
PHYSICAL REVIEW E 109, 024210 (2024)

Reconstructing bifurcation diagrams of chaotic circuits with reservoir computing
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Model-free reconstruction of bifurcation diagrams of Chua’s circuits using the technique of parameter-aware
reservoir computing is investigated. We demonstrate that (1) reservoir computer can be utilized as a noise filter
to restore the system dynamics from noisy signals; (2) for a single Chua circuit, a machine trained by the noisy
time series measured at several sampling states is capable of reconstructing the whole bifurcation diagram of
the circuit with a high precision; and (3) for two coupled chaotic Chua circuits with mismatched parameters, the
machine trained by the noisy time series measured at several coupling strengths is able to anticipate the variation
of the synchronization degree of the coupled circuits with respect to the coupling strength over a wide range. Our
studies verify the capability of the technique of parameter-aware reservoir computing in learning the dynamics
of chaotic circuits from noisy signals, signifying the potential application of this technique in reconstructing the
bifurcation diagram of real-world chaotic systems.

DOI: 10.1103/PhysRevE.109.024210

I. INTRODUCTION

In exploring chaotic systems, one of the central tasks is
to characterize how the system dynamics varies with the
system parameters, namely, finding the bifurcation diagram
of the system dynamics [1,2]. Studying the bifurcation dia-
gram is not only of theoretical interest because it reveals the
route from regular behaviors to chaos but also of practical
significance because it pinpoints the tipping points where
a small change in the system parameters might result in a
drastic change in the system dynamics [3,4]. The latter is of
particular concern to modern society because accumulating
evidence indicates that many real-world complex systems are
already in the vicinity of their tipping points, e.g., the global
climate [5,6], complex ecological systems [7,8], and finan-
cial markets [9,10]. When the exact equations governing the
system dynamics are known, the bifurcation diagram can be
constructed using the approach of model simulations. Yet in
realistic situations the exact equations of the system dynamics
are generally unknown, and what is available are only mea-
sured data. Different from model-based studies in which the
signals are noise-free and the system parameters can be tuned
arbitrarily according to the research request, signals measured
from realistic systems are inevitably contaminated by noise. In
addition, due to the cost of data acquisition and practical re-
strictions, it is infeasible to construct the bifurcation diagram
of a realistic system with a fine scan of the system parameters
over a wide range. These practical concerns make model-free
reconstruction of the bifurcation diagram of realistic chaotic
systems a challenging question of active research in the field
of nonlinear science and complex systems [11–25].

To reconstruct the bifurcation diagram of chaotic systems
based on measured data, one approach is to rebuild the model
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first, including inferring the terms contained in the dynamical
equations and estimating the system parameters, and then
reconstruct the bifurcation diagram through the approach of
model simulations [26–28]. The advantage of this model-
rebuilding approach is that the equations governing the system
dynamics can be obtained explicitly, while the drawbacks are
that the data should be of high quality (with weak noise)
and some prior knowledge of the system dynamics should
be available, e.g., the form of the nonlinear terms in the
equations. An alternative approach to reconstructing the bi-
furcation diagram is to exploit machine learning techniques
[15–25]. Owing to the superpower of regression analysis,
machine learning techniques are able to infer from data not
only the dynamics of chaotic systems but also the system
parameters and therefore are capable of reconstructing bifur-
cation diagrams. Compared to the model-rebuilding approach,
the advantages of the machine learning approach are that no
prior knowledge of the system dynamics is required and the
techniques can be applied to noisy signals in general, yet
the disadvantages are that the system dynamics are unknown
(i.e., the machines are working as “black boxes”) and a large
amount of data is normally required to train the machines.

Reservoir computing (RC) [29,30], a special technique
based on recurrent neural networks in machine learning, was
exploited recently for predicting chaos and reconstructing the
bifurcation diagram of chaotic systems [20–25,31–36]. From
the point of view of dynamical systems, a reservoir computer
can be regarded as a complex network of coupled nonlinear
units which, driven by the input signals, generates the outputs
through a readout function [37]. Compared to other types of
deep learning techniques such as convolutional neural net-
works, RC contains only a single hidden layer, namely, the
reservoir. Except for the output matrix which is to be esti-
mated from the data through a training process, the machine is
fixed at construction, including the input matrix, the reservoir
network, and the updating rules. Although structurally simple,
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FIG. 1. (a) Schematic of Chua’s circuit. NR denotes the nonlin-
ear resistor. The linear resistor R plays the role of the bifurcation
parameter, which is adjusted to generate different dynamics. (b) The
piecewise-linear characteristic curve of the NR.

RC has shown great potential in many data-oriented appli-
cations [37], e.g., speech recognition, channel equalization,
robot control, and chaos prediction. In particular, it has been
shown that a properly trained RC is able to predict accurately
the state evolution of typical chaotic systems for about half
a dozen Lyapunov times [30,34], which is much longer than
the prediction horizon of the traditional methods developed
in nonlinear science. Besides predicting the short-term state
evolution, RC is also able to replicate faithfully the long-term
statistical properties of chaotic systems, e.g., the dimension
of strange attractors and the Lyapunov exponents [33]. This
ability, known as climate replication, was exploited very re-
cently to predict the critical transitions and bifurcation points
in complex dynamical systems [20–22,24,25]. In particular,
by incorporating a parameter-control channel into the standard
RC, it has been demonstrated that a machine trained by the
time series of several sampling states of a chaotic system
is able to infer the dynamical properties of the other states
not included in the training set. This technique, which was
named parameter-aware RC (PARC) in Ref. [20], has been
successfully applied to predict the critical transition of system
collapses, infer the bifurcation diagram of chaotic systems
[21,24,25], and anticipate the critical coupling for synchro-
nization in coupled oscillators [22]. Whereas the efficacy of
the PARC technique has been well demonstrated in these
applications, the studies were restricted to modeling systems
of noise-free signals and exact parameters. (An exception is
Ref. [25], in which the PARC technique was utilized to infer
the bifurcation diagram of modeling systems based on noisy
data.) As noise perturbations and parameter uncertainty are
inevitable in realistic systems, a question of general interest
is therefore whether the PARC technique can be applied to
realistic chaotic systems.

It is worth noting that the impact of noise on the perfor-
mance of RC in predicting chaotic systems is twofold. On the
one hand, noise-corrupted signals blur the system trajectories,
making it difficult to infer accurately the equations of the
system dynamics [38–41]. A typical case of this kind is mea-
surement noise, which is commonly regarded as destructive
to machine learning. To cope with measurement noise, tech-
niques such as low-pass filters are usually adapted to process
the data before feeding them into the machine [38,40]. On the
other hand, noise might play a constructive role in machine
learning in some circumstances [42–46]. For measurement

noise, studies have shown that in the training phase the role of
noise is similar to that of Tikhonov regularization [42], and the
performance of the machine reaches its maximum at moderate
noise [25,43,46]. For dynamical (intrinsic) noise, studies have
shown that the introduction of a certain amount of noise is
helpful for exploring the global information of the system
dynamics and therefore is beneficial for machine learning,
e.g., extending the transient dynamics and inferring the “un-
seen” attractors [44,45]. The nontrivial relationship between
noise and machine learning makes the inference of chaotic
dynamics from noisy signals not only a practical concern
in applications but also an effective approach for exploring
the working mechanism of the machines. For that, growing
attention has been paid in recent years to the prediction and
inference of chaos based on noisy signals [38–41,43–46].
Studies, however, are mostly conducted for modeling systems
with artificial noise, and the validity of the results in realistic
systems is yet to be checked.

In our present work, employing classic Chua circuits as
examples, we attempt to reconstruct from measured data the
bifurcation diagrams of the circuits using the PARC technique
proposed recently for machine learning. Two specific scenar-
ios are considered and investigated. In the first scenario, we
collect the time series from a single circuit under several sam-
pling parameters, and the mission is to reconstruct the whole
bifurcation diagram in the parameter space. In the second
scenario, we collect the time series of two coupled chaotic
circuits under several coupling parameters, and the mission is
to anticipate the variation of the synchronization degree of the
coupled circuits with respect to the coupling parameter over a
large range. We will demonstrate that, despite the presence of
noise (measurement and dynamical noise) and parameter mis-
match (between two coupled circuits), the PARC technique is
capable of reconstructing the bifurcation diagrams with high
precision in both scenarios. The rest of the paper is organized
as follows. In the following section, we will describe the
experimental setups and the how the data are acquired. The
PARC technique will be introduced briefly in Sec. III. Our
main results on the application of the PARC technique will be
presented in Sec. IV, including the filtering effect of RC on
noisy signals, the reconstruction of the bifurcation diagram
for a single circuit, and the inference of the synchronization
relationship between two coupled chaotic circuits. Finally,
concluding remarks will be given in Sec. V.

II. EXPERIMENTAL SETUPS

Chua’s circuit adopted in our studies is schematically
shown in Fig. 1(a), which consists of two capacitors (C1 and
C2), two linear resistors (R and R1), one inductor (L), and a
nonlinear resistor (NR) [47–50]. The equations of the system
dynamics read

C1
dvC1

dt
= 1

R
(vC2 − vC1 ) − g(vC1 ),

C2
dvC2

dt
= 1

R
(vC1 − vC2 ) + iL,

L
diL
dt

= −vC2 − R1iL, (1)
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with g(vC1 ) = m0vC1 + 0.5(m1 − m0)(|vC1 + Bp| − |vC1 −
Bp|) being the characteristic curve of the nonlinear
resistor. The characteristic curve of the nonlinear resistor is
schematically plotted in Fig. 1(b), in which the parameters are
m0 = −0.41 mS (mA/V) ± 10%, m1 = −0.76 mS ± 10%,
and Bp = 1.7 V ± 5%. In our experiments, we fix
the components R1 = 10 � ± 1%, C1 = 10 nF ± 5%,
C2 = 100 nF ± 5%, and L = 20 mH ± 10%, while changing
R over the range (1.73 k�, 1.77 k�) to generate different
dynamics. The variables measured in the experiments are vC1

(the voltage of capacitor C1), vC2 (the voltage of capacitor
C2), and vR1 = iLR1 (the voltage of resistor R1), which are
acquired by the sampling frequency f0 = 50 kHz. For each
value of R, we first let the circuit operate for a transient period
of 1000 ms and then record the system state (vC1 , vC2 , vR1 )
for a period of 100 ms. As such, each time series contains
n = 5000 data points.

Setting R = 1.738 k� in the circuit, we plot in Figs. 2(a)
and 2(b) the system trajectories projected onto the two-
dimensional (2D) phase spaces (vC1 , vC2 ) and (vC2 , vR1 ),
respectively. We see that the trajectories are blurred by noise
severely, rendering it difficult to figure out accurately the peri-
odicity of the trajectories. (The trajectories seem to be period
3 but might be period 6 or weakly chaotic.) We also see from
Figs. 2(a) and 2(b) that compared to the variables vC1 and vC2 ,
the variable vR1 is more corrupted by noise. For this reason,
we choose the variable vC1 to investigate experimentally the
bifurcation diagram. Decreasing R from 1.77 to 1.73 k� by
the decrement �R = 0.5 �, we measure the time series of vC1

for each value of R and, by recording the local minimums of
vC1 , plot in Fig. 2(c) the bifurcation diagram of the circuit.
We see that, while Fig. 2(c) shows roughly the route from
limit cycle to chaos through the period-doubling bifurcations,
the bifurcation details are not clearly seen. For instance, we
cannot infer from Fig. 2(c) when the system dynamics will
present the period-8 orbit and what happens in the window
R ∈ [1735 �, 1741 �]. The first objective of the present work
is to reconstruct the bifurcation diagram of Chua’s circuit with
high quality (precision) based on the noisy series acquired for
several values of R in experiments.

The second experiment we conduct is the synchronization
of two coupled chaotic Chua circuits. The diagram of the cou-
pled circuits is schematically shown in Fig. 3(a), and a photo
of the experimental setup is given in Fig. 3(b). The dynamics
of the coupled circuits are governed by the equations

C3
dvC3

dt
= 1

R2
(vC3 − vC4 ) − g(vC3 ) + 1

R6
(vC5 − vC3 ),

C4
dvC4

dt
= 1

R2
(vC4 − vC3 + iL1 ),

L1
diL1

dt
= −vC4 − R4iL1 ,

C5
dvC5

dt
= 1

R3
(vC5 − vC6 ) − g(vC5 ) + 1

R6
(vC3 − vC5 ),

C6
dvC6

dt
= 1

R3
(vC6 − vC5 + iL2 ),

L2
diL2

dt
= −vC6 − R5iL2 , (2)

FIG. 2. Setting R = 1.738 k� in Chua’s circuit, system trajecto-
ries plotted on the planes (a) (vC1 , vC2 ) and (b) (vC2 , vR1 ). (c) With the
data measured from experiments, the bifurcation diagram of Chua’s
circuit plotted according to the local minimums of vC1 .

with g(vC ) being the piecewise-linear function characteriz-
ing the nonlinear resistors. [The parameters of the nonlinear
resistors are identical to the ones used in Fig. 1(b)]. Here,
to better demonstrate the synchronization phenomenon, we
choose the circuit components R2,3 = 1.6 k�, C3,5 = 10 nF ±
5%, C4,6 = 100 nF ± 5%, L1,2 = 26 mH ± 10%, and R4,5 =
10 � ± 10%. Note that due to the mismatched parameters
(components), the two circuits are not identical. Despite the
mismatched parameters, both circuits present chaotic motion
when isolated, as depicted in Fig. 3(c). The two circuits are
coupled through the resistor R6, which can be adjusted be-
tween 9 k� (strong coupling) and 13 k� (weak coupling) with
high precision (∼0.1�). Still, the currents of the inductors
iL1 and iL2 are monitored by the voltages vR4 and vR5 , re-
spectively, and data are acquired with the sampling frequency
f0 = 50 kHz for a period of 100 ms in each experiment.

Setting R6 = 10.2 k�, we plot in Fig. 3(d) the relation-
ship between the voltages vC3 (from circuit 1) and vC5 (from
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FIG. 3. (a) Schematic of two coupled Chua circuits. (b) The
experimental setup. (c) The trajectories of isolated chaotic circuits on
the 2D phase spaces (vC3 , vC4 ) and (vC5 , vC6 ). (d) For R6 = 10.2 k�

in the experiment, vC3 versus vC5 plotted according to the measured
data.

circuit 2). We see that the data are distributed roughly
along the diagonal line, indicating that the two circuits
are oscillating in a weakly coherent fashion. The synchro-
nization degree of the coupled circuits is evaluated by
the time-averaged synchronization error δr = 〈δe(t )〉T , with
δe = √

(vC3 − vC5 )2 + (vC4 − vC6 )2 + (vR4 − vR5 )2 being the
instant synchronization error between the circuits and 〈·〉
being the time-average function. For the results shown in
Fig. 3(d), we have δr ≈ 0.303V . Here, the question we are
interested in is: Given experiments are conducted for only
several values of R6 and the time series of the sampling states
are available, can we anticipate the synchronization degree of
the coupled circuits for a random R6 and, furthermore, the
variation of the synchronization degree with respect to R6 over
a wide range? The second objective of the present work is
to demonstrate that this question can be addressed using the
technique of PARC in machine learning.

III. PARAMETER-AWARE RESERVOIR COMPUTING

The PARC technique exploited for reconstructing bifur-
cation diagrams is generalized from the one proposed in

FIG. 4. Schematic of the PARC technique. (a) The open-loop
configuration of the machine in the training phase. (b) Schematic of
the training data. (c) The closed-loop configuration of the machine in
the predicting phase.

Refs. [20–23]. Like conventional RCs, the machine employed
here is also constructed using four modules: the I/R layer (in-
put to reservoir), the parameter-control channel, the reservoir
network, and the R/O layer (reservoir to output). The structure
of the machine is schematically shown in Fig. 4(a). The I/R
layer is characterized by the matrix Win ∈ RDr×Din , which
couples the input vector uβ (t ) ∈ RDin to the reservoir network.
Here, uβ (t ) denotes the input vector acquired from the target
system at time t under the specific bifurcation parameter β.
(For the first objective, in which the task is to reconstruct
the bifurcation diagram of a single circuit, we have β = R;
for the second objective, in which the task is to anticipate
the variation of the synchronization degree of coupled chaotic
circuits, we have β = R6.) The elements of Win are randomly
drawn from a uniform distribution within the range [−σ, σ ].
The parameter-control channel is characterized by the vector
s = βWb, with β being the control parameter and Wb ∈ RDr

being the bias vector. The control parameter β can be treated
as an additional input channel marking the input vector u(t ).
The elements of Wb are also drawn randomly within the
range [−σ, σ ]. The reservoir network contains Dr nodes, with
the initial states of the nodes being randomly chosen from
the interval [−1, 1]. The states of the nodes in the reservoir
network, r(t ) ∈ RDr , are updated as

r(t + �t ) = (1 − α)r(t ) + α tanh[Ar(t )

+ Winuβ (t ) + βWb]. (3)

Here, �t is the time step for updating the reservoir network,
α ∈ (0, 1] is the leaking rate, and A ∈ RDr×Dr is a weighted
adjacency matrix representing the coupling relationship be-
tween nodes in the reservoir. The adjacency matrix A is
constructed as a sparse random Erdös-Rényi matrix: with
probability p, each element of the matrix is set as a nonzero
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value drawn randomly from the interval [−1, 1]. The matrix
A is rescaled to make its spectral radius equal λ. The output
layer is characterized by the matrix Wout ∈ RDout×Dr , which
generates the output vector, v(t ) ∈ RDout , according to the
equation

v(t + �t ) = Wout r̃(t + �t ), (4)

with r̃ ∈ RDr being the new state vector transformed from
the reservoir state (i.e., r̃i = ri for the odd nodes and r̃i = r2

i
for the even nodes) [34] and Wout being the output matrix
to be estimated by a training process. Except for Wout, all
other parameters of the RC, e.g., Win, A, and Wb, are fixed
at construction. For the sake of simplicity, we set Dout = Din

in our studies [32–34].
The implementation of PARC consists of three phases:

training, validating, and predicting. The mission of the train-
ing phase is to find a suitable output matrix Wout so that
the output vector v(t + �t ) as calculated by Eq. (4) is as
close as possible to the input vector u(t + �t ) for t = (τ +
1)�t, . . . , (τ + L̂)�t , with T0 = τ�t being the transient pe-
riod (used for removing the impact of the initial conditions
of the reservoir) and L̂ being the length of the training series.
This is done by minimizing the cost function with respect to
W out [32–34], which gives

W out = UV T (VV T + ηI)−1. (5)

Here, V ∈ RDr×L̂ is the state matrix whose kth column is
r̃[(τ + k)�t], U ∈ RDout×L̂ is a matrix whose kth column is
u[(τ + k)�t], I is the identity matrix, and η is the ridge
regression parameter for avoiding the overfitting. We note that
in the training phase the input data consist of two different
time series: (1) the input vector uβ (t ) representing the state of
the target system and (2) the control parameter β(t ) labeling
the condition under which the input vector uβ (t ) is acquired.
Specifically, the input vector uβ (t ) is composed of m segments
of length n̂, while each segment is a time series obtained from
the target system under the specific control parameter β. As
such, the training data set is a concatenation of the sampling
series, and β(t ) is a step function of time. The structure of the
training data is schematically shown in Fig. 4(b).

A machine that performs well on the training data might
not perform equally well on the testing data. Finding the
optimal machine that performs well on both the training and
testing data is the mission for the validating phase. The set
of hyperparameters to be optimized in the machine include
Dr (the size of the reservoir network), p (the density of the
adjacency matrix A), σ (the range defining the input matrix
and the bias vector), λ (the spectral radius of the adjacency
matrix A), η (the regression coefficient), and α (the leaking
rate). In our studies, the optimal hyperparameters are obtained
by scanning each hyperparameter over a certain range in the
parameter space using conventional optimization algorithms
such as the Bayesian and surrogate optimization algorithms
[20]. After finding the optimal machine, we then utilize it to
reconstruct the bifurcation diagrams, namely, the predicting
phase. Figure 4(c) shows the flowchart of the machine in
the predicting phase. In making the predictions, we replace
uβ (t ) with v(t ) (so that the machine is working in the closed-
loop configuration) while setting the control parameter β to a

specific value of interest. As such, in the predicting phase the
machine is still driven by the externally added parameter β.
The output vector v(t ) then gives the predictions, on the basis
of which the climate of the system dynamics associated with
β can be replicated. (Still, before making the predictions, a
short transient is discarded to avoid the impact of the initial
conditions of the reservoir.) Finally, by tuning β in the param-
eter space, we can reconstruct the whole bifurcation diagram
according to the machine predictions.

IV. RESULTS

We first utilize the PARC technique to reconstruct the bi-
furcation diagram of a single circuit. We begin by choosing
the set of sampling states from which the data are acquired
from experiments. Previous studies showed that the per-
formance of PARC is influenced by both the number and
locations of the sampling states [20,22,23]. In general, the
more sampling states there are, the better the machine pre-
dictions are. Additionally, to replicate the dynamics of a new
state that is not included in the sampling set, it is better to
choose the sampling states evenly over the parameter space.
For demonstration purposes, here we choose m = 3 sampling
states over the bifurcation range plotted in Fig. 5(c), R =
1.735, 1.745, and 1.755 k�. For each of the sampling states,
we record the system evolution for T = 100 ms, from which
we obtain a time series of n = 5000 data points. Following the
standard strategies in machine learning, we separate the time
series into two segments of equal length, with the first half
being used as training data and the second half as validating
data. The size (length) of the whole training dataset therefore
is N̂ = m × n/2 = 7500, so it is the validating dataset. (To
make the predictions more relevant to the experimental re-
sults, here we use the raw data as the input; i.e., the data are
not processed.)

We next train the machine and find the optimal set of
hyperparameters. In training the machine, the transient se-
ries used to remove the impact of the initial conditions
of the reservoir contains τ = 200 data points (which ap-
plies to each of the sampling series in the training data).
As such, the total number of data points used for estimat-
ing the output matrix Wout is L̂ = m × n̂ = m × (n/2 − τ ) =
6900. To find the optimal set of hyperparameters, we search
the hyperparameters over the ranges Dr ∈ (200, 1000), p ∈
(0, 0.2), σ ∈ (0, 1), λ ∈ (0.5, 1), η ∈ (1 × 10−8, 1 × 10−2),
and α ∈ (0, 1] using the Bayesian optimization algorithm.
Each set of hyperparameters defines a machine whose per-
formance is evaluated on the validating data according to
the prediction error 〈|u(t ) − v(t )|〉T . Still, in evaluating the
machine performance using the validating data, a transient
series of τ = 200 points is used to remove the impact
of the initial conditions of the reservoir. For this applica-
tion, the optimal hyperparameters are (Dr, p, σ, λ, η, α) =
(502, 0.15, 0.32, 0.85, 1.2 × 10−5, 0.54), which define the
optimal machine to be used for prediction purposes.

Before employing the trained machine to reconstruct the
bifurcation diagram, we first check the capability of the ma-
chine for predicting the dynamics of a new state not included
in the sampling set. The example state we choose is R =
1.738 k�. [The trajectories of this state plotted according to
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FIG. 5. Reconstructing the bifurcation diagram of Chua’s circuit
using the PARC technique. (a) and (b) The trajectories predicted by
the machine for the parameter R = 1.738 k�, which is not included
in the sampling set. (c) The bifurcation diagram predicted by the
PARC technique. Red dashed lines denote the sampling states from
which data are measured from experiments.

experimental data are shown in Figs. 2(a) and 2(b).] Setting
the control parameter as β = 1.738 k�, we now operate the
machine in the closed-loop configuration [see Fig. 4(c)]. After
a transient period of τ = 1000 iterations, the machine begins
to output the predictions. The trajectories predicted by the ma-
chine are plotted in Figs. 5(a) and 5(b). We see that compared
to the smeared trajectories plotted in Figs. 2(a) and 2(b), in
Figs. 5(a) and 5(b) the trajectories clearly show the period-6
orbits. We therefore see that the machine is able not only to
infer the dynamics of a new state but also to restore from
noise-contaminated signals the main features of the true tra-
jectories (i.e., the “climate” of the system dynamics) [51]. We
proceed to reconstruct the bifurcation diagram of the circuit
using the PARC technique. This is done by increasing the con-
trol parameter from β = 1.73 to 1.77 k� gradually, while for
each value of R we collect from the machine output a sequence

of 10 000 data points. Figure 5(c) shows the bifurcation dia-
gram plotted according to the machine predictions. Compared
with the experimentally obtained results [see Fig. 2(c)], we
see that the bifurcation diagram predicted by the machine is
of high quality and precision. Specifically, we can infer from
the reconstructed bifurcation diagram not only the transition
points of the high-order periodic orbits but also the periodic
windows embedded in the chaotic regions.

We continue to anticipate the synchronization degree of
two coupled chaotic Chua circuits using the PARC technique.
Still, to generate the training and validating datasets, we ac-
quire from experiments the time series of m = 3 sampling
states, R6 = 9.4 k�, 10.2 k� [the state shown in Fig. 3(d)],
and 11 k�. Each series contains n = 10 000 data points, with
the first half being used as training data and the second
half being used as validating data. The transient period of
the training phase contains τ = 500 data points, and the
same transient period is applied in the validating phase.
Still, the machine hyperparameters are optimized using the
Bayesian optimization algorithm. In this application, the op-
timal hyperparameters are (Dr, p, σ, λ, η, α) = (983, 4.8 ×
10−3, 0.88, 0.39, 2.9 × 10−3, 0.73).

We first check the capability of the trained machine to
replicate the synchronization dynamics of the sampling states.
Setting the control parameter as β = 10.2 k�, we operate the
machine in the closed-loop configuration [see Fig. 4(c)] and
estimate from the machine outputs the synchronization error
δr between the circuits. The results show that δr ≈ 0.34V ,
which is in good agreement with the experimental results
(δr ≈ 0.30V ). Figure 6(a) shows the relationship between vC3

and vC5 for the machine-predicted data (red dots), which is
also consistent with the one plotted according to the experi-
mental data (black dots).

We next check the capability of the machine to anticipate
the synchronization climate of a new state not included in
the sampling set. To demonstrate, we set β = 12 k� and,
based on the machine predictions, plot in Fig. 6(b) the re-
lationship between vC3 and vC5 . Compared to the results for
β = 10.2 k�, we see that the synchronization degree between
the circuits clearly decreases for β = 12 k�. Specifically, for
β = 12 k�, the synchronization error estimated from the ma-
chine predictions is δr ≈ 0.65V . This estimation is also in
good agreement with the experimental result (δr ≈ 0.64V ),
as depicted in Fig. 6(b).

We finally utilize the machine to anticipate the variation
of the synchronization error δr with respect to the coupling
coefficient R6 over a wide range in the parameter space. In
doing this, we increase β from 9 to 13 k� with the increment
�β = 0.2 k�, and for each β we calculate from the machine
outputs the value of δr. The results are plotted in Fig. 6(c) (red
circles), which shows that with the increase of β, the value of
δr is monotonically increased. To validate the predictions, we
tune R6 in the experiment over the same range, and for each
R6 we calculate from the measured data the synchronization
error. The experimental results are also plotted in Fig. 6(c)
(black squares). We see that the predicted and experimental
results are consistent within the range R6 ∈ (9 k�, 12 k�) but
slightly diverge when R6 > 12 k�. The difference between
the predicted and experimental results at large R6 is attributed
to the large distance between the sampling and testing states,
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FIG. 6. Reconstructing the synchronization transition of two
coupled chaotic Chua circuits using the PARC technique. The re-
lationship between vC3 and vC5 for (a) R6 = 10.2 k� and (b) R6 =
12 k�. Black dots are results acquired from experiments. Red dots
are results predicted by the machine. (c) The variation of the syn-
chronization error between the coupled circuits δr with respect to
the coupling coefficient R6. Black squares are results obtained from
experiments. Red circles are results predicted by the machine. Blue
dashed lines denote the sampling states from which data are mea-
sured from experiments.

which was also observed in previous studies [20,22,23] and
was confirmed by additional simulations [51].

V. CONCLUDING REMARKS

In reconstructing the bifurcation diagram of chaotic
systems based on measured data, two of the major diffi-
culties encountered in practice are that (1) the signals are

contaminated by noise and (2) the signals are acquired at
only a few sampling states. The former makes the recon-
structed bifurcation diagram coarse and unclear; the latter
renders the reconstructed bifurcation diagram fragmented and
incomplete. In the present work, using the experimental data
of chaotic Chua circuits, we showed that both difficulties can
be well addressed with the PARC technique proposed recently
for machine learning. Two scenarios were considered and in-
vestigated: reconstructing the bifurcation diagram of a single
circuit and anticipating the synchronization transition of two
coupled chaotic circuits. In the first scenario, we demonstrated
that with the noisy signals acquired at several sampling states,
the trained machine is able to reconstruct the whole bifurca-
tion diagram with high precision. The success of the machine
in reconstructing the bifurcation diagram is attributed to the
noise-filtering effect of the reservoir and the property of trans-
fer learning. Specifically, fed with noisy signals from which
the system dynamics cannot be inferred directly, the reser-
voir is able to output a smooth and clear trajectory capturing
the main features of the noise-free dynamics. Guided by the
parameter-control channel, the knowledge that the machine
learned from the time series of the sampling states can be
transferred to infer the dynamics of a new state not included
in the sampling set. In the second scenario, we demonstrated
that, trained by the noisy signals collected at a handful of
coupling parameters, the machine is able to anticipate the
variation of the synchronization degree of the coupled circuits
with respect to the coupling parameter over a wide range.
Whereas the capability of PARC for inferring the dynamics
climate of chaotic systems has been well demonstrated in the
literature, previous studies were mainly based on modeling
systems of noise-free signals [20–24]. (Model-free inference
of the bifurcation diagram of chaotic systems based on noisy
signals was studied very recently in Ref. [25].) Our studies
show that this technique can also be applied to noisy signals
generated by realistic systems.

Although our studies preliminarily demonstrated the capa-
bility of the PARC technique for reconstructing the bifurcation
diagram of realistic chaotic systems, many questions remain
to be addressed. First, for convenience and simplicity, we
adopted Chua’s circuits as examples to demonstrate the per-
formance of the PARC technique. The applicability of this
technique to other real-world chaotic systems is yet to be
checked. Second, recent studies showed that noise might play
a constructive role in the machine learning of chaotic systems
[43–46]. In particular, a resonance phenomenon was observed
in both chaos prediction and climate replication, where it was
shown that machine performance can be improved by intro-
ducing a certain amount of noise [43,46]. It will be interesting
to check whether a similar phenomenon can be observed in
experimental data generated by Chua’s circuits. Third, our
studies focused on only the low-dimensional chaotic systems
(a single Chua’s circuit and two coupled chaotic Chua cir-
cuits). It remains unclear whether the same PARC technique
can be applied to high-dimensional chaotic systems, e.g.,
spatially extended chaotic systems and large-size complex
networks of coupled oscillators. In applying the technique to
high-dimensional chaotic systems, one difficulty concerns the
large size of the reservoir network. One possible approach
for addressing this difficulty could be adopting the scheme of
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parallel RC [34], which, however, might require a significant
modification of the machine structure. Fourth, an impor-
tant feature of many real-world chaotic systems is that their
asymptotic dynamics are dependent on the initial conditions,
namely, the property of multistability [52]. The application of
the PARC technique to reconstruct the bifurcation diagrams of
multistable chaotic systems, probably by incorporating some
additional modules in the current machine, is an interesting
topic warranting further study. Finally, recent studies showed
that the technique of RC can also be applied to predict the
dynamics of quantum systems [53,54]. In particular, it was
demonstrated that under some circumstances, the introduction
of a certain amount of noise can improve the performance of
a quantum RC [55]. The application of the PARC technique

to quantum systems is another intriguing topic warranting
further study.

The program codes and experimental data used in this
study can be obtained from Ref. [56].
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