a quasiperiodic oscillation with
spatial inhomogeneous profiles.

3. T-EH patterns

We can explain dynamics of the system by analyzing at
most twelve equilibrium points of system (8). Similar to
Sec. III B 2, several equilibrium points of system (8) are con-
sistent with the results of ET-EH patterns. Next, we will
explain in detail several solutions for the interaction of Turing-
Hopf under (T-EH), which is more clearer than (ET-EH-v).

(T-EH-i) Rotating wave-like T-EH pattern. In this case,

(ρH1 , ρH2 , ρT ) = (0,

√
β1(μ)+b1ρT +b13ρ

2
T

−b11
,

−B2±
√

B2
2−4B1B3

2B1
) with

B1 = b1b22 − b2b11, B2 = b22b13 − b11b23, B3 = b22β1(μ) −
b11β2(μ), correspond to at most two periodic solutions,
depending on the sign of B2

2 − 4B1B3. Similarly,

(ρH1 , ρH2 , ρT ) = (
√

β1(μ)+b1ρT +b13ρ
2
T

−b11
, 0,

−B5±
√

B2
5−4B4B6

2B4
) with

B4 = b1b21 − b2b11, B5 = b21b13 − b11b23, B6 = b21β1(μ) −
b11β2(μ), correspond to, at most, another two periodic
solutions. At these points, the periodic solution restricted to

the center subspace has the following approximate forms:

U (t )(r, θ ) ≈
n∑

i=1

2|p1i|ρH2 JnH2

(√
λnH2 mH2

r
)

cos(Arg(p1i )

+ ωH2t + nH2θ )ei + ξT ρT J0
(√

λpT2
r
)
,

or

U (t )(r, θ ) ≈
n∑

i=1

2|p1i|ρH2 JnH2

(√
λnH2 mH2

r
)

cos(Arg(p1i )

+ ωH2t − nH2θ )ei + ξT ρT J0
(√

λpT2
r
)
.

Similarly, the spatial form of the Turing component is con-
stant. Therefore, along with a circle with radius r on the disk,
the solution will be in the form of a clockwise or counter-
clockwise rotating wave.

(T-EH-ii) Standing wave-like T-EH pattern. In this

case, (ρH1 , ρH2 , ρT ) = (
√

β1(μ)+b1ρT +b13ρ
2
T

−(b11+b12 ) ,

√
β1(μ)+b1ρT +b13ρ

2
T

−(b11+b12 ) ,

−B8±
√

B2
8−4B7B9

2B7
) with B7 = (b21 + b22)b13 − (b11 + b12)b23,

B8 = (b21 + b22)b1 − (b11 + b12)b2, B9 = (b21 + b22)β1(μ)
− (b11 + b12)β2(μ), correspond to, at most, two periodic
solutions. At these points, the periodic solution restricted to
the center subspace has the following approximate form:

U (t )(r, θ ) ≈
n∑

i=1

4|p1i|ρH1 JnH2

(√
λnH2 mH2

r
)

cos(Arg(p1i )

+ ωH2t ) cos(nH2θ )ei + ξT ρT J0
(√

λpT2
r
)
.

IV. NUMERICAL SIMULATIONS AND APPLICATIONS

Avoiding critical points through spatial self-organization
is very common in ecosystems, such as patterns formed by
mussels and algae on tidal flats, which can avoid critical
points caused by rising sea levels and protect tidal flats from
being submerged [55,56]. In [57], Shen and Wei investi-
gated a delayed mussel-algae system and gave the dynamic
classification near the Turing-Hopf bifurcation point in one-
dimensional interval (0, lπ ). Considering the local tidal flats
in natural living environments or artificially cultivated mus-
sels and freshwater algae in lakes, it is more realistic to
establish mathematical models in circular domains. Therefore,
we investigate the dynamics of such a model on a disk.

⎧⎪⎨
⎪⎩

∂m(t,r,θ )
∂t = d1�rθm(t, r, θ ) + m(t, r, θ )

[
ba(t − τ, r, θ ) − 1

1+m(t−τ,r,θ )

]
, (r, θ ) ∈ D, t > 0,

∂a(t,r,θ )
∂t = �rθa(t, r, θ ) + α[1 − a(t, r, θ )] − m(t, r, θ )a(t, r, θ ), (r, θ ) ∈ D, t > 0,

∂rm(·, R, θ ) = ∂ra(·, R, θ ) = 0, θ ∈ [0, 2π ).

(15)

For simplicity, we established a normalized model, where m(t, r, θ ) and a(t, r, θ ) represent the mussel biomass density and the
algae concentration at location (r, θ ) and time t , respectively. the mussel is on the sediment, and the algae live in the lower
water layer overlying the mussel bed. b is related to the ingested algae-to-mussel biomass production, α is related to the rate of
exchange between the lower and upper water layers, and τ is the digestion period of mussel. In the real world, limited sources,
like nutrients and light, can lead to nonlocal intraspecific competition among algae in the ocean [58,59]. For the convenience
of mathematical calculation, we take the nonlocal effects on the disk here. That is to say, based on system (15), we introduced

024214-6



SPATIOTEMPORAL PATTERNS INDUCED BY THE … PHYSICAL REVIEW E 109, 024214 (2024)

FIG. 2. Partial bifurcation curves on the d1 − τ plane for two systems and eigenfuncitons related to Turing instability.

nonlocal effects by replacing α(1 − a(t, r, θ )) by α(1 − â(t, r, θ )) with

â(t, r, θ ) = 1

πR2

∫ R

0

∫ 2π

0
r̄a

(
t, r̄, θ̄

)
d θ̄dr̄.

Then, system (15) becomes⎧⎪⎨
⎪⎩

∂m(t,r,θ )
∂t = d1�rθm(t, r, θ ) + m(t, r, θ )

[
ba(t − τ, r, θ ) − 1

1+m(t−τ,r,θ )

]
, (r, θ ) ∈ D, t > 0,

∂a(t,r,θ )
∂t = �rθa(t, r, θ ) + α[1 − â(t, r, θ )] − m(t, r, θ )a(t, r, θ ), (r, θ ) ∈ D, t > 0,

∂rm(·, R, θ ) = ∂ra(·, R, θ ) = 0, θ ∈ [0, 2π ).

(16)

Fixing b = 1.5, α = 0.3, R = 6, we obtain partial bifur-
cation curves on the d1 − τ plane of system (15) and system
(16) shown in Fig. 2, respectively. For system (15), we select
(d1, τ ) = (0.042, 6) and get a type of breathing patterns (see
Fig. 3). For system (16), we select (d1, τ ) = (0.036, 2.7),
and get two different types of dynamic Turing-Hopf patterns.
Similar to the results in [42], Turing-Hopf pattern is standing
wave-like with a specific initial value (see Fig. 4), and with
other initial values, rotating wave-like Turing-Hopf patterns
appear (see Fig. 5).

The standing wave-like pattern has a fixed axis (see the
subgraph corresponding to y = 0 in Fig. 4) and a hot or
cold spot indicating local maximum/minimum that does not
change position over time (see the area on the right side of
the fixed axis). The other parts of the pattern oscillate in the
form of standing waves on both sides of the fixed axis (as
shown in the subgraph corresponding to x = 0 in Fig. 4). The
rotating-wave-like pattern in Fig. 5 has a portion of the pattern

that remains unchanged in position and the other parts of the
pattern that change in the form of rotating wave.

The pattern formed in the mussel-algae system is actually
an external manifestation of mussel aggregation, and its main
function is to increase population defense, including shedding
caused by wave impacts and threats from predators [60,61].
The study of the interaction between Turing instability, Hopf
bifurcation, and symmetry reveals the formation mechanism
of these new patterns, which helps to explore the changes
in mussel biomass and two-dimensional spatial distribution,
fully developing the mussel economy, and playing an eco-
logical role in alleviating eutrophication in marine systems
[62,63].

V. CONCLUDING REMARKS

In this paper, we investigate the interaction of Turing in-
stability and Hopf bifurcation on a disk. We first present
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FIG. 3. System (15) produces breathing patterns with parameters: b = 1.5, α = 0.3, R = 6, d1 = 0.042, τ = 6. Initial values are
m(t, r, θ ) = 0.2727 + 0.01 · cos t · cos r · cos θ, a(t, r, θ ) = 0.5238 + 0.01 · cos t · cos r · cos θ, t ∈ [−τ, 0). (a): The mussel. (b): The algae.

three Turing-Hopf normal forms based on different types
of eigenspaces and then analyze the possible solutions for
each normal form. Finally, breathing, standing-wave-like,
and rotating-wave-like patterns were simulated in a spe-
cific mussel-algae model. In realistic models of approximate
circular domains, patterns are often complex. The simple su-
perposition of Turing instability and Hopf bifurcation is not
enough to describe the temporal and spatial variations ade-
quately. In this paper, our analysis of equivariant Turing-Hopf
bifurcation and classification of various patterns can provide

theoretical guidance for characterizing complex patterns in
circular domains and finding realistic solutions with physical
significance.

Under the case (ET-EH), the possible solutions are com-
plex, and there are several questions that can be further
discussed. We believe that quasiperiodic solutions may also
exist, which is quite difficult to study. In addition, in previous
studies on double Hopf bifurcation, the resonance may occur:
if the ratio of two imaginary roots iω1 and iω2 is rational,
some additional terms cannot be eliminated. In this paper,

FIG. 4. System (16) produces standing wave-like T-EH patterns with parameters: b = 1.5, α = 0.3, R = 6, d1 = 0.036, τ = 2.7. Initial
values are m(t, r, θ ) = 0.2727 + 0.01 · cos t · cos r · cos θ, a(t, r, θ ) = 0.5238 + 0.01 · cos t · cos r · cos θ, t ∈ [−τ, 0). (a): The mussel. (b):
The algae.
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FIG. 5. Rotating-wave-like T-EH patterns of the mussel with parameters: b = 1.5, α = 0.3, R = 6, d1 = 0.036, τ = 2.7. Initial val-
ues are m(t, r, θ ) = 0.2727 + 0.01 · cos t · cos r · �1(θ ), a(t, r, θ ) = 0.5238 + 0.01 · cos t · cos r · �2(θ ), t ∈ [−τ, 0). (a): (�1(θ ),�2(θ )) =
(cos θ, sin θ ) − clockwise, (b) : (�1(θ ),�2(θ )) = (sin θ, cos θ ) − anticlockwise.

another kind of resonance of Turing and Hopf appears, i.e.,
nT3 = 2nH3 . Combining these factors and investigating the cor-
responding normal forms is a noteworthy issue to be further
considered.
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APPENDIX: CALCULATION OF NORMAL FORMS

In this Appendix, we provide the decomposition of the phase space and the derivation of normal forms, by applying the
method in [29–31], which leads to the results in Sec. III A.

Let �1 = {γ : �p(γ ) = 0, Reγ = 0}, �2 = {γ : �nm(γ ) = 0, Reγ = 0}. Define a bilinear pairing

(ψ, ϕ) =
∫ R

0

∫ 2π

0
r

[
ψ (0)ϕ(0) −

∫ 0

−τ

∫ ϑ

ξ=0
ψ (ξ − ϑ )dη(ν∗, ϑ )ϕ(ξ )dξ

]
drdθ, ψ ∈ (C ∗)n

, ϕ ∈ C n, (A1)

where (C ∗)n is the dual space of C n. By [51,52], one can decompose Cn := C([−1, 0],Cn) by �i as Cn = Pi ⊕ Qi, i = 1, 2,

where Pi is the generalized eigenspace associated with �i and Qi = {φ ∈ C : (ψ, φ) = 0, for all ψ ∈ P∗
i }. Here, P∗

i is the dual
space of Pi. Suitably, choose the bases �i

rθ and � i
rθ of Pi and P∗

i , respectively, such that (� i
rθ ,�

i
rθ ) = Ini , where ni = dimPi.

Analogously, the phase space C n can be decomposed as C n = P ⊕ Q, where P = Imπ, Q = Kerπ, dimP = ∑2
i=1 ni, and

π : X → P is a projection defined by π (Ut ) = ∑2
i=1(�i

rθ 〈� i
rθ ,Ut 〉)T.

In Table I, we list roots with zero real part of the characteristic equation. For the case (ET-EH), we get that �1 = ∅, �2 =
{±iωH3, 0}. Let

�2
rθ = (

�2(1) · φ̂c
nm2

,�2(2) · φ̂c
nm2

,�2(3) · φ̂s
nm2

,�2(4) · φ̂s
nm2

,�2(5) · φ̂c
nm2

,�2(6) · φ̂s
nm2

)
,

�2
rθ = col

(
�2(1) · φ̂c

nm2
, �2(2) · φ̂c

nm2
, �2(3) · φ̂s

nm2
, �2(4) · φ̂s

nm2
, �2(5) · φ̂c

nm2
, �2(6) · φ̂s

nm2

)
,

where �2(1)(ϑ ) = ξH eiωH3 ϑ ,�2(2)(ϑ ) = �2(1)(ϑ ), �2(3)(ϑ ) = �2(1)(ϑ ),�2(4)(ϑ ) = �2(2)(ϑ ), �2(5) = �2(6) = ξT , �2(1)(�) =
ηT

H eiωH3 �, �2(2)(�) = �2(1)(�), �2(3)(�) = �2(1)(�), �2(4)(�) = �2(2)(�), �2(5) = �2(6) = ηT
T , n = nH3 , m = mH3 , ϑ ∈

[−1, 0), � ∈ (0, 1]. ξH = (p11, p12, . . . , p1n)T ∈ Cn is the eigenvector associated with the eigenvalue iω and ξT =
(q11, q12, . . . , q1n)T ∈ Rn is the eigenvector associated with the eigenvalue 0. ηH ∈ Cn and ηT ∈ Rn are the corresponding
adjoint eigenvectors that satisfy (�2

rθ ,�
2
rθ ) = I6.

According to the definition of the projection π , Ut = (u1t , u2t , . . . , unt ) can be decomposed as Ut = (�1
rθ 〈�1

rθ ,Ut 〉)T +
(�2

rθ 〈�2
rθ ,Ut 〉)T + wt = �rθ z + wt , with �rθ = �2

rθ , z = (z1, z2, z3, z4, z5, z6)T, and wt ∈ Q. Notice that the part
�2

rθ (z1, z2, z3, z4, z5, z6)T stands for the solution on the center manifold, by which solutions on the center manifold are
approximatively given.

It is easy to verify that

M1
j (μl zpek ) := Dz(zpμl ek )Bz − Bzpμl ek = iωH3

(
p1 − p2 + p3 − p4 + (−1)k

)
zpμl ek, 1, 2, 3, 4,

M1
j (μl zpek ) := Dz(zpμl ek )Bz − Bzpμl ek = iωH3 (p1 − p2 + p3 − p4)zpμl ek, k = 5, 6, (A2)
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with M1
j defined in [31], B = diag{iωH3,−iωH3 , iωH3 ,−iωH3 , 0, 0}, j � 2, zp = zp1

1 zp2
2 zp3

3 zp4
4 zp5

5 zp6
6 , μl = μ

l1
1 μ

l2
2 , p1 + p2 +

p3 + p4 + l1 + l2 = j, and {e1, e2, e3, e4, e5, e6} being the canonical basis for C 6. Therefore, after calculating two complemen-
tary space Im(M1

2 )c and Im(M1
3 )c like being done in [29,42], the normal forms for Turing-Hopf bifurcation has the following

form:

ż = Bz + 1
2! g

1
2(z, 0, μ) + 1

3! g
1
3(z, 0, 0) + o(|z||μ|2), (A3)

where g1
2(z, 0, μ) and g1

3(z, 0, 0) are composed of the projection on Im(M1
2 )c or Im(M1

3 )c, which are defined in [31]. By the
analysis in [29,31,42], noticing the fact∫ R

0

∫ 2π

0
r
(
φ̂c

nH3 mH3

)k1
(
φ̂s

nH3 mH3

)k2
(
φ̂c

nT3 mT3

)k3
(
φ̂s

nT3 mT3

)k4

dθdr

{
= 0, k1nH3 − k2nH3 + k3nT3 − k4nT3 = 0,

= 0, others,

and the relationship of �rθ and �rθ , we obtain that when nT3 
= 2nH3 , the normal forms truncated to the third order for ET-EH
bifurcation can be summarized as

ż1 = iωH3 z1 + B11μ1z1 + B21μ2z1 + B100020z1z2
5 + B001020z3z2

5 + B100002z1z2
6 + B001002z3z2

6

+ B210000z2
1z2 + B200100z2

1z4 + B012000z2
3z2 + B002100z2

3z4 + B111000z1z2z3 + B101100z1z3z4

+ B100011z1z5z6 + B001011z3z5z6,

ż2 = − iωH3 z2 + B11μ1z2 + B21μ2z2 + B100020z2z2
6 + B001020z4z2

6 + B100002z2z2
5 + B001002z4z2

5

+ B210000z1z2
2 + B200100z2

2z3 + B012000z2
4z1 + B002100z2

4z3 + B111000z1z2z4 + B101100z2z3z4,

+ B100011z2z5z6 + B001011z2z5z6,

ż5 = B15μ1z5 + B25μ2z5 + B110010z1z2z5 + B100110z1z4z5 + B011010z2z3z5 + B001110z3z4z5

+ B110001z1z2z6 + B100101z1z4z6 + B011001z2z3z6 + B001101z3z4z6

+ B000030z3
5 + B000003z3

6 + B000021z2
5z6 + B000012z5z2

6,

(A4)

and the equations for z3, z4, z6 are given by z1 ↔ z3, z2 ↔ z4, and z5 ↔ z6 in the previous three equations. By [40], after a
sequence of local invertible transformations, the normal form truncated to the third order can be reduced to

ż1 = iωH3 z1 + B11μ1z1 + B21μ2z1 + B200100z2
1z4 + B111000z1z2z3 + B100011z1z5z6,

ż2 = −iωH3 z2 + B11μ1z2 + B21μ2z2 + B200100z3z2
2 + B111000z1z2z4 + B100011z2z5z6,

ż5 = B15μ1z5 + B25μ2z5 + B100110z1z4z5 + B011010z2z3z5 + B000021z2
5z6.

(A5)

Again, the equations for z3, z4, z6 are given by z1 ↔ z3, z2 ↔ z4 and z5 ↔ z6. The proof is similar to Lemma III.2 of [42].
Through the change of variables z1 = ρH1 eiχH1 , z4 = ρH1 e−iχH1 , z3 = ρH2 eiχH2 , z2 = ρH2 e−iχH2 , z5 = ρT 1 , z6 = ρT 2 , we

obtain (5) with ε1(μ) = Re{B11}μ1 + Re{B21}μ2, ε2(μ) = B15μ1 + B25μ2, c11 = Re{B200100}, c12 = Re{B111000}, c13 =
Re{B100011}, c21 = B100110, c22 = B011010, c23 = B000021.
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