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Rogue waves and instability arising from long-wave–short-wave resonance
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Wen-Rong Sun ,1,* Boris A. Malomed,2 and Jin-Hua Li1
1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

2Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile

(Received 28 October 2023; accepted 19 January 2024; published 13 February 2024)

We consider instability and localized patterns arising from the long-wave–short-wave resonance in the
nonintegrable regime numerically. We study the stability and instability of elliptic-function periodic waves with
respect to subharmonic perturbations, whose period is a multiple of the period of the elliptic waves. We thus
find the modulational instability (MI) of the corresponding dnoidal waves. Upon varying parameters of dnoidal
waves, spectrally unstable ones can be transformed into stable states via the Hamiltonian Hopf bifurcation.
For snoidal waves, we find a transition of the dominant instability scenario between the MI and the instability
with a bubblelike spectrum. For cnoidal waves, we produce three variants of the MI. Evolution of the unstable
states is also considered, leading to formation of rogue waves on top of the elliptic-wave and continuous-wave
backgrounds.
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I. INTRODUCTION

The resonance between long and short waves occurs if the
group velocity of a short (high-frequency) wave is equal to
the phase velocity of a long (low-frequency) wave. A general
theory for the interaction between short and long waves was
developed in 1977 by Benney [1]. It has revealed a variety
of phenomena relevant to a broad class of physical problems.
The long-wave–short-wave (LWSW) resonance has been pre-
dicted in the context of the interaction of capillary-gravity and
long gravity waves in hydrodynamics [2], as well as in the in-
teraction of short-wave surface waves and long-wave internal
ones in the ocean [3–5]. In plasma physics, in the framework
of the Zakharov’s system [6], the LWSW resonance pertains to
Langmuir solitons moving with velocities close to the speed
of sound. In quasi-one-dimensional molecular crystals, it is
the resonance between exciton and phonon fields in the Davy-
dov’s model [7], and in nonlinear optics the LWSW resonance
provides a mechanism for the generation of terahertz modes
from optical waves [8].

It is well known that the integrable LWSW resonance
system can be solved by means of the inverse-scattering
technique [9,10], producing analytical solutions for solitons,
breathers, and rogue waves (RWs) [11–16]. However, the
LWSW resonance system is usually not integrable in realis-
tic physical settings. For example, Chowdhury and Tataronis
[8] showed that LWSW resonance can be achieved in a
second-order nonlinear negative-refractive index medium if
the short waves are represented by the negative-index branch.
The novelty of that work is the introduction of the second-
order nonlinearity for the efficient resonant coupling, which
is different from previous works for slow light, where the

*Corresponding author: sunwenrong@ustb.edu.cn

ponderomotive force alone gave rise to the local nonlinearity
[17,18]. With the term resulting from the cascaded χ (2) non-
linearity, the governing nonlinear system [see Eq. (1) below]
for the amplitudes of the high- and low-fre quency wave pack-
ets coupled by the LWSW resonance is not integrable. There
have been relatively few studies of nonintegrable LWSW res-
onance systems.

Our objectives in this work are as follows.
(a) For integrable systems, it is well known that modula-

tional instability (MI) of periodic solutions (including plane
waves and solutions expressed in terms of elliptic functions)
can lead to the formation of localized patterns, such as soli-
tons, RWs, and breathers [19–44]. As we obtain periodic
traveling-wave solutions of the nonintegrable LWSW reso-
nance system (in Sec. II), it is natural to inquire if this system
features MI of the periodic traveling waves and if RWs can
be generated by the MI. Because system (1) considered here
is not integrable, we address the MI numerically and analyze
outcomes of systematic direct simulations.

(b) Recently, the stability of periodic waves with respect
to superharmonic perturbations (i.e., periodic perturbations
sharing the period with the underlying waves, including
higher-order harmonics) for the LWSW resonance (Benney)
system has been studied [45]. Rather than assuming that
periodic perturbations are of the superharmonic type, we
consider arbitrary periods, including subharmonic perturba-
tions, with multiple periods, with respect to the underlying
waves. The extension of the analysis beyond the superhar-
monic perturbations to the subharmonic ones is essential as
there are elliptic-function solutions which are stable with re-
spect to superharmonic perturbations but, nevertheless, are
subject to MI. As shown below in Sec. IV B, this problem
can be addressed by introducing the Floquet exponent μ and
subharmonic perturbations. It is relevant to stress that sub-
harmonic perturbations have a wider physical relevance than
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FIG. 1. A color map of the largest instability growth rate γ as
a function of c and β for the dnoidal waves with m = 1, ω = −1,
k = 0.1, and σ = −1.

superharmonic ones, as one usually considers domains which
are larger than the period of the unperturbed solution (e.g., in
the context of ocean-wave dynamics [46,47]). We address the
stability against the subharmonic perturbations numerically,
using the Hill’s technique [48] .

The rest of the paper is organized as follows. Three types of
periodic traveling-wave solutions of the nonintegrable LWSW
resonance system are obtained in Sec. II. The linear stability
problem in the framework of the Floquet-Fourier-Hill the-
ory is formulated in Sec. III. The stability and instability
of elliptic-function waves with respect to the subharmonic
perturbations are examined in Sec. IV. Spatiotemporal RW
structures in the present system are studied numerically in
Sec. V. Section VI summarizes the findings.

II. PERIODIC TRAVELING-WAVE SOLUTIONS

The nonintegrable LWSW resonance system for a
complex-valued short-wave envelope S and a real-valued
long-wave field D is given by [8]

iSt̂ + λ1Sxx + β1|S|2S = γ1DS, Dt̂ = μ1(|S|2)x, (1)

where real parameters λ1, β1, γ1, and μ1 measure effects
of dispersion, nonlinearity, nonlinear coupling, and radiation
stress of the short waves acting on the long waves, respec-

tively. The meaning of fields S and D depends on the particular
physical context. In particular, system (1) models the resonant
interaction of short and long water waves. Note that system (1)
is a reduction of the bidirectional Zakharov’s system to the
unidirectional propagation [6]. The same LWSW resonance
system describes the generation of terahertz fields from opti-
cal waves. In this case, fields S and D denote the optical-wave
envelope and the terahertz wave, respectively [8]. When β1 =
0, system (1) is integrable [10]. In this paper, we consider the
nonintegrable system (1) with β1 �= 0. System (1) can be cast
in a more convenient form,

iSt − Sxx + β|S|2S = LS, Lt = −σ (|S|2)x, (2)

by means of rescaling

t = −λ1t̂, L = −γ1

λ1
D, β = −β1

λ1
, σ = −μ1γ1

λ2
1

. (3)

Three species of elliptic-function solutions can be ob-
tained. Note that snoidal and dnoidal solutions, based on
elliptic functions of the sn and dn types were reported in
Ref. [45], while cnoidal-wave solutions, based on cn func-
tions, were missing. Defining

S(x, t ) = e−iωt Ŝ(y, t ), with y = x − ct, (4)

Eq. (2) is written as

iŜt − ciŜy + ωŜ − Syy + β|Ŝ|2Ŝ = LŜ, (5a)

Lt − cLy = −σ (|Ŝ|2)y. (5b)

Further, letting Ŝ = e−icy/2φ(y) and L = ψ (y) and integrating,
we obtain

ψ = σ

c
φ2 + γ , (6a)

(
dφ

dy

)2

= A

2
φ4 + Bφ2 + 2H, (6b)

where A ≡ β − σ
c , B ≡ ω − γ − c2

4 , and γ and H are con-
stants of integration.
Then, three types of the elliptic-function solutions are written
as

FIG. 2. The spectrum of perturbation eigevalues for the dnoidal waves with ω = −1, m = 1, k = 0.1, σ = −1, and β = 0.9. Panel
(a) shows the spectrum with respect to superharmonic perturbations (P = 1) for the dnoidal wave with c = −0.2 and the red dots represent the
eigenvalues with P = 1. Panel (b) shows the spectrum with respect to subharmonic perturbations for the wave with c = −0.2. Panel (c) shows
the spectrum with respect to subharmonic perturbations for the wave with c = −0.54.
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FIG. 3. The Hamiltonian Hopf bifurcation: the perturbation spectrum for the dnoidal waves with ω = −1, m = 1, k = 0.1, σ = −1, β =
0.9, c = −0.41 (a), c = −0.4118 (b), and c = −0.43 (c). Red dots represent the eigenvalues with P = 3.

(i) dnoidal waves (β − σ
c < 0):

φ = A3dn(my, k), (7)

where A2
3 ≡ − 2cm2

cβ−σ
, γ ≡ 1

4 (−c2 − 8m2 + 4k2m2 + 4ω), and

H ≡ 1
2 A2

3(k2 − 1)m2;
(ii) snoidal waves (β − σ

c > 0):

φ = A1sn(my, k), (8)

where A2
1 ≡ 2ck2m2

cβ−σ
, γ ≡ 1

4 (−c2 + 4m2 + 4k2m2 + 4ω), and

H ≡ 1
2 m2A2

1; and
(iii) cnoidal waves (β − σ

c < 0):

φ = A2cn(my, k), (9)

where A2
2 ≡ −2ck2m2

cβ−σ
, γ ≡ 1

4 (−c2 + 4m2 − 8k2m2 + 4ω), and

H ≡ − 1
2 A2

2(k2 − 1)m2.
Here φ are periodic functions with period T = 4K

m for solu-
tions (8) and (9) and with T = 2K

m for solution (7), where K (k)
denotes the complete elliptic integral of the first kind, with
0 � k < 1 [49].

III. THE LINEARIZED PROBLEM IN THE FRAMEWORK
OF THE FLOQUET-FOURIER-HILL THEORY

To study the spectral stability of the elliptic-function solu-
tions with respect to P-subharmonic perturbations, where P is
an integer, we take the perturbed solution as

Ŝ(y, t ) = e−icy/2[φ(y) + εu(y, t ) + iεv(y, t )], (10a)

L(y, t ) = ψ (y) + εw(y, t ), (10b)

where ε is an infinitesimal amplitude of the perturbation, and
u, v, and w are real functions. Substituting expressions (10)
into Eq. (5) and keeping the first-order terms in ε leads to

v

(
c2

4
− βφ2 + ψ − ω

)
+ vyy = ut , (11a)

−uyy − 1

4
u(c2 − 12βφ2 + 4ψ − 4ω) − wφ = vt , (11b)

−2σφuy − 2σuφ′ + cwy = wt . (11c)

Looking for perturbation eigenmodes as

[u(y, t ), v(y, t ),w(y, t )] = eλt [U (y),V (y),W (y)] + c.c.
(12)

(where c.c. denotes the complex conjugate) leads to the spec-
tral problem

λ

⎛
⎝U

V
W

⎞
⎠ =

⎛
⎝ 0 L1 0

L2 0 −φ

L3 0 c∂y

⎞
⎠

⎛
⎝U

V
W

⎞
⎠, (13)

where the operators are

L1 ≡ ∂2
y + c2 − 4ω − 4βφ2 + 4ψ

4
, (14)

L2 ≡ −∂2
y − c2 − 4ω − 12βφ2 + 4ψ

4
. (15)

L3 ≡ −2σφ∂x − 2σφ′. (16)

As the coefficient functions of the linearized problem are
periodic in y with period T , we use the Fourier expansion
for them, φ2 = ∑∞

n=−∞ Qnei2nπy/T , ψ = ∑∞
n=−∞ Rnei2nπy/T ,

φ = ∑∞
n=−∞ Snei2nπy/T and φ′ = ∑∞

n=−∞ Fnei2nπy/T , where
Qn, Rn, Sn, and Fn are the respective Fourier coefficients. Fur-
ther, the periodicity of the coefficient functions of the spectral

FIG. 4. The largest instability growth rate γ as a function of c for
snoidal waves with β = 0.2, m = 1, ω = −1, k = 0.8, and σ = −1.
Spectra of the perturbation eigenvalues are shown in Fig. 5 for c =
0.7 [point (a)], c = 0.9 [point (b)], and c = 1.2 [point (e)].
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FIG. 5. The spectrum of the subharmonic perturbations for snoidal waves, with the parameters corresponding to Fig. 4 and points therein:
(a) c = 0.7, (b) c = 0.9, and (e) c = 1.2 [panels (a)–(c), respectively].

problem suggests to decompose the perturbations using the
Floquet theorem,

U (y) = eiμyHU (y) = eiμy
+∞∑

n=−∞
Unei2nπy/PT ,

V (y) = eiμyHV (y) = eiμy
+∞∑

n=−∞
Vnei2nπy/PT ,

W (y) = eiμyHW (y) = eiμy
+∞∑

n=−∞
Wnei2nπy/PT ,

where we expand HU (y), HV (y), and HW (y) as Fourier series
in y with period PT , μ ∈ [0, 2π/T ) is the Floquet exponent,
and

Un ≡ 1

PT

∫ +PT/2

−PT/2
HU (y)e−i2πny/PT dy,

Vn ≡ 1

PT

∫ +T/2

−PT/2
HV (y)e−i2πny/PT dy,

Wn ≡ 1

PT

∫ +PT/2

−PT/2
HW (y)e−i2πny/PT dy.

Substituting the Fourier expansions in Eq. (13) and equating
the Fourier coefficients results in the following bi-infinite
spectral problem:[

−ω + c2

4
+

(
iμ + 2inπ

PL

)2
]

Vn − β

+∞∑
m=−∞

Q n−m
P

Vm

+
∞∑

m=−∞
R n−m

P
Vm = λUn, (19a)

[
ω − c2

4
−

(
iμ + 2inπ

PL

)2
]

Un + 3β

+∞∑
m=−∞

Q n−m
P

Um

−
∞∑

m=−∞
R n−m

P
Um −

+∞∑
m=−∞

S n−m
P

Wm = λVn, (19b)

−2σ

(
iμ + 2inπ

PL

) +∞∑
m=−∞

S n−m
P

Um − 2σ

+∞∑
m=−∞

Fn−m
P

Um

+c

(
iμ + 2inπ

PL

)
Wn = λWn, (19c)

where Q n−m
P

, R n−m
P

, S n−m
P

, and Fn−m
P

= 0 if n − m is not divisible
by P. The spectral problem (19) is tantamount to that based
on Eq. (13), and the spectrum of Eq. (13) is constructed as the
union of the spectra for all values of μ.

IV. (IN)STABILITY OF THE ELLIPTIC-FUNCTION WAVES

Truncating the number of modes in the Fourier decompo-
sitions in the bi-infinite spectral problem (19) to finite N , we
calculate the spectrum of the linear problem (13) numerically.
The instability growth rate, if any, is determined by a positive
real part of λ.

A. The MI of the superharmonically stable dnoidal waves

For dnoidal waves (7), Fig. 1 shows the largest instability
growth rate γ as a function of β and c [see Eqs. (4) and
(3)], while the other parameters are fixed. It can be seen
that simultaneously increasing β and |c| is favorable for the
stability, while simultaneously increasing |c| and decreasing
β leads to the most unstable case.

FIG. 6. The perturbation spectrum (with respect to subharmonic perturbations) for cnoidal waves with ω = −1, m = 1, k = 0.5, σ = −1,
c = −0.8, and β = 0.2 (a), β = 0.9 (b), and β = 1.2 (c).
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FIG. 7. The numerically simulated formation of RWs, arising
from the MI of the CW background of the S component of the
nonintegrable LWSW resonance system with a = 1, k = 0, β = 0.1,
σ = 0.5, and b = 0.7. A particular RW produced by the MI evolution
is isolated by the surrounding box. Panel (b) displays the three-
dimensional zoom of this RW.

The dnoidal waves are stable with respect to the super-
harmonic perturbations (corresponding to P = 1), as shown
Fig. 2(a). Rather than assuming that perturbations share the
period with the unperturbed waves (thus restricting the con-
sideration to the superharmonic perturbations), we consider
arbitrary periods, including subharmonic perturbations. We
find that, although the dnoidal waves are stable with respect to
the superharmonic perturbations, such waves are modulation-
ally unstable with respect to the subharmonic perturbations,
with the instability band which has the shape of a figure of
eight, as shown in Fig. 2(b). Besides that, we note that, with
the increase of |c|, the figure-of-eight-shaped instability band
disappears, the dnoidal waves being stable against all sub-
harmonic perturbations [as shown in Fig. 2(c)]. This implies
that spectrally unstable and stable states can convert into each
other.

Next, we examine the transition from a spectrally unstable
(stable) state to a spectrally stable (unstable) one. We take
P = 3 as an example. When c < cp ≈ −0.4118, two eigenval-
ues (corresponding to P = 3) are found to lie on the imaginary
axis, as shown in Fig. 3(c). At c > cp, the instability occurs
when two critical imaginary eigenvalues collide along the
imaginary axis [as shown in Fig. 3(b)] through a Hamiltonian
Hopf bifurcation [50] and then enter the right and left half
planes along the figure-of-eight path [as shown in Fig. 3(a)].

Due to the presence of the subharmonic MI for the dnoidal
waves, we expect that RWs may emerge on top of the dnoidal-
wave background. These results are reported in Sec. V.

FIG. 8. The numerically simulated formation of RWs, arising
from the MI of the CW background of the L component of the
LWSW resonance system with a = 1, k = 0, β = 0.1, σ = 0.5, and
b = 0.7. A particular emerging RW is isolated by the surrounding
box. Panel (b) displays the three-dimensional zoom of this RW.

FIG. 9. The numerically simulated formation of RWs, arising
from the MI of the dnoidal-wave background of the S component of
the LWSW resonance system with m = 1, ω = 1, c = −0.9, k = 0.5,
β = 0.2, and σ = −1. A particular RW is isolated by the surrounding
box. Panel (b) displays the three-dimensional zoom of this RW.

B. Instability transitions for snoidal waves and the MI for
cnoidal waves

To study instability-driven transitions for snoidal waves, at
different values of c, we consider the instability of these waves
with respect to subharmonic perturbations. Figure 4 shows
the largest instability growth rate γ as a function of c. It is
seen that γ increases as c increases. Figure 5 shows two types
of the instability: a bubble-shaped scenario (with the unstable
band of the eigenvalues shaped as a bubblelike curve) and MI
(recall that MI involves an unstable band of eigenvalues en-
compassing the origin). At c < ccp, where ccp is a critical point
for the instability transition, MI is the dominant instability, as
shown in the Fig. 5(a). As c increases towards ccp, the MI
band is compressed horizontally [as shown in Fig. 5(b)], and
the collision of the eigenvalues on the imaginary axis gives
rise to a large bubble-shaped instability band and a figure-of-
eight-shaped MI band [as shown in the Fig. 5(c). Note that the
maximal instability growth rate of that bubblelike instability
is larger than the maximal instability growth rate of the MI.
This evolution implies that the dominant instability switches
into the bubblelike scenario.

For the cnoidal waves, we show three variants of MI. For
β = 0.2, the MI is shown in Fig. 6(a). As β increases, the
instability band is pinched vertically [see Fig. 6(b)], as more
eigenvalues from the imaginary axis accumulate in it. Then
the MI band features the shape of butterfly wings. Continuing
to increasing the value of β, the wings are pinched vertically,

FIG. 10. The numerically simulated formation of RWs, arising
from the MI of the dnoidal-wave background of the L component of
the LWSW resonance system with m = 1, ω = 1, c = −0.9, k = 0.5,
β = 0.2, and σ = −1. A particular RW is isolated by the surrounding
box. Panel (b) displays the three-dimensional zoom of this RW.
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TABLE I. The effect of β on the first generation of vector RWs on the plane wave background.

β

0 0.2 0.4 0.6 0.8

tS0 12 15 26 35 65
max{|S|} 2.3346 2.2087 2.1946 1.9657 1.7565
tL0 12 15 23 35 80
max{L} 3.3443 3.2323 2.9405 2.5478 2.4723

transforming the shape of the MI band into an infinity symbol,
as shown in of Fig. 6(c).

V. ROGUE WAVES IN THE NONINTEGRABLE
LWSW RESONANCE SYSTEM

The instability of the elliptic-wave solutions makes it nat-
ural to search for RW solutions emerging on top of the
respective unstable backgrounds. First, we address this is-
sue for a simple case, viz., generating RWs by MI of CW
backgrounds. Then we demonstrate the emergence of RWs on
top of the dnoidal wave, as an example for the elliptic-wave
background.

A. RWs on the CW backgrounds

It is well known that RWs can be generated by MI of the
baseband type [37]. Very recently [43], it has been shown that
in the case of the baseband or zero-wave-number-gain MI, the
mechanism for the RW formation works solely under a linear
relation between the MI gain and a vanishingly small wave
number of the modulational perturbations. These results were
obtained in integrable systems. In the present context, it is nat-
ural to inquire whether the nonintegrable LWSW resonance
system gives rise to similar RW patterns on top of the CW
under.

We here show an explicit condition under which the MI
gain and the perturbation wave number satisfy an asymptoti-
cally linear relation. We numerically demonstrate that the RW
can be created if this relation holds. The CW solution is

S(x, t ) = aei(k1x+ω1t ), L(x, t ) = b, ω1 = a2β − b + k2
1 ,

(20)
where real parameters a and b, k1, and ω1 are amplitudes,
wave number, and frequency, respectively.

The perturbed solutions are expressed as

S(x, t ) = ei(k1x+ω1t )[a + η1(t )ei�x + η2(t )e−i�x], (21a)

L(x, t ) = b + g1(t )ei�x + g∗
1(t )e−i�x, (21b)

where � is the perturbation wave number. Substituting expres-
sions (30) into Eq. (2) leads to the linear system

⎛
⎜⎝

η1t

η∗
2t

g1t

⎞
⎟⎠ = iM

⎛
⎜⎝

η1

η∗
2

g1

⎞
⎟⎠ = i

⎛
⎜⎝

�1 a2β −a

−a2β �2 a

−aσ� −aσ� 0

⎞
⎟⎠

⎛
⎜⎝

η1

η∗
2

g1

⎞
⎟⎠,

(22)

where �1 ≡ a2β + �(2k + �) and �2 ≡ −a2β − �(� −
2k). The eigenvalues, which are obtained as roots of the char-
acteristic polynomial of M, viz., −2a2β��2 − 2a2σ�3 +
4k2��2 + �3 − 4k�2� − ��4 = 0, may either be real or
form complex-conjugate pairs.
MI occurs if � has a negative imaginary part, i.e., Im(�) < 0.
This happens when the discriminant is negative, i.e.,

4�6(8a6β3 − a4(−12β2�2 + 32β2k2 + 72βkσ + 27σ 2)

+ 2a2(3β�4 − 16βk2�2 + 16βk4 + 8k3σ − 18kσ�2)

+ (�3 − 4k2�)2) < 0. (23a)

As we focus on the relation between the MI gain
and a vanishingly small wave number of the modu-
lational perturbation, by considering � → 0 and � =
��̂, we write the characteristic polynomial of M as
−�̂(2a2β + �2) − 2a2σ + 4k2�̂ − 4k�̂2 + �̂3 = 0, reduc-
ing the discriminant to �3 = 4a2(8a4β3 − 32a2β2k2 −
72a2βkσ − 27a2σ 2 + 32βk4 + 16k3σ ). Therefore, if �3 <

0, a linear relation between the MI gain and a vanishingly
small wave number of the modulational perturbation is main-
tained. Then we expect that �3 < 0 may lead to the RW
formation.
To check this prediction, we simulated the evolution of the
CW states taken as the initial condition, perturbed by a ran-
dom Gaussian noise of relative strength 5%. The domain
used in the simulations is the same as in the pictures shown
here. The numerical computations were performed with fixed

TABLE II. The effect of β on the first generation of vector RWs on the dnoidal wave background.

β

0 0.1 0.2 0.3 0.4

tS0 10 11 12 14 18
max{|S|} 2.9441 3.0603 3.0803 3.1768 3.2075
tL0 9 10 11 13 15
max{L} 3.8473 4.0363 4.0885 4.6025 4.6553
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FIG. 11. The chaotic field of the S component with the dnoidal-
wave solutions as the initial condition (m = 1, ω = 1, c = −0.9, k =
0.5, β = 0.2, σ = −1), perturbed by the random noise of relative
strength 3% (a) and 1% (b).

periodic boundary conditions (matched to the constant plane-
wave background). As demonstrated in Figs. 7 and 8, the
noisy background features apparent MI-driven chaotic dy-
namics. For the parameters which satisfy the abovementioned
condition �3 < 0, the simulations reveal the formation of
multiple isolated peaks that emerge at random positions,
which may be interpreted as the RWs. In particular, the ef-
fects of β on the generation of the first vector RWs on top
of the plane wave background are summarized in Table I.
The time of the emergence of the first RW component S
(L) is denoted as tS0 (tL0). The increase of β leads to the
later appearance of the first vector RW and reduction of its
amplitude.

B. RWs on top of the elliptic-wave background

Dynamics of rogue waves on the spatially periodic back-
ground has attracted a significant interest in certain integrable
systems, such as the focusing nonlinear Schrödinger equa-
tion [51–53]. For example, the computation results for rogue
waves on the spatially periodic background were obtained first
in Ref. [51] with the help of numerical method and Darboux
transformation. Then in Ref. [52], the authors obtained the
exact analytical solutions for the rogue waves on the periodic
background by computing exactly the branch points in the
band-gap spectrum of the Zakharov-Shabat problem associ-
ated with the periodic background. The authors in Ref. [53]
reported an experimental study of the rogue waves on the
periodic background.

FIG. 12. The chaotic field of the L component with the dnoidal-
wave solutions as the initial condition (m = 1, ω = 1, c = −0.9, k =
0.5, β = 0.2, σ = −1), perturbed by the random noise of relative
strength 3% (a) and 1% (b).

As discussed in Sec. IV, some elliptic-wave states are
modulationally unstable. Because MI is a mechanism which
generates RW patterns, we here aim to demonstrate such
an outcome of the MI-driven evolution on top of the
dnoidal-wave background. For this purpose, we simulated the
evolution of the dnoidal-wave solutions taken as the initial
condition, perturbed by a random noise of relative strength
5%. The original dnoidal structure propagates at a constant
speed in the spatiotemporal contour plot, while the random
noise remains originally invisible. However, eventually, the
noisy background develops apparent chaotic dynamics. The
emergence of multiple isolated peaks at random positions,
which are construed as RWs, is displayed in Figs. 9 and 10. In
particular, the effects of β on the generation of the first vector
RW on top of the dnoidal-wave background are summarized
in Table II. The time of the emergence of the first RW com-
ponent S (L) is denoted as tS0 (tL0). The increase of β leads
to the later appearance of the first vector RW on top of the
dnoidal-wave background and an increase of its amplitude.

We also studied the effect of noise in triggering RWs by
decreasing the amplitude of the input noise. From Figs. 11
and 12, we find that a decrease of the noise’s amplitude delays
the emergence of the RW patterns.

VI. CONCLUSION

In this work, we have reported results of the systematic nu-
merical instability of the instabilities and RWs (rogue waves)
arising from the long-wave–short-wave (LWSW) resonance in
the nonintegrable system. We have investigated the stability
and instability of elliptic-waves states against subharmonic
perturbations, whose period is a multiple of the period of the
underlying elliptic-function waves. The main conclusions are
as follows.

(i) The analysis has revealed the modulational instability
(MI) of the dnoidal waves, which are stable against super-
harmonic perturbations. Varying parameters of the dnoidal
waves, we have displayed that spectrally unstable states trans-
form into spectrally stable ones via the Hamiltonian Hope
bifurcation.

(ii) We have identified the dominant instability scenarios
driven by the competing MI and bubblelike instability mech-
anisms for the snoidal waves. For the cnoidal waves, we have
found three different scenarios of the MI.

(iii) We have systematically simulated the emergence of
the RWs in the LWSW resonance system on top of the CW and
elliptic-wave backgrounds, initiated by random perturbations.

Since system (1) is not integrable, we cannot construct the
doubly localized Peregrine solutions analytically. The lack of
integrability makes it necessary to develop a detailed numeri-
cal analysis aimed at the search for Peregrine-like solutions
in system (1), which should be the subject of a separate
work.
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