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Synchronization modes of triple flickering buoyant diffusion flames:
Experimental identification and model interpretation
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The synchronization modes of a nonlinear oscillator system consisting of three identical flickering buoyant dif-
fusion flames in isosceles triangles were studied experimentally and theoretically. Five synchronization modes,
such as the in-phase, flickering death, partially flickering death, partially in-phase, and rotation modes, were
experimentally observed and identified by systematically adjusting the flame distance and fuel flow rates. Two toy
models were adopted to interpret the experimentally identified dynamical modes: one is the classical Kuramoto
model, and the other is a complexified Stuart-Landau model, which was proposed through the introduction of
the complex coupling term. The theoretical results show that the Kuramoto model successfully interpreted the
dynamical modes except for those associated with amplitude death, and the complexified Stuart-Landau model
well interpreted all the dynamical modes identified in our experiment. Remarkably, the proposed complexified
Stuart-Landau model breaks a new path in the investigation of globally coupled nonlinear dynamical systems
with identical oscillators, especially for the study of amplitude death mode.
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I. INTRODUCTION

Nonlinear dynamics of coupled oscillators is a long-lasting
problem in the study of complex systems [1,2], which has
gained increasing attention in recent years. Flickering buoyant
diffusion flames can be treated as a type of nonlinear oscil-
lator due to its inherent characteristics. The flame flicker of
Bunsen-type diffusion flame exhibits vibratory motion with a
frequency of about 10 Hz was reported by Chamberlin and
Rose [3]. A similar phenomenon using a Burke-Schumann
diffusion flame was observed by Barr [4], who described “the
vibration is seen to consist of a progressive necking of the
flame which can lead to the formation of a flame bubble
which burns itself out separated from the anchored flame”.
Such flame phenomena can be observed in pool fires [5,6]
and also in premixed and partially premixed flames [7,8].
It is worth emphasizing that Chen et al. [9] the prominent
experimental work by Chen et al. [9] for flow visualization of
a jet diffusion flame proved that the flickering flame is a self-
exciting flow oscillation because the small vortices within the
luminous flame originate from Kelvin-Helmholtz (hereinafter
referred to as K-H) instability of the fuel jet and the large
toroidal vortices outside the luminous flame originate from
the buoyance-induced K-H instability. More recent theoretical
works [10,11] revealed that the flame flicker is essentially a
flow of global instability.

Multiple flickering flames have been used to constitute
nonlinear dynamical systems of flame oscillators. Interesting
dynamical modes of two candle flames were reported by
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Kitahata et al. [12] who observed two distinct dynamical
modes using, such the in-phase mode (two flames flicker
synchronously with no phase difference) and the antiphase
mode (two flames flicker alternatively with a phase-shift of
π ). Forrester [13] and Manoj et al. [14] reported a similar
phenomenon in candle flames. Besides, Manoj et al. [14]
also observed the amplitude death mode, in which the two
flames cease to oscillate. Recently, Ju et al. [15] suppressed
the flame flickering by dynamically adjusting the flame dis-
tance. The flow visualization of Dange et al. [16] showed
that the interaction between buoyance-induced vortices plays
a significant role in producing different dynamical modes. The
vortex-dynamical mechanism of coupled dual flames was also
verified by the PIV velocity measurement of Fujisawa et al.
[17] of pipe-burner diffusion flames and by the observations
of Bunkwang et al. [18,19] in methane-air jet diffusion flames.
This vortex-dynamical mechanism has also been substantiated
by the numerical simulations of Yang et al. [20] for pool
flames, Bunkwang et al. [18] for buoyant jet flames, and
Tokami et al. [21] for buoyancy-induced turbulent diffusion
flames.

Larger systems of flickering buoyant diffusion flames give
rise to richer dynamical phenomena. Okamoto et al. [22]
discovered four distinct dynamical modes, such as the in-
phase, death, rotation, and partially in-phase modes, by using
three flickering candle flames in an equilateral triangle ar-
rangement. Yang et al. [23] computationally reproduced these
four modes and interpreted them from the perspective of
vortex interaction and particularly of vorticity reconnection
and vortex-induced flow. Very recently, Chi et al. [24] devel-
oped a Wasserstein-space-based methodology for the mode
recognition of coupled triple flickering flames. Some typical
dynamical modes of the triple flickering flames have been
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FIG. 1. Schematic of the vortex interaction in triple flickering
flames [23]: (a) in-phase mode, (b) flickering death mode, (c) rotation
mode, and (d) partially in-phase mode.

explained by the interaction of toroidal vortices [23], as il-
lustrated in Fig. 1. The in-phase mode occurs when the three
toroidal vortices merge into a trefoil vortex, which grows
up and sheds off to pinch off the flame. When the trefoil
vortex sheds off the downstream of the flame, the flame is not
pinched and the flickering death mode occurs. The rotation
mode occurs when the three toroidal vortices do not merge but
shed off alternatively from each flame. The partially in-phase
mode is due to the merging of two toroidal vortices into a
“�”-shape vortex, which results in the in-phase flickering of
two flames but has a phase difference of π with the third
vortex.

Forrester [13] experimentally observed an initial-arch-
bow-initial “worship” oscillation mode for four candle flames
in a square arrangement and conjectured the existence of a
chimera state [25], which is characterized by the hybrids of
synchronized and desynchronized flames. Manoj et al. [26]
investigated the coupled four flickering candle flames in a
rectangle arrangement and observed the clustering mode, in
which the flames separate into two clusters of synchronized
flames, the chimera mode, in which the flames separate into
synchronized and desynchronized groups of flames, and the
weak chimera mode, in which three frequency-synchronized
flames coexist with one desynchronized flame. Recently,
Manoj et al. [27] experimentally investigated the coupled be-
havior of annular networks with 5–7 candle-flame oscillators
and observed variants of clustering and chimera states depend-
ing on the inter-flame distance and number of flames in the
network. In addition, Chen et al. [28] studied the dynamical
characteristics of nonidentical asymmetric candle flames.

Compared with the many experimental and computational
studies on multiple flickering flame systems, very few studies
attempted to establish a dynamical model to interpret the
experimental findings. By hypothesizing that a lack of oxygen
is a key factor in producing the flickering flame and that
the thermal radiation coupling causes the synchronization of
two flames, Kitahata et al. [12] proposed a phenomenological
model to interpret their experiments. The radiation measure-
ment of Gergely et al. [29] did not support the radiation
coupling hypothesis, and they hypothesized that the oxygen
flow induced by the thermal expansion is responsible for the
flame coupling and proposed a modified phenomenological
model. In addition, Manoj et al. adopted a toy-model approach
where the time-delay coupled identical Stuart-Landau oscilla-
tors were used to reproduce the dynamical modes of two [14]
and four [26] coupled candle flames.

FIG. 2. Schematic and photograph of the experimental apparatus
consisting of burners, fuel flow controls, and visualization systems.

Although the mechanism of a single flickering flame is
well understood [30–32], the collective dynamical behaviors
of coupled multiple flickering flames are complex and inade-
quately understood. Such a complex system differs from the
system that can be studied by decomposition, because the
entirety is not equal to the sum of parts and the collective
behaviors are not simply linear superposition of the cou-
pled flames. Therefore, for studying the complex dynamical
system of coupled multiple flickering flames, the major chal-
lenges are dynamical mode recognition and dynamical model
establishment.

The present study was motivated by the above challenges
and focused on establishing a nonlinear dynamical model of
a coupled triple flickering flames system because it can be
treated as the smallest nontrivial multiple-flame system. We
adopted Bunsen-type burners to produce flickering buoyant
diffusion flames at a well-controlled gas-fuel experimen-
tal platform and systematically investigated three flickering
flames in the isosceles triangle arrangement conducted by
varying three physical parameters, the leg (L) and the base (B)
of the triangle, and the flow rate (Q) for each flame. Consider-
ing the complex flow of multiple coupled flickering flames
is not well understood, we did not adopt the approach of
establishing phenomenological models. Instead, we attempted
to establish toy models based on the Kuramoto model and the
Stuart-Landau model, to retain the essential features of the
complex system of multiple coupled flickering flames.

II. METHODOLOGY

A. Experiment setup

The experimental setup is sketched in Fig. 2 for a triple
flickering flame system. Each flickering flame was produced
by a brass Bunsen-type burner with 12 cm in height (H)
and 1 cm in diameter (D) and the nozzle outlet was pinched
slightly to reduce the influence of tube thickness. The flames
were in an isosceles triangle arrangement by varying the leg
(L) in the range of 2.0–10.8 cm and the base (B) in the range
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FIG. 3. Flowchart of the feature extraction process from experiment snapshots to brightness signal.

of 4.0–8.0 cm (the two base flames and the vertex flame are
denoted by flame 1, flame 2, and flame 3, respectively) for
a systematical parametric study. The limiting arrangements,
such as the straight line arrangement (B/L = 2) and the equi-
lateral triangle arrangement (B/L = 1), were also considered
in the experiment. The chessboard-type burner platform was
designed to better support and adjust the burners. Methane
(99.9% purity) was employed in the experiment and was accu-
rately controlled by a mass flow controller (Alicat Scientific,
MC-5SLPM-D/5M) in the flow rate (Q) range of 0.45–0.65
standard liter per minute (slpm). The experimental snapshots
of the flickering flames were recorded by a high-speed camera
(Kron Technologies, Chronos 2.1-HD) with a 105 mm UV
lens and at a frame rate of 500 fps (frame per second). To
establish a stable and consistent experimental environment,
fire-proof curtains and mesh screens were used to minimize
the external disturbance, and the experiments were carried out
at 1 atm and 25◦. Besides, it should be noted that each trial
was recorded continuously for 22 seconds of fully developed
flames. Each case was carried out multiple times to ensure
experimental repeatability.

B. Physics-informed dimensionality reduction

The present dynamical system is infinite-dimensional in
nature and is governed by a series of partial differential
equations (PDEs) of temperature (T ), pressure (P), veloc-
ity (v), and molar fractions of species (Yi ) describing the
time-space evolution of the chemically reacting flow. The
physics-informed dimensionality reduction is to choose an ap-
propriate characteristic physical quantity to retain the essential
characteristic of a flickering flame, which is the periodicity of
its characteristic physical quantities. As a result, ordinary dif-
ferential equations instead of PDEs can be applied to describe
the dynamical behaviors of the triple-flame system.

Many quantities of the flame can be selected as charac-
teristic features. For example, the pressure, temperature, or
luminosity of the flickering flame at a certain height can be
considered as the local information of the flickering flames
[33,34]; the information of flame morphology, such as flame
height, size, and brightness, can be considered as global in-
formation of the flickering flames [17,29,35]. In the present
study, we adopted the previous approach where the integral
brightness information was obtained directly from the experi-
mental high-speed snapshots [24].

As shown in Fig. 3, a grayscale snapshot at the time t was
divided into three parts, each of which contains only one of
the three flames. The brightness of each pixel of the snapshot

is represented by an integer b(t ) between 0 (pure black) and
255 (pure white). A truncation value of b0 = 50 was used to
obtain the “area of flame” function for each flame,

a(x, t ) = 1 for b � b0; a(x, t ) = 0 otherwise,

which is equivalent to the Otsu [29,36–38] method for bina-
rizing grayscale images. The flame brightness is calculated by

B j (t ) =
∫∫

b(t )a(x, t )dx. (1)

Therefore, the dynamical feature in the triple flickering flame
system at a certain time instant t can be represented by
B j (t ), ( j = 1, 2, 3) of three parts.

For the convenience of the analysis, we unified the am-
plitude of the brightness of each flickering flame. The
characteristic quantity of brightness can be normalized as

B̃ j (t ) = B j (t ) − B̄ j (t )

B̄ j (t )
, (2)

where B̄ j (t ) denotes the average value of brightness for each
flickering flame during 22 s in the present study. In this way,
the fluctuation of normalized brightness B̃ j (t ) can be centered
on zero.

C. Hilbert transform

The Hilbert transform [39] was adopted to process the
normalized brightness information obtained in Sec. II B to
acquire two essential features (instantaneous amplitude and
phase difference) of the individual flickering flame. The
Hilbert transform is a type of singular integral that takes a set
of real-valued signals B̃(t ) and then produces another set of
transformed signals B̃H (t ), which is the convolution of B̃(t )
with the signal function 1/πt . The Hilbert transform of B̃(t )
is given by

B̃H (t ) = 1

π
P.V.

∫ ∞

−∞

B̃(τ )

t − τ
dτ, (3)

where P.V. is the Cauchy principal value. A complex signal
ζ (t ) can be defined by its parts: one is the real part B̃(t ) and
another is the imaginary part B̃H (t ),

ζ (t ) = B̃(t ) + iB̃H (t ) = A(t )eiθ (t ), (4)

where A(t ) and θ (t ) are the amplitude and phase, respectively.
Therefore, the relative phase difference between any two
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signals can be expressed as

ϕ jk (t ) = θ j (t ) − θk (t ), (5)

where θ j (t ) and θk (t ) are the instantaneous phase of the oscil-
lators j and k, respectively.

D. Kuramoto model

Synchronization phenomena attracted a great deal of inter-
est in physics and relevant fields and are still a very active area
of research with many unresolved problems since the seminal
work of Winfree in the 1960s [40]. One of the most successful
models in the interpretation of the phenomena is the Kuramoto
model [41], which has a wide range of applications, such
as in flashing fireflies [42], circadian rhythms [43], neuronal
networks [44], and power-grid networks [45]. The dynamical
modes of multiple coupled flickering flames are typical syn-
chronization phenomena. Therefore, we adopted the classical
Kuramoto model to interpret the collective behaviors of the
flames that were observed in experiments. The Kuramoto
model of the present problem is expressed as

θ̇ j (t ) = ω j +
N∑

k=1

Kjk

N
sin[θk (t ) − θ j (t )], (6)

where θ j (t ) is the instantaneous phase of the flame j at time
t , θ̇ j (t ) is its time derivative, ω j is the natural frequency of
the jth flame oscillator, N is the number of oscillators, Kjk is
a real number that represents the coupling strength between
flame oscillators j and k.

E. Complexified Stuart-Landau model

The Stuart-Landau model, which is a canonical model for
limited-cycle oscillation describing dynamics near supercrit-
ical Hopf bifurcation, has been widely used in describing
synchronization in neural oscillators [46], electrochemical re-
action oscillators [47,48], lasers [49], etc. The Stuart-Landau
equation for the present problem is given by

ż j (t ) = f j[z j (t )] +
N∑

k=1

(Kjk + iK
′
jk )[zk (t ) − z j (t )]

+ (σ + iσ ′)ε(t ), (7)

where z j = B̃ j (t ) + iB̃ jH (t ) = r j (t )eiθ j (t ) is the complex
number representing the state of jth oscillator. In the present
study, z j corresponds to the complex brightness signal of each
flame oscillator. ε(t ) is the Gaussian white noise to mimic
the unavoidable perturbation encountered in practical experi-
ments and σ + iσ ′ represents the strength of additional noise.
The local dynamics f j (z j (t )) is expressed in the following
form [41]:

f j (z j (t )) = [α + iω j − β|z j (t )|2]z j (t ), (8)

where ω j denotes the natural frequency of jth oscillator. α and
β are real parameters associated with the amplitude.

It is worth emphasizing that the coupling strength in Eq. (7)
is different from those widely used in the previous studies in
the form

∑N
k=1 K[zk (t ) − z j (t )], where the coupling strength

K is a real and positive number [47,48,50,51], and only a few

exceptions introduced positive and negative [52] and the com-
plex coupling strength [53]. Here, we considered the coupling
strength a complex number, K = Kjk + iK

′
jk , to describe the

coupling strength between jth and kth flame oscillator, Kjk is
the real part and K

′
jk is the imaginary part.

The amplitude death mode was recognized as an emergent
important phenomenon in globally coupled nonlinear dy-
namical systems, manifested by the complete suppression of
oscillation and leading to stationarity, as a consequence of the
interactions within the entire system [54]. In the theoretical
framework of classical Stuart-Landau models, for the non-
identical oscillator, the occurrence of amplitude death mode is
due to the intrinsic frequency mismatch [54–56]; whereas for
the identical oscillator, the amplitude death mode was only
reported in three scenarios: time-delay coupling [54,57–59],
conjugate coupling [54,60,61], and nonlinear coupling [54].
In this work, we post a way to predict the amplitude death
mode for the globally coupled nonlinear dynamical system
with identical oscillators through the introduction of com-
plex coupling strength in the classical Stuart-Landau model
(known as the complexified Stuart-Landau model, as stated
above). Consequently, the partially flickering death mode and
flickering death mode observed in our experiment were suc-
cessfully interpreted with this newly proposed model.

III. RESULTS AND DISCUSSION

A. Experimental results

Figures 4(a) and 4(b) show the experimental snapshots of
seven distinct dynamical modes and the normalized brightness
signal of each flickering flame, respectively. The brightness
changes periodically with time and it is consistent with the
periodic oscillation phenomena of the flickering flame. Here,
the amplitude and phase difference information was used to
distinguish the dynamical modes, and based on this we cat-
egorized these dynamical modes into seven. The criteria for
the dynamical mode identification are summarized in Table I.
Due to the possible noises and/or errors, the calculated phase
difference between the flame oscillators cannot be perfectly
zero (for in-phase mode), 2π/3 (for rotation mode), or π (for
antiphase mode). For the mode recognition based on phase
difference, the tolerance of error of phase difference was set
as ±0.1π . In fact, the average of standard deviations of phase
difference for all synchronization modes is only 0.05π , which
is sufficiently small to ensure the accuracy of dynamical mode
identification.

Mode I: In-phase mode. The in-phase mode appears
as the three flames flicker synchronously with a neg-
ligible phase difference (e.g., B = 4.0 cm, L = 2.0 cm,
Q = 0.50 slpm). In the normalized brightness signal di-
agram, the time-averaged phase difference between each
pair of flame oscillators is around 0, and the normalized
amplitude of the three flame oscillators is nearly identi-
cal (A1 ≈ A2 ≈ A3 �= 0, ϕ31 ≈ 0.05π, ϕ32 ≈ −0.03π, ϕ12 ≈
−0.08π ) (See Movie 1 of the Supplemental Material [62]).

Mode II: Flickering death mode. The flickering death mode
appears as the three flames cease to flicker periodically and the
normalized amplitude of each flame is completely suppressed
(e.g., B = 6.0 cm, L = 3.0 cm, Q = 0.45 slpm). In the nor-
malized brightness signal diagram, the amplitude of all three
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FIG. 4. (a) Experimental snapshots and (b) brightness signal diagrams for seven distinct dynamical modes in a triple-flickering buoyant
diffusion flame system, which are I: the in-phase mode, II: the flickering death mode, III: the partially flickering death mode, IV: the partially
in-phase mode, V: the rotation mode, VI: the partially decoupled mode, and VII: the decoupled mode, respectively.

flame oscillators fluctuated around zero (A1 ≈ A2 ≈ A3 ≈ 0).
(See Movie 2 of the Supplemental Material [62]).

Mode III: Partially flickering death mode. The partially
flickering death mode appears as flame 1 and flame 2 exhibit

antiphase synchronization while flame 3 oscillates without
the flame flicker. (e.g., B = 5.0 cm, L = 3.2 cm, Q = 0.45
slpm). In the normalized brightness signal diagram, the time-
averaged phase difference between flame 1 and flame 2 is

TABLE I. Criteria for the dynamical mode identification.

Dynamical mode Phase difference relationship Amplitude value

Mode I In-phase ϕ1 − ϕ2 = ϕ2 − ϕ3 = ϕ3 − ϕ1 = 0 A1 = A2 = A3 �= 0
Mode II Flickering death Not applicable A1 = A2 = A3 = 0
Mode III Partially death ϕ1 − ϕ2 = π A1 = A2 �= 0, A3 = 0
Mode IV Partially In-phase ϕ1 − ϕ2 = 0, ϕ3 − ϕ1 = ϕ3 − ϕ2 = π A1 = A2 �= 0, A3 �= 0
Mode V Rotation ϕ3 − ϕ1 = ϕ1 − ϕ2 = ϕ2 − ϕ3 = 2π/3 A1 = A2 = A3 �= 0
Mode VI Partially decoupled ϕ1 − ϕ2 = π A1 = A2 �= 0, A3 �= 0
Mode VII Decoupled No relationship between ϕ1, ϕ2, ϕ3 A1 = A2 = A3 �= 0
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around π , and the normalized amplitude of the brightness sig-
nal for flame 3 fluctuates around zero (A3 ≈ 0, ϕ12 ≈ 1.06π ).
(See Movie 3 of the Supplemental Material [62]).

Mode IV: Partially in-phase mode. The partially in-phase
mode appears as flame 1 exhibits in-phase synchronization
with flame 2, but flame 3 exhibits antiphase synchronization
with both flame 1 and flame 2 (e.g., B = 7.0 cm, L = 4.0 cm,
Q = 0.45 slpm). In the normalized brightness signal diagram,
the time-averaged phase difference between flame 1 and flame
2 is almost zero, while flame 3 is phase-shifted by around π

(ϕ31 ≈ 1.08π, ϕ32 ≈ 0.99π, ϕ12 ≈ −0.09π ). (See Movie 4
of the Supplemental Material [62]).

Mode V: The rotation mode. The rotation mode appears as
the three flames flicker in turns with a fixed phase difference
when the three flames are arranged in an equal-lateral triangle
(e.g., B = 5.0 cm, L = 5.0 cm, Q = 0.45 slpm). In the nor-
malized brightness signal diagram, the time-averaged phase
difference between each two flames is identical and around
2π/3 (ϕ13 ≈ 0.72π, ϕ32 ≈ 0.68π, ϕ12 ≈ 0.60π ). (See Movie
5 of the Supplemental Material [62]).

Mode VI: The partially decoupled mode. The partially
decoupled mode appears as if flame 1 and flame 2 are in
an antiphase way while flame 3 flickers independently con-
cerning flame 1 and flame 2 because it is sufficiently away
from the two flames (e.g., B = 4.0 cm, L = 6.3 cm, Q = 0.50
slpm). In the normalized brightness signal diagram, it can
be seen that flame 1 and flame 2 with an almost constant
phase difference of π (ϕ12 ≈ 1.08π ). (See Movie 6 of the
Supplemental Material [62]).

Mode VII: The decoupled mode. The decoupled mode oc-
curs when the distance between the three flames is very large.
Under this circumstance, the coupling strength between the
flame oscillators is negligible (e.g., B = 8.0 cm, L = 8.9 cm,
Q = 0.50 slpm). In the normalized brightness signal diagram,
the phase difference is irregular (ϕ21, ϕ32, ϕ13 �= constant).
(See Movie 7 of the Supplemental Material [62]).

On the other hand, we replotted the brightness information,
as shown in Fig. 5, that can intuitively characterize the seven
distinct dynamical modes of the triple flickering flames. For
the in-phase mode (mode I), the three flames exhibit in-phase
mode. The time interval of the results (10s ∼ 11s) was zoomed
in, all three flame oscillators showed almost synchronized
peaks (red bands) and troughs (blue bands). For the flicker-
ing death mode (mode II), we can see that the amplitudes
of the three flames are nearly zero (green bands). For the
partially flickering death mode (mode III), flame 1 and flame 2
exhibit antiphase synchronization that desynchronized peaks
(red bands) and troughs (blue bands), and flame 3 remain
stationary with a very small amplitude (green bands). For the
partially in-phase mode (mode IV), flame 1 and flame 2 flicker
synchronized for their patterns of color change are virtually
identical, and flame 3 flickers asynchronously with flame 1
and flame 2. For the rotation mode (mode V), the three flames
flicker alternatively where the patterns of color also change
alternatively. For the partially decoupled mode (mode VI), we
can only find that flame 1 and flame 2 always alternatively
flicker, namely alternating peaks (red bands) and troughs (blue
bands), and have no obvious change in a regular pattern of
color with flame 3. For the decoupled mode (mode VII), the
color patterns change between the three flames are irregular.

FIG. 5. Time traces (the time-varying brightness signal) of each
flame oscillator for seven distinct dynamical modes in a triple-
flickering buoyant diffusion flame system, which include I: the
in-phase mode, II: the flickering death mode, III: the partially flick-
ering death mode, IV: the partially in-phase mode, V: the rotation
mode, VI: the partially decoupled mode, and VII: the decoupled
mode, respectively.

B. Regime nomogram of dynamical modes

In the present study, we established a regime nomogram for
a triple-flame system depending on the flame and geometric
parameters, such as fuel flow rate (Q) and the leg (L) and the
base (B) of the isosceles triangle. A wide range of parameters
was studied to ensure comprehensive and systematic results
for mode recognition of the triple flickering flames system, as
shown in Fig. 6. Five fuel flow rates (Q = 0.45, 0.50, 0.55,
0.60, and 0.65 slpm) and four lengths of base (B = 4, 5, 6,
7, and 8 cm) with the change of lengths of the leg (L) for
flames arrangement in the isosceles triangle were used, and
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FIG. 6. Experimentally identified dynamical modes for the triple flickering flames system in isosceles triangles with five bases of (a) 4 cm,
(b) 5 cm, (c) 6 cm, (d) 7 cm, and (e) 8 cm.

the results of mode recognition for the triple flickering flames
system were described in detail below.

When the base is fixed at B = 4 cm, four dynamical modes
were observed by adjusting L and Q. When the three flames
were arranged in a straight line (L = B/2 = 2 cm), the in-
phase mode appeared. The flickering death mode occurs when
the L sightly increases to 2.8 cm. With the increasing fuel
flow rate (Q = 0.55 slpm or above), the flickering death mode
would develop into the in-phase mode. When the L increases
to 4.5 cm, the partially in-phase mode appears. The partially
decoupled mode is found while L keeps on increasing (L =
6.3 cm or above).

When the base is fixed at B = 5 cm, five dynamical modes
were observed by adjusting L and Q. When the three flames
were arranged in a straight line (L = B/2 = 2.5 cm), the

in-phase mode appeared. The partially flickering death mode
occurs when the L sightly increases to 3.2 cm. With the
increase of fuel flow rate (Q = 0.50 slpm or above), the par-
tially flickering death mode would change to the flickering
death mode. The rotation mode appears if the three flames
are arranged in an equal-lateral triangle (L = 5 cm). The
partially decoupled mode is observed while L increases to
8.4 cm or above. It should be noted that the mixed mode
generally occurs between two distinct dynamical modes due
to the occurrence of “intermittent” behaviors which means the
distinct mode can only maintain for a very short period and
then transition to another distinct mode.

When the base is fixed at B = 6 cm, three dynamical
modes were observed by adjusting L and Q. When the three
flames were arranged in a straight line (L = B/2 = 3 cm), the

024211-7



CHI, HU, YANG, AND ZHANG PHYSICAL REVIEW E 109, 024211 (2024)

FIG. 7. Regime nomogram of dynamical modes for the triple
flickering flames system in isosceles triangles.

flickering death mode appeared. The partially flickering death
mode occurs when the L sightly increases to 3.6 cm. The
mixed mode occurs as the L continues to increase.

When the base is fixed at B = 7 cm, three dynamical modes
were observed by adjusting L and Q. When the three flames
were arranged in a straight line (L = B/2 = 3.5 cm), the
flickering death mode appeared. The partially in-phase mode
occurs when the L sightly increases to 4.0 cm. The mixed
mode also occurs as the L continues to increase.

When the base is fixed at B = 8 cm, three dynamical modes
were observed by adjusting L and Q. The partially in-phase
mode occurs at L = 4.0 cm (straight-line arrangement) and
L = 4.5 cm. The decoupled mode appears while L increases
to 7.2 cm or above. The mixed mode generally occurs between
the partially in-phase and decoupled modes.

Based on the above results of dynamical mode recognition
in physical space, we obtained the regime nomogram in the
four dimensionless parameters space (Gr, Fr, �B, and �L).
Specifically, the Grashof number defined as Gr = gD3/v2

A is
around O(104) to represent the buoyance effects, and the
Froude number defined as Fr = V 2/gD varies from 0.09 to
0.19 to represent the fuel flow convention, where V is the bulk
velocity, vA = 1.56 × 10−5 m2/s is the kinematic viscosity of
air at 25◦, and g = 9.8 m2/s is the gravitational constant. In
addition, the arrangement of the triple flickering flames in an
isosceles triangle can be characterized by the dimensionless
base (�B = B/D = 4.0 ∼ 8.0) and leg (�L = L/D = 2.0 ∼
10.8). Based on the previous study [20] on dual flickering
flames, we found that αGr0.5 is an appropriate parameter for
characterizing the dynamical modes, where the dimensionless
parameter (α) is the ratio of gap distance and the character-
istic length. In addition, (1 + CjFr)−1 is a correction term to
account for the influence of the fuel flow rate, where Cj is a
correction coefficient and Cj = 1.2 in the present study. Due
to the relatively small variation range of Fr (0.09 ∼ 0.19),
it does not play an important role in mode variation in the
present study.

It is seen that, as shown in Fig. 7, for a given �B and Fr, the
in-phase mode (in the bottom left), partially decoupled mode
(in the upper left), the flickering death mode and partially
flickering death mode (in the bottom center), the partially
in-phase mode (in the middle left and bottom right), and
the decoupled mode (in the upper right) are observed with
increasing �L. For a given �L, it also found that a similar
phenomenon with increasing �B and Fr. Besides, it should be
noted that there is a larger mixed region, where many cases
that are characterized as mixed mode (intermittent behavior)
are between the distinct modes. Therefore, it should also be
emphasized that the mixed mode is more common than the
distinct modes, and further recognition of the mixed mode
merits future studies.

C. Kuramoto model

We first adopted the Kuramoto model to interpret the dy-
namical modes experimentally observed in the present study.
Because the triple flame oscillators were arranged in an
isosceles triangle, the coupling strengths between the base
flames (flame 1 and flame 2) and the vertex flame (flame
3) are identical. Therefore, we can assume that the coupling
strength of the two base flames is equal to K1 and the coupling
strengths of the two base flames and vertex flame are equal to
K2. The governing equations of the Kuramoto model of the
triple flickering flame oscillators can be expressed as

θ̇1(t ) = ω1 + K2

3
sin [θ3(t ) − θ1(t )] + K1

3
sin [θ2(t ) − θ1(t )],

(9a)

θ̇2(t ) = ω2 + K2

3
sin [θ3(t ) − θ2(t )] + K1

3
sin [θ1(t ) − θ2(t )],

(9b)

θ̇3(t ) = ω3 + K2

3
sin [θ1(t ) − θ3(t )] + K2

3
sin [θ2(t ) − θ3(t )].

(9c)

We let ϕ31(t ) = θ3(t ) − θ1(t ) and ϕ32(t ) = θ3(t ) − θ2(t ) rep-
resenting the phase difference between the vertex flame
(flame 3) and the two base flames (flame 1 and flame 2),
ϕ12(t ) = θ1(t ) − θ2(t ) representing the phase difference be-
tween the two base flames (flame 1 and flame 2). Therefore,
the Eqs. (9a)–(9c) can be easily reduced to a two-dimensional
system as follows:

ϕ̇31(t ) = �3−1 + K1

3
sin [ϕ12(t )]

− K2

3
{sin [ϕ32(t )] + 2 sin [ϕ31(t )]}, (10a)

ϕ̇32(t ) = �3−2 − K1

3
sin [ϕ12(t )]

− K2

3
{sin [ϕ31(t )] + 2 sin [ϕ32(t )]}, (10b)

where �31 = ω3 − ω1 and �32 = ω3 − ω2 are the differences
in the natural frequencies between the vertex flame (flame 3)
and the two base flames (flame 1 and flame 2). In the present
study, we assumed that the three flickering flame oscillators
are identical with the same natural frequency, so we have
�31 = �32 = 0. Four equilibrium solutions can be obtained
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FIG. 8. Instantaneous amplitude and phase difference of (a) experimental and (b) numerical results (Stuart-Landau model) for the in-phase
mode.

from Eqs. (10a) and (10b) in the arrangement of the isosceles
triangle, and these four solutions represent two dynamical
modes, the in-phase and partially in-phase modes, observed
in our experiment:

ϕ31(t ) = ϕ32(t ) = ϕ12(t ) = 0, (11a)

ϕ31(t ) − π = ϕ32(t ) − π = ϕ12(t ) = 0, (11b)

ϕ31(t ) − π = ϕ32(t ) = ϕ12(t ) − π = 0, (11c)

ϕ31(t ) = ϕ32(t ) − π = ϕ12(t ) − π = 0. (11d)

Equation (11a) means that there is no phase difference
between the three flickering flame oscillators, corresponding
to Mode I: the in-phase mode. Eqs. (11b)–(11d) indicates
that two of the three flickering flame oscillators have a phase
difference of 0, and the phase difference between these two
flame oscillators and the remaining one is π , corresponding to
Mode IV: the partially in-phase mode.

If three flickering flame oscillators were arranged in an
equilateral triangle, the coupling strength between any two
flame oscillators would be the same and denoted as K1 =
K2 = K . Therefore, Eqs. (10a) and (10b) can be rewritten as

ϕ̇31(t ) = �31 + K

3
{sin [ϕ12(t )] − sin [ϕ32(t )] − 2 sin [ϕ31(t )]},

(12a)

ϕ̇32(t ) = �32 − K

3
{sin [ϕ12(t )] + sin [ϕ31(t )] + 2 sin [ϕ32(t )]}.

(12b)

Two additional equilibrium solutions can be obtained from
Eqs. (12a) and (12b) as follows:

ϕ31(t ) = −ϕ32(t ) = ϕ12(t ) = 2π

3
, (13a)

ϕ31(t ) = −ϕ32(t ) = ϕ12(t ) = 4π

3
, (13b)

which represent the phase differences between any two
flickering flame oscillators equal to 2π/3 (or 4π/3), corre-
sponding to Mode V: the rotation mode.

The absence of the flickering death mode and the partially
flickering death mode is because the Kuramoto model only
characterizes the information of phase but does not contain
any information about the amplitude.

D. Complexified Stuart-Landau model

The complexified Stuart-Landau model, as shown in
Eq. (7), was numerically investigated by employing the
fourth-order Runge-Kutta scheme with the time-step of 0.01
after the separation of the real part from the imaginary part,
z j = B̃ j (t ) + iB̃ jH (t ). In Eq. (8), the natural frequency ω1,
ω2, and ω3 are set to be unity because the three flickering
flame oscillators are considered identical. In addition, α and β

are also set to be unity representing that the original amplitude
of each flame oscillator is equal to 1. It should be noted that
the random initial condition was found to not affect the results
of dynamical modes obtained from the model. Five distinct
dynamical modes were found by adjusting the complex cou-
pling strength K = Kjk + iK

′
jk . It is worth noting that Mode

VI: the partially decoupled mode and Mode VII: the decou-
pled mode are irrelevant to the present study because they
are not considered as a globally coupled nonlinear system.
The comparison results of instantaneous amplitude and phase
difference for the five distinct dynamical modes between the
experiment and the complexified Stuart-Landau model are
described in detail below.

For Mode I: the in-phase mode (e.g., K31 = K32 = 1 + 1i
and K12 = 2 + 2i), as shown in Fig. 8, the phase differences
(ϕ31 and ϕ32) fluctuates around zero, and so does the ϕ12.
In addition, the amplitudes (A1, A2, and A3) of the three
flame oscillators are much greater than zero. The numerical
results from the complexified Stuart-Landau model agree well
with the experimental results, namely the phase differences

024211-9



CHI, HU, YANG, AND ZHANG PHYSICAL REVIEW E 109, 024211 (2024)

FIG. 9. Instantaneous amplitude and phase difference of (a) experimental and (b) numerical results (Stuart-Landau model) for the flickering
death mode.

between the three flames are nearly zero and the amplitudes
are around 1.0.

For Mode II: the flickering death mode (e.g., K31 = K32 =
3 + 3i and K12 = −2−1i), as shown in Fig. 9, we can see the
amplitudes (A1, A2, and A3) of the three flame oscillators are
close to zero in both the experimental and numerical results.

For Mode III: the partially flickering death mode (e.g.,
K31 = K32 = 2 + 1i and K12 = −2−1i), as shown in Fig. 10,
in both the experimental and numerical results, the ampli-
tude of flame oscillator 3 (A3) is around zero meaning that
flame oscillator 3 exhibits amplitude death mode whereas
the phase difference between two base flame oscillators
(ϕ12) is around π indicating that antiphase synchronization
happened.

For Mode IV: the partially in-phase mode (e.g., K31 =
K32 = −3 + 3i and K12 = −2−1i), as shown in Fig. 11, the
phase differences (ϕ31 and ϕ32) are around π indicating that
flame 1 and flame 2 exhibit antiphase synchronization with
flame 3. It can be easily deduced that the ϕ12 (ϕ12 = ϕ32 −
ϕ31 = 0) is around zero, indicating that flame 1 and flame 2
exhibit in-phase mode with flame 3.

For Mode V: the rotation mode (e.g., K31 = K32 = K12 =
−2 + 2i), the average phase differences (ϕ13 and ϕ32) are

around 2π/3, and ϕ21 equals to 2π/3 can be easily deducted,
as shown in Fig. 12, indicating that the whole system exhibits
rotation mode in both experimental findings and numerical
results.

To better illustrate our model results, we calculated two-
parameter bifurcation diagrams of synchronization modes,
which vary with the real Kjk and imaginary K

′
jk . As shown

in Fig. 13(a), to mimic the triple-flame system in an equi-
lateral arrangement, three coupling strengths are set as the
same (K12 + iK

′
12 = K13 + iK

′
13 = K23 + iK

′
23 = K1 + iK2) in

the complexified Stuart-Landau model. We found that the
mode transition from in-phase mode (K1 < 0) to the rotation
mode (K1 > 0) occurs at the bifurcation parameter K1 = 0.

As shown in Fig. 14(a), to mimic the triple-flame
system in the isosceles triangle arrangement in our ex-
periment, the coupling strength between two base flames
(flame oscillator 1, flame oscillator 2) is fixed, for ex-
ample, K12 + iK

′
12 = −2−1i (Similar bifurcation diagram

can be obtained for an arbitrary choice, as shown in the
Supplemental Material [62]), while the coupling strength
between the vertex flame (flame oscillator 3) and two
base flames are set as the same K13 + iK

′
13 = K23 + iK

′
23 =

K1 + iK2. We found that the mode transition from partially

FIG. 10. Instantaneous amplitude and phase difference of (a) experimental and (b) numerical results (Stuart-Landau model) for the partially
flickering death mode.
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FIG. 11. Instantaneous amplitude and phase difference of (a) experimental and (b) numerical results (Stuart-Landau model) for the partially
in-phase mode.

FIG. 12. Instantaneous amplitude and phase difference of (a) experimental and (b) numerical results (Stuart-Landau model) for the rotation
mode.

FIG. 13. (a) Schematic for the choice of coupling parameter in an equilateral triangle arrangement. (b) Two-parameter bifurcation diagram
of synchronization modes for triple-flame oscillator system in an equilateral triangle arrangement.
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FIG. 14. (a) Schematic for the choice of coupling parameter in an isosceles triangle arrangement. (b) Two-parameter bifurcation diagram
of synchronization modes for triple-flame oscillator system in an isosceles triangle arrangement.

in-phase mode (K1 < −3) to mixed mode (−3 < K1 < 0)
at the bifurcation parameter K1 = −3; from mixed mode to
partially flickering death mode (0 < K1 < 3) at the bifurca-
tion parameter K1 = 0; from partially flickering death mode
to partially in-phase mode (K1 > 3) at the bifurcation param-
eter K1 = 3. Flickering death mode occurs when the coupling
strength K1, K2 satisfy (K1, K2) ∈ {0 � K1 � 3, K2 = 3}.

The blue zone is identified as a “mixed mode” due to the
phase differences between the flame oscillators not remaining
as a constant, and this is consistent with the definition of the
“mixed mode” given in the previous article: the intermittent
behavior between the two pure distinct dynamical modes. In
addition, we found that the frequency of the flame oscillators
in the different dynamical modes is dominated by the imagi-
nary part of the coupling strength K2, that is, the frequencies of
flame oscillators are proportional to the absolute value of K2.

So far, five distinct dynamical modes (in-phase, flickering
death, partially flickering death, partially in-phase, and rota-
tion modes) observed in our experiment were successfully
reproduced by the complexified Stuart-Landau model, and
two-parameter bifurcation diagrams Figs. 13(b) and 14(b)
indicate that the occurrence of the dynamical modes in the
complexified Stuart-Landau model is not just accidental,
the distinct dynamical modes take up certain areas in the
bifurcation diagram and have clear boundaries. The transi-
tion between the emerging dynamical modes is governed
by the bifurcation coupling strength K = Kjk + iK

′
jk , con-

sistent with the finding in our experiment that the change
of the experimental parameters (flue flow rate Q and dis-
tance d) will lead to the transition of the dynamical modes.
Establishing the relationship between the coupling strength
and the experimental parameters merits future studies be-
cause we must develop a phenomenological model and
compare its dynamical behaviors with the Stuart-Landau
model.

The innovation and advancement of the complexified
Stuart-Landau model are mainly reflected in the following
two aspects: On the one hand, the complexified Stuart-Landau
model poses a new possibility to cause the amplitude death
modes in globally coupled nonlinear dynamical systems con-
sisting of identical oscillators barely through the introduction
of the complex coupling strength, which is a more natural
and simple way. On the other hand, compared with the early
studies [26,27], the complexified Stuart-Landau model can
better distinguish the dynamical modes through precise cal-

culation of the instantaneous amplitude and phase difference
information.

IV. CONCLUDING REMARKS

The triple-flame system is a key component in many
multiple-flame systems, due to strong interactions for the
nearest flames. In the present study, we adopted a well-
controlled gas-fuel diffusion flame experiment platform to
systematically investigate a triple-flame system of flickering
flames in isosceles triangles by adjusting the flame distances
(B and L) and the fuel flow rate (Q). Seven synchronization
modes, in-phase, flickering death, partially flickering death,
partially in-phase, rotation, partially decoupled, and decou-
pled modes, were experimentally observed and identified. For
first the time, we established a regime nomogram for the dy-
namical modes of the triplet-flame system in the �L/�B and
�BGr0.5(1 + CjFr)−1 space, which is helpful in further un-
derstanding the physical mechanisms of complex multiflame
systems.

The Kuramoto model and the complexified Stuart-Landau
model were adopted to qualitatively interpret the dynamical
modes exhibited in our experiments from the perspective of
nonlinear dynamics. For the Kuramoto model, the in-phase,
partially in-phase, and rotation modes are reproduced theoret-
ically by obtaining the equilibrium solutions of the governing
equations. For the complexified Stuart-Landau model, includ-
ing the modes predicted by the Kuramoto model, the flickering
death and partially flickering death modes are reproduced very
well.

In addition, we fully recognized two potential focuses in
future works: first, the extensive application of complexified
parameters such as natural frequency ω j and amplitude co-
efficient α and β, and the association of these parameters
to the physical parameter in real-world nonlinear dynamical
systems are to be investigated. Such endeavors will expand
our perspective on nonlinear dynamics, thereby initiating our
research position to complexified network dynamics and es-
tablishing a connection between these theories and real-world
physics. Second, more flame-oscillator experiments are to be
carried out with a broader range of parameter settings to dis-
cover the potential new dynamical modes and the application
of a turbulent flame oscillator, which is closer to the practical
combustor, for example, the annular combustor of gas-turbine
engines.
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